L= [

1
Hegskolen i Telemark

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Control a

N

NC

[Tutorial

Simulation

_d

OVIEW

HANS-PETTER HALVORSEN, 2011.08.12

T rem— |

e

E

mFaculty of Technology, Postboks 203, Kjelnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 3557 50 00 Fax: +47 35 57 54 01

Preface

This document explains the basic concepts of using LabVIEW for Control and Simulation purposes.

You should have some basic knowledge about LabVIEW, e.g., the training: “An Introduction to
LabVIEW”. This document and other resources is available for download at:

http://home.hit.no/~hansha/?tutorial=control

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/.

You need the following software:

e LabVIEW

e LabVIEW Control Design and Simulation Module
e LabVIEW MathScript RT Module

e LabVIEW System Identification Toolkit

e LabVIEW PID and Fuzzy Logic Toolkit

e NI-DAQMX

e NI Measurement & Automation Explorer

http://home.hit.no/~hansha/?tutorial=control
http://home.hit.no/~hansha/

Table of Contents

=] - [ol TP O PSP P P PP OUPPPPTOPPPPPRTOt 2
TabIE Of CONTENTES. ...ttt e ettt e e sttt e e s abe e e e s enbeeeeseabeeeeseabeeeeesneee iii
1 Introduction tO LADVIEWcooiiiiiieiee ettt e s e e s e e e 1
1.1 Dataflow programming..........coooiiiiiii i 1
1.2 Graphical PrOgramIMiNg.........uuuuuieeeiieiiiiieeiieeteaeeterrereare..——————————————————————————nnssnnnnnnnnnnnnnnnnnnnnnnen 1

N R 211 T) £ PSSP PPPPPRPPPRPOPPPPON 2

2 Introduction to Control and SIMUIAtIONceiiiiiiiii e 3
3 Introduction to Control and Simulation in LAbBVIEWceiiiiiiiiiiiiiiieeniiee e 4
3.1 LabVIEW Control Design and Simulation Module..............ccccoeiiii 4
3.1.1 SIMUIGTION Leeiiiieiee et e e e st e e e e e s s bbbt e eeeeeesasnnnrbaeeeeesennns 5
3.1.2 CONEIOl DESIGN .ttt ettt ettt e e e e sttt e e e e e s s bbb et e e eeeeessaansrebaeeeeesennns 5

3.2 LabVIEW PID and Fuzzy Logic TOOIKItccoeeeeieiiieieeeeeeee e, 6
3.21 PID CONTIOL ..ttt ettt ettt e e s e e s e e e s snnreeessmneeeeeanne 6
3.2.2 FUZZY LOZIC tiutuiieiiiiiiieiiiiie ettt s e ettt e e e s e e et e taa s s e e e e e e eaaebaa s s e s eeaaensbsaneseeeaeennses 6

3.3 LabVIEW System ldentification ToolKit.............cooee i 7

A SIMUIGTION c e et e e e st e e s e e s n e e e e e nrae s 8
4.1 SimUIation in LABVIEWeeeiiieeee ettt e e s 8
4.2 SIMUIAtION SUDSYSTEM...ciiiiiieiiieeeee e e e e e e st e e e e e e e s e anssaaeeeeeeeasannneens 13
4.3 CoNtINUOUS LINEAT SYSTEIMS ...cviiiiiiie it it e e e e et e e e e e e e ae s e e e e e e eeeaaaaneeeas 14
o] o YL PSSP OPPPPPPPT RO 19

5 PID CONEIOL.cciiiieeeieittteet ettt ettt e e e e sttt e e e e e s ettt eeeeeaeeeaaanbbbaeeeeeessssnsrraeaeaanns 31
5.1 PID CoNtrol in LABVIEW.ccoiiiieie ettt et ettt e st e e e e 32
5.2 F A Lo 0 o o = RPN 33

iv Table of Contents

6 (00T ol o]l B T-TY -4 VPP 34
6.1 Control Design in LABVIEW ...ttt e e e e e e e e e e 34

7 SyYSTemM IdeNtifiCationceiiiiiiii et e e s eanneas 35
7.1 System Ildentification in LabVIEW ..., 35

8 FUZZY LOZIC . ieieeeiiiiiee ettt s ettt s s s e e et ettt e s e s e e e e e aaaaaa e e e e eeassbansnseeaeesnnssnnnnssnns 36
8.1 Fuzzy Logic in LabVIEWccooi i, 36

