Microstrip Patch Antenna Design Principles

Ben Horwath
Outline

• Introduction
• Antenna basics
• Microstrip antennas
• Design methodology
• Design guidelines
• Footprint equations
• Circuit equivalent equations
• Quick example
• EM solvers
• PhD work-to-date
• Future efforts
• Some good references
• Questions
Introduction

• For consumer devices, wireless is everywhere!
 – LTE (700 MHz), GSM (850MHz/1.9GHz), Wi-Fi (2.4 GHz), Bluetooth (2.4 GHz), GPS (1.575 GHz)

• Apple’s iPhone 4 is popular science
 – But illustrates sizes and importance of good antenna design

• Why microstrip antennas?
 – The patch antenna is a good place to start for antenna fundamentals

With more coming: 5G (or whatever), Wireless Display, Wireless USB, etc.
Antenna Basics

- How is radiation achieved?
- Wavelength is key: $\frac{\lambda}{2}$, where $\lambda = \frac{c_o}{f_r \sqrt{\varepsilon_r}}$

Microstrip Antennas

- With the microstrip antenna, $\lambda/2$ is a bit too big for consumer mobile devices
- Typically for space and military applications
- Easy to design/manufacture, yet very capable
 - Good value, great for antenna arrays
- Scale is better for millimeter wave RF (60+ GHz)
Design Methodology

• Find a “comfortable” model
 – Transmission Line – easiest, can be done in Excel
 – Cavity – higher accuracy, higher complexity
 – Full Wave – very accurate/adaptable, super complex

• Using specifications, generate initial design
 – Resonance frequency, gain, substrate, footprint, etc.

• Compare with an EM solver
 – Tune parameters such as $\varepsilon_{\text{reff}}$ and ΔL (more details soon)

• Re-iterate design, prototype, measure

• Finalize design for manufacturing
Design Guidelines

- For microstrip antennas, a good 1st step is to assume a standard substrate
 - like Rogers RT/duroid 5880
- Importance of ε_r, h
- To avoid cross polarization, keep $1 < W/L < 1.5$
- Rule of $\lambda/2$ versus $\sim 0.48\lambda$
Footprint-Generating Equations

An initial guess at the patch width:

\[W = \frac{c_o}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}}, \text{ } c_o \text{ is speed of light} \]

Find effective parameters:

\[\varepsilon_{reff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-1/2}, W/h > 1 \]

\[\frac{\Delta L}{h} = 0.412 \frac{(\varepsilon_{reff} + 0.3) \left(\frac{W}{h} + 0.264 \right)}{(\varepsilon_{reff} - 0.258) \left(\frac{W}{h} + 0.8 \right)} \]

Get patch length:

\[L = \frac{c_o}{2f_r \sqrt{\varepsilon_{reff}}} - 2\Delta L \]

Circuit Equivalent Equations

\[G_1 = \frac{W}{120\lambda_o} \left[1 - \frac{1}{24} (k_o h)^2 \right], \quad k_o = \frac{2\pi}{\lambda_o} \]

\[B_1 = \frac{W}{120\lambda_o} [1 - 0.636 \ln(k_o h)] \]

Via admittance transfer function:

\[\tilde{Y}_2 = \tilde{G}_2 + j\tilde{B}_2 = G_1 - jB_1 \]

\[Y_{in} = Y_1 + \tilde{Y}_2 = 2G_1 \]

\[Z_{in} = \frac{1}{Y_{in}} = R_{in} \]

For this discussion
we will ignore
mutual effects
Quick Example

• Rogers RT/duroid 5880 chosen:
 – h=0.508mm, 100mm x 100mm board, \(\varepsilon_r=2.2 \)
• Want an antenna for GSM, \(f_r=1.9\text{GHz} \)
• Use equations in Microsoft Excel
 – \(W=6.24\text{cm}, L=5.30\text{cm}, Z_{\text{in}}=151.8\Omega \)
 – Feed set to be 50\(\Omega \) (standard): \(W_0=1.6\text{mm} \)
• Confirm antenna using an EM solver
 – Sonnet yields \(Z_{\text{in}}=209.7\Omega \) at 1.88GHz
Equations Implemented in Excel