9 LABVIEW IMatNSCIIPT. ... eeeeeeaaeaaaeeaaaaaaaaaaaaens 37
9.1 HEI e 38
9.2 EXAMIPIES .o, 38
9.3 USEfUl COMMEANGAS... .ttt et ettt e e e s eab e e e s eabee e e s naaeeeeeaneeas 40
9.4 PlOttING e, 41
10 DISCrEtiZatiON ..eevveiiiiiiiiiiieeeeee e e e s e e e e s 42
101 LOW-PASS FIIEEE ittt et e e e e e s st e et e e e e e s ssanbrbaeeeeeessnnnns 42
10.2 PECONTIONEE ettt ettt e e st e e sttt e e s abbee e e s anbaeeesenneeeeeans 45
10.2.1 Pl Controller as a State-space MOAElcooeiiiiiiiiiieieeccceceeeeeeeeeeeeeeeeeeeeeeeee e, 49

10.3 ProcCess IMOEL.......coiiiiiiieeee et e s e s e e s e e 50

Tutorial: Control and Simulation in LabVIEW

1Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and
development environment for a visual programming language from National Instruments. The
graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is
commonly used for data acquisition, instrument control, and industrial automation on a variety of
platforms including Microsoft Windows, various flavors of Linux, and Mac OS X. Visit National
Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW
offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming
language. Execution is determined by the structure of a graphical block diagram (the LV-source code)
on which the programmer connects different function-nodes by drawing wires. These wires
propagate variables and any node can execute as soon as all its input data become available. Since
this might be the case for multiple nodes simultaneously, G is inherently capable of parallel
execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in
scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a
block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block
diagrams of other, calling Vls. Controls and indicators on the front panel allow an operator to input
data into or extract data from a running virtual instrument. However, the front panel can also serve
as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front
panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel
defines the inputs and outputs for the given node through the connector pane. This implies each VI
can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and
dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW
programming environment, with the included examples and the documentation, makes it simple to

http://www.ni.com/

2 Introduction to LabVIEW

create small applications. This is a benefit on one side, but there is also a certain danger of
underestimating the expertise needed for good quality "G" programming. For complex algorithms or
large-scale code, it is important that the programmer possess an extensive knowledge of the special
LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW
development systems offer the possibility of building stand-alone applications. Furthermore, it is
possible to create distributed applications, which communicate by a client/server scheme, and are
therefore easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for accessing
instrumentation hardware. Drivers and abstraction layers for many different types of instruments
and buses are included or are available for inclusion. These present themselves as graphical nodes.
The abstraction layers offer standard software interfaces to communicate with hardware devices.
The provided driver interfaces save program development time. The sales pitch of National
Instruments is, therefore, that even people with limited coding experience can write programs and
deploy test solutions in a reduced time frame when compared to more conventional or competing
systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded
components with only a few register calls through NI Measurement Hardware DDK (Driver
Development Kit) functions, provides platform independent hardware access to numerous data
acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on
Windows, Mac OS X and Linux platforms.

Tutorial: Control and Simulation in LabVIEW

2Introduction to Control

and Simulation

Control design is a process that involves developing mathematical models that describe a physical
system, analyzing the models to learn about their dynamic characteristics, and creating a controller
to achieve certain dynamic characteristics.

Simulation is a process that involves using software to recreate and analyze the behavior of dynamic
systems. You use the simulation process to lower product development costs by accelerating product
development. You also use the simulation process to provide insight into the behavior of dynamic
systems you cannot replicate conveniently in the laboratory.

Below we see a closed-loop feedback control system:

Process
disturbance

Process
Control Control output
Reference _ error signal variable
>

+
. Filter |e—— Sensor |e—
Filtered
(smoothed) Process
process measurement
measurement
Measurement
noise

3Introduction to Control

and Simulation In
LabVIEW

LabVIEW has several additional modules and Toolkits for Control and Simulation purposes, e.g.,
“LabVIEW Control Design and Simulation Module”, “LabVIEW PID and Fuzzy Logic Toolkit”,
“LabVIEW System Identification Toolkit” and “LabVIEW Simulation Interface Toolkit”. LabVIEW
MathScript is also useful for Control Design and Simulation.

e LabVIEW Control Design and Simulation Module
e LabVIEW PID and Fuzzy Logic Toolkit

e LabVIEW System Identification Toolkit

e LabVIEW Simulation Interface Toolkit

This tutorial will focus on the main aspects in these modules and toolkits.

All Vis related to these modules and toolkits are placed in the Control Design and Simulation Toolkit:

Control Design & Simulation

B Mg ™
[2 » [
> R
B
Simulation Control Design Swskem Ident. ..
g o =
+O‘rEr Fuzzy
PID Fuzzy Logic Sim Interface

3.1 LabVIEW Control Design and Simulation
Module

With LabVIEW Control Design and Simulation Module you can construct plant and control models
using transfer function, state-space, or zero-pole-gain. Analyze system performance with tools such

4

5 Introduction to Control and Simulation in LabVIEW

as step response, pole-zero maps, and Bode plots. Simulate linear, nonlinear, and discrete systems
with a wide option of solvers. With the NI LabVIEW Control Design and Simulation Module, you can
analyze open-loop model behavior, design closed-loop controllers, simulate online and offline
systems, and conduct physical implementations.

3.1.1 Simulation

The Simulation palette in LabVIEW:

Search | 22 view~
i ey s

=
Conkral & Sim. ..
v > r
Signal Genera... Signal Arithm... Graph Utilities
’ ’
=

Continuous Li.,. Monlinear Sys., ..

.,
-
[=1=)
i
foli e
=
H
o
EE =
i
-| 3

=
=
f=
m
n

Trim £ Linearize Lookup Tables

E= »
=7

Cptimal Design Estimation

8

The main features in the Simulation palette are:

e Control and Simulation Loop - You must place all Simulation functions within a Control &
Simulation Loop or in a simulation subsystem.

e Continuous Linear Systems Functions - Use the Continuous Linear Systems functions to
represent continuous linear systems of differential equations on the simulation diagram.

e Signal Arithmetic Functions - Use the Signal Arithmetic functions to perform basic arithmetic
operations on signals in a simulation system.

3.1.2 Control Design

The Control Design palette in LabVIEW:

Tutorial: Control and Simulation in LabVIEW

6 Introduction to Control and Simulation in LabVIEW

Control Design

[~ P
Do WiEINT

ol b e iy M 3
= & = B
Madel Canstr,., Madel Infarm... Madel Canver... Madel Inkerca. ..
. 1 ¥ »
: FFLL =

Y LLH# Gt 2
¥ f [—

Time Response Frequency R... Dynamic Char... Model Reduct...

ﬂ@} et -
u=-k.x b
State-Space ... State Feedba... Stochastic Sw...
., 3 .P
,._q}‘ s
Analykical PID. .. Predictive Ca... Implementation

3.2 LabVIEW PID and Fuzzy Logic Toolkit

The NI LabVIEW PID and Fuzzy Logic Toolkit add control algorithms to LabVIEW. By combining the PID
and fuzzy logic control functions in this toolkit with the math and logic functions in LabVIEW
software, you can quickly develop programs for automated control. You may integrate these control
tools with the power of data acquisition.

3.2.1 PID Control

The PID palette in LabVIEW:

[~ P
Do MiEINT

FID FID FID FID
B B Bl & % h
PID, vi PID Advance... PID Autotuni... PID Lead-Lag.vi
FID FID PID PID
L& Fir E+ o E‘E

PID Setpoint ... PID ConkrolI... PID Gain Sch... PID OutputR...
PO FID
| e 7 [fni]

PID EGU to P... PID Percenta...

3.2.2 Fuzzy Logic

Tutorial: Control and Simulation in LabVIEW

7 Introduction to Control and Simulation in LabVIEW

The Fuzzy Logic palette in LabVIEW:

[P
Do MBI

BH

[Eer=d] 0 [En]

FL Fuzzy Con... FL Sawe Fuzz... FL Load Fuzz...

Ce7]]] I 4

prrr=

L Al Then
FL Mew Fuzzy... Variables Membership Rules

3.3 LabVIEW System Identification Toolkit

The “LabVIEW System Identification Toolkit” combines data acquisition tools with system
identification algorithms for plant modeling. You can use the LabVIEW System Identification Toolkit
to find empirical models from real plant stimulus-response information.