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>er</td>
<td>2.2</td>
</tr>
<tr>
<td>h</td>
<td>0.000508 m</td>
</tr>
<tr>
<td>co</td>
<td>299792458 m/s</td>
</tr>
<tr>
<td>fr</td>
<td>1.900E+09 Hz</td>
</tr>
<tr>
<td>lo</td>
<td>1.578E-01 m</td>
</tr>
<tr>
<td>ko</td>
<td>39.821055 rad/m</td>
</tr>
<tr>
<td>W</td>
<td>0.0624 m</td>
</tr>
<tr>
<td>ereff</td>
<td>2.1727</td>
</tr>
<tr>
<td>DL</td>
<td>0.0003 m</td>
</tr>
<tr>
<td>L</td>
<td>0.0530 m</td>
</tr>
<tr>
<td>Le</td>
<td>0.0535 m</td>
</tr>
<tr>
<td>G</td>
<td>0.0033</td>
</tr>
<tr>
<td>B</td>
<td>0.0115</td>
</tr>
<tr>
<td>Yin</td>
<td>0.0066</td>
</tr>
<tr>
<td>Zin</td>
<td>151.8 Ohms</td>
</tr>
<tr>
<td>Wo</td>
<td>0.00158 m</td>
</tr>
<tr>
<td>ereff2</td>
<td>1.8721</td>
</tr>
<tr>
<td>Zc</td>
<td>50.00 Ohms</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.504438 -2.97192 dB</td>
</tr>
<tr>
<td>VSWR</td>
<td>3.0358218</td>
</tr>
</tbody>
</table>
Sonnet Implementation
Sonnet S11 Response

1.88 GHz
Sonnet Radiation Patterns

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Gain [dBi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.89 GHz</td>
<td>None</td>
</tr>
</tbody>
</table>

Table of Parameters

- **Frequency [GHz]**: 1.89 GHz
- **Gain [dBi]**: None

Diagram Details

- **Gain**: 6.5 dBi
- **Orientation**:
 - **Phi**: 0.0 Degrees (Blue)
 - **Phi**: 90.0 Degrees (Red)

Logo and Affiliation

- **SCU Center for Analog Design and Research**
- **Santa Clara University**
A Few EM Solvers

- Microwave Office (AXIEM)*
- HFSS*
- Agilent Technologies ADS*
- SCU Design Center

SCU Center for Analog Design and Research
Some Good References

• Antenna Theory – Constantine Balanis
 – Used for Antennas I (ELEN 715)

• Microstrip Antenna Design Handbook – Garg et al
 – Title says it all, but a few inaccuracies have been found

• Antenna Theory and Microstrip Antennas – D.G. Fang

• www.antenna-theory.com
PhD Work-to-date

• Focus on tunable antennas
 – Add impedance elements to electrically change the characteristics of the antenna (Z_{in}, E field)

• 60 GHz on-chip tunable antennas and array
 – Adaptive field patterns tuned by IMPATT diodes

• Mantenna
 – Wearable antenna array operating at 50-500 MHz
 – Direction finding for military applications

• 77 GHz system optimization
 – Extending Prof. Al-Attar’s monolithic transmitter work
Future Efforts

• Gain full theoretical control of the antenna
 – Change bandwidth, f_r, E field/directivity at will
 – Use a range of IMPATT locations and values

• Investigate adaptive array pattern control
 – Optimize via array geometry

• OTA for PhD completion
 – Develop a test system, work with industry
 • RF tx/rx chains plus control
Questions?

Contact Info:
Ben Horwath
bhorwath@scu.edu
www.horwathtech.com