The System Identification palette in LabVIEW:

System Identification

[rrr—
Chooee WIE™

U I 3
=N = =3
Preprocessing Parametric Frequency Grey-Box Recursive
e 7. I I X,
altire -3 LiHit]
Monparametric Yalidakion analysis Conwersion
At b [
| P
Management Lkilities

Tutorial: Control and Simulation in LabVIEW

4Simulation

Simulation is a process that involves using software to recreate and analyze the behavior of dynamic
systems. You use the simulation process to lower product development costs by accelerating product
development. You also use the simulation process to provide insight into the behavior of dynamic
systems you cannot replicate conveniently in the laboratory. For example, simulating a jet engine
saves time, labor, and money compared to building, testing, and rebuilding an actual jet engine. You
can use the LabVIEW Control Design and Simulation Module to simulate a dynamic system or a
component of a dynamic system. For example, you can simulate only the plant while using hardware
for the controller, actuators, and sensors (Hardware-in-the-loop Simulation).

A dynamic system model is a differential or difference equation that describes the behavior of the
dynamic system.

4.1 Simulation in LabVIEW

Use the Simulation VIs and functions to create simulation applications in LabVIEW. In the Control
Design & Simulation palette we have the Simulation Sub palette:

-+

qﬁf

GIs)

Control Design Syskem Ident. ..

B =
Fuzzy
Fuzzy Logic Sim Interface

Below we see the Simulation Sub palette:

9 Simulation

Conkral & Sim..
4 » 4
Signal Genera... Signal Arithrm... Graph Lkilities
> >
L)
Continuous Li.., Monlinear Sys,.. Discrete Line. ..
» %ﬁgﬁ »

Trim £ Linearize Lookup Tables

E= »
[z

Cptimal Design Estimation

=
=
m
-

Note! All the “Blocks” in the Simulation palette are not SubViIs, i.e., we cannot double-click on them
and open the Block Diagram because they have none. All the Blocks in the Simulation palette must be
used inside the Control and Simulation Loop (explained below).

Control and Simulation Loop:

In the “Simulation” Sub palette we have the “Control and Simulation Loop” which is very useful in
simulations:

[=]

1

You must place all Simulation functions within a Control & Simulation Loop or in a simulation
subsystem. You also can place simulation subsystems within a Control & Simulation Loop or another

simulation subsystem, or you can place simulation subsystems on a block diagram outside a Control
& Simulation Loop or run the simulation subsystems as stand-alone Vis.

Tutorial: Control and Simulation in LabVIEW

10 Simulation

The Control & Simulation Loop has an Input Node (upper left corner) and an Output Node (upper
right corner). Use the Input Node to configure simulation parameters programmatically. You also can
configure these parameters interactively using the Configure Simulation Parameters dialog box.
Access this dialog box by double-clicking the Input Node or by right-clicking the border and selecting
Configure Simulation Parameters from the shortcut menu.

Configuration:

When you place these blocks on the diagram you may double-click or right-click and then select
“Configuration...”

Example: Configuration Dialog box

[
For the “Transfer Function” (Simulation - Continuous Linear Systems) block we have the
following Configuration window:

Tutorial: Control and Simulation in LabVIEW

11 Simulation

Palyrorphic instance Feedthrough Parameter Information

|SISO b | Indirect Parameter source
Parameters |C0nfigurati0n Dialog Box »

Parameter Mame Yalue e =
b— Y 2 aEEE
-5 Transfer Function | |

B reset? False Model Dimensions
Inputs Cubputs
1 i

Current Inpuk Inpuk-2utput Madel
v L (]

Zurrent Cukbpuk

£ |

|

Preview o

Murneratar

b b1 bz b3 b4 bS b&

1

A0) >
e Denarinatar
al al az a3 a4 as ag

His) =

I OF, H Cancel ” Help

All the different blocks have their own different Configuration window.

Patameter source
Configuration Dialog Box v

4 Configuration Dialog Box
Terminal

In the Parameter source you may select between:

e Configuration Dialog Box
e Terminal

If you select “Configuration Dialog Box” you enter the configuration in the Configuration window like
we see above, while if you select “Terminal” that specific configuration is set from the Block Diagram
like this:

Icon Style:

When you place the block on the block diagram you may select how that should appear. Right-click
on the block/icon and select “Icon Style”:

Tutorial: Control and Simulation in LabVIEW

12 Simulation

oo

H visible tems 3

Help

Description and Tip. ..

Breakpoint 2
Conkinuaus Linear Systems Palette b
Mumeric Palette 2
Create 3
Replace 2

Reverse Terminals

Icon Skyle

Configuration, .. Dwniarnic
Texk Cnky

P ki
roperties Express

Example: Icon Style

[E0)
For the “Transfer Function” (Simulation = Continuous Linear Systems) block we have the
following different icon styles:

Static:

Bom

Dynamic:

Text Only:

FHnpuk k) autput wikir
Transfer Funckion = ...
reset? = False state (k)

Express:

- = .

25+l f
* imput Lk
Transfer Funckion = ...
reset? = False

We see for the Dynamic and Express styles that the appearance changes according to configuration
parameters we set.

Tutorial: Control and Simulation in LabVIEW

13

Simulation

| personally prefer the “static” icon style because it does not require lots of space on the diagram.

4.2 Simulation Subsystem

You may create a Simulation Subsystem (File - New...):

s, Palymarphic ¥1
[C5y From Template
=5y Project
J|f_'-g Empty Project
=5y Project from Wizard
E Real-Time Project

‘@ Mobile Project

|_0;1, Class

[#) Custom Contral

@ Global variable

L; Library

|E; Multi-panel Application
|;_fg, Runtime Menu

E; “Control

|~

b [+ —H T fizz]
J|f__-g Instrument Driver Project — E ’DB

File Edit Wew Project Operate Tools
O[n][9]z5] ool

inpuk oubput

| >

| €

< >

Creates a simulation subsystem,

Simulation subsystems are YIs that can consist of
Simulation ¥Is and functions that can be used in o outside
a Simulation Loop, The block diagram of a simulation

Create Mew Description
BV ~ — -~
[l Blank vI il * Integrator.vi Block Diagram |_' 1

subsystem has a pale vellow background to distinguish the %
S >
[add to project
b
Ed
[OF] [Cancel] [Help]

The Simulation Subsystem is very useful when dealing with larger simulation systems in order to
create a more structured code. | recommend that you (always) use this feature.

The Simulation Subsystem is almost equal to a normal LabVIEW Block Diagram but notice the

background color is slightly darker.

Note! In order to open the Simulation Subsystem, right-click and select “Open Subsystem”.

The Simulation Subsystem may also be represented by different icons. If you select “dynamic” icon
style, you will see a “miniature” version of the subsystem like this:

-

=

Tutorial: Control and Simulation in LabVIEW

14 Simulation

Il
= You may drag in the corner in order to increase or decrease the dynamic icon.

If you select “static” icon style you see the icon you created with the Icon Editor.

Like this: El

4.3 Continuous Linear Systems

In the “Continuous Linear Systems” Sub palette we want to create a simulation model:

[~ I
e WM™

mr
[
e

Imteqgratar Derivakive Transpiort Delay
g i
Bl e

State-Space Transfer Fun..., Zero-Pole-Gain

g

Continuous .., Conkinuous k...

The most used blocks probably are Integrator, Transport Delay, State-Space and Transfer Function.

When you place these blocks on the diagram you may double-click or right-click and then select
“Configuration...”

B
Integrator - Integrates a continuous input signal using the ordinary differential equation (ODE)
solver you specify for the simulation.

The Configuration window for the Integrator block looks like this:

Tutorial: Control and Simulation in LabVIEW

15

Simulation

The Configuration window for the Transport Delay block looks like this:

ey
1

B! Integrator Configuration

Polymorphic instance
Scalar v

Parameters

Parameter Information
Parameter source

Configuration Dialog Box v

initial candition

=

B upper limit [

B lower lirit]

B initial condition For re 0 .

B reset type none

B reset 1} v
< | @
Preview

=

[o

/[

cancel ||

Help

B Transport Delay Configuration

Transport Delay - Delays the input signal by the amount of time you specify.

Polymorphic instance Feedthrough Parameter Information
Eﬁl%' b | |Ind\rect w | Parameter source
Parameters ’mWration Dialog Box w
Parameter Marne Value ~
.. B initial condition B izl lcondition)
B delay {s) 1
B max delay (s) 1
o,
4 |
Preview
o8

)|

Cancel

I

Help

Transfer Function - Implements a system model in transfer function form. You define the

system model by specifying the Numerator and Denominator of the transfer function equation.

The Configuration window for the Transfer Function block looks like this:

Tutorial: Control and Simulation in LabVIEW

16

Simulation

B! Transfer, Function Configuration

Palymorphic instance Feedthrough Parameter Information

SIS0 w| |Indirect Parameter source

Parameters Configuration Dialog Box v

Parameter Name Value ~ o, 3
-8 Transfer Function _ & =2 [E
B reset? False Maodel Dimensions
Inputs Qukputs
1 1
Current Input Input-Output Madel
v g (w]

L4 | (¥ Current Qubpuk

Preview o
Mumerator
b b1 bz b3 b4 bs b&
1

1 < i H
His) = S+ 1 Denaminatar
al al az a3 a4 as EL
1 1
am >
OK l I Cancel] I Help

(£

1
. State-Space - Implements a system model in state-space form. You define the system model
by specifying the input, output, state, and direct transmission matrices.

The Configuration window for the State-Space block looks like this:

Pulymorphic instance Feedthrough Parameter Information
3150 ¥l |Indirect Parameter source

Parameters Configuration Dialog Box -
Parameter Name Yalue A — .
= ,
e CH =6
B initial state {x0) [0] Model Dimensions
B reset? False Inputs States Cukputs
Bl reset state (xr) [a] 1 1 E 1
v A B
£ | (¥ =0 ul
N — 0 -1 1
Preview
C)
i 1 1]

Ok] [Cancel] [Help

Signal Arithmetic:

The “Signal Arithmetic” Sub palette is also useful when creating a simulation model:

Tutorial: Control and Simulation in LabVIEW

17

Simulation

[~ Free—
Chooee MIE ™

> © [

Gain Surnrnakian rulkiplicakian

Example: Simulation Model

Below we see an example of a simulation model created in LabVIEW.

File Edit “jew Project OQperate Tools

2[] O[n][][2e] o

inpuk outpuk

‘ez - in

[£

[
|

Example: Simulation

Below we see an example of a simulation model using the Control and Simulation Loop.

B! Simulation Examle. vi Block Diagram

File Edit Yiew Project Operate Tools ‘Window Help

>[@] @[n][@][25] [wal@] 7 [130t Application Font |~ |[3v]

[DELK
[Runge-kutta 1 (Euler) =}Hp

[

Tutorial: Control and Simulation in LabVIEW

18

Simulation

Notice the following:

Click on the border of the simulation loop and select “Configure Simulation Parameters...”

Visible Trems
Help

Description and Tip...

Breakpoink

Simulation Palette
J Auko Grow

Properties

The following window appears (Configure Simulation Parameters):

B! Configure Simulation Parameters

Simulation Parameters | Timing Parameters

Configure Simulation Parameters

Simulation Parameters | Timing Parameters \—

Simulation Time

Initial Time (s)

0 ¢

Solver Method
CDE Salver

|Runge-Kutta 1 (Euler)

b | [IManfInf Check,

Continuous Time Step and Tolerance
Step Size (s)
0,1 <

Minimum Step Size (s) Maximum Step Size (s)
1E-10 1

Relative Tolerance Absolute Tolerance

nable Synchronized Timing

Synchtonize Loop to Timing Source

Timing Source
Source bvpe
1 kHz Clack

1 kHz <reset at structure startz

Other «<defined by source name ar terminal =

Source name
‘ 1 kHz

Loop Timing Attributes
Period

[] Auto Period

0,001 1E-7 Offset | Phase Priority

100 3
Discrete Time Step Deadine Threers (7e)
Discrete Skep Size (5) DI -1 -~
0,1 Auto Discrete Time

Processor Assignment

Mode Processor

2

I (0]] [Cancel l [Help] [[s]'s] ’ Cancel] [Help

In this window you set some Parameters regarding the simulation, some important are:

¢ Final Time (s) —set how long the simulation should last. For an infinite time set “Inf”.

Tutorial: Control and Simulation in LabVIEW

19 Simulation

e Enable Synchronized Timing - Specifies that you want to synchronize the timing of the
Control & Simulation Loop to a timing source. To enable synchronization, place a checkmark
in this checkbox and then choose a timing source from the Source type list box.

Click the Help button for more details.

You may also set some of these Parameters in the Block Diagram:

Eampling TimEﬂ/ [=eer]
’ L it
L

| Runge-Kutka 1 (Euler) vy

You may use the mouse to increase the numbers of Parameters and right-click and select “Select
Input”.

Exercises

Exercise: Simulation of a spring-mass damper system

In this exercise you will construct a simulation diagram that represents the behavior of a dynamic
system. You will simulate a spring-mass damper system.

F(t) — cx(t) — kx(t) = m&(t)

where t is the simulation time, F(t) is an external force applied to the system, c is the damping
constant of the spring, k is the stiffness of the spring, m is a mass, and x(t) is the position of the mass.
X is the first derivative of the position, which equals the velocity of the mass. X is the second
derivative of the position, which equals the acceleration of the mass.

The following figure shows this dynamic system.

3

Tutorial: Control and Simulation in LabVIEW

20 Simulation

The goal is to view the position x(t) of the mass m with respect to time t. You can calculate the
position by integrating the velocity of the mass. You can calculate the velocity by integrating the
acceleration of the mass. If you know the force and mass, you can calculate this acceleration by using
Newton's Second Law of Motion, given by the following equation:

Force = Mass x Acceleration
Therefore,
Acceleration = Force / Mass

Substituting terms from the differential equation above yields the following equation:

1
V= S (F — cox —
X (cx — kx)

You will construct a simulation diagram that iterates the following steps over a period of time.

Creating the Simulation Diagram

You create a simulation diagram by placing a Control & Simulation Loop on the LabVIEW block
diagram.

Launch LabVIEW and select File»New VI to create a new, blank VI.

Select Window»Show Block Diagram to view the block diagram. You also can press the
<Ctrl-E> keys to view the block diagram.

3. Ifyou are not already viewing the Functions palette, select View»Functions Palette to display
this palette.

4. Select Control Design & Simulation»Simulation to view the Simulation palette.

Click the Control & Simulation Loop icon.

6. Move the cursor over the block diagram. Click to place the top left corner of the loop, drag
the cursor diagonally to establish the size of the loop, and click again to place the loop on the
block diagram.

i

The simulation diagram is the area enclosed by the Control & Simulation Loop. Notice the simulation
diagram has a pale yellow background to distinguish it from the rest of the block diagram. You can
resize the Control & Simulation Loop by dragging its borders.

Configuring Simulation Parameters

The Control & Simulation Loop contains the parameters that define how the simulation executes.
Complete the following steps to view and configure these simulation parameters.

1. Double-click the Input Node, attached to the left side of the Control & Simulation Loop, to
display the Configure Simulation Parameters dialog box. You also can right-click the loop
border and select Configure Simulation Parameters from the shortcut menu.

2. Ensure the value of the Final Time (s) numeric control is 10, which specifies that this tutorial
simulates ten seconds of time.

Tutorial: Control and Simulation in LabVIEW

21

Simulation

7.

Click the ODE Solver pull-down menu to view the list of ODE solvers the Control Design and
Simulation Module includes. If the term (variable) appears next to an ODE solver, that solver
has a variable step size. The other ODE solvers have a fixed step size. Ensure a checkmark is
beside the default ODE solver Runge-Kutta 23 (variable).

Because this ODE solver is a variable step-size solver, you can specify the Minimum Step Size
(s) and Maximum Step Size (s) this ODE solver can take. Enter 0.01 in the Maximum Step Size
(s) numeric control to limit the size of the time step this ODE solver can take.

Click the Timing Parameters tab to access parameters that control how often the simulation
executes.

Ensure the Synchronize Loop to Timing Source checkbox does not contain a checkmark. This
option specifies that the simulation executes without any timing restrictions. Use this option
when you want the simulation to run as fast as possible. If you are running this simulation in
real-time, you can place a checkmark in this checkbox and configure how often the
simulation executes.

Click the OK button to save changes and return to the simulation diagram.

Building the Simulation

The next step is to build the simulation by placing Simulation functions on the simulation diagram

and wiring these functions together. Note that you can place most Simulation functions only on the

simulation diagram, that is, you cannot place Simulation functions on a LabVIEW block diagram.
Complete the following steps to build the simulation of this dynamic system.

Placing Functions on the Simulation Diagram

1.

10.

Open the Simulation palette.

Select the Signal Arithmetic palette and place a Multiplication function on the simulation
diagram. You will use this function to divide the force by the mass to calculate the
acceleration.

Double-click the Multiplication function to display the Multiplication Configuration dialog
box. You can double-click most Simulation functions to view and change the parameters of
that function.

The function currently displays two x symbols on the left side of the dialog box. This setting
specifies that both incoming signals are multiplied together. Click the bottom x symbol to
change it to a + symbol. This Multiplication function now divides the top signal by the bottom
signal.

Click the OK button to save changes and return to the simulation diagram.

Right-click the Multiplication function and select Visible Items»Label from the shortcut menu.
Double-click the Multiplication label and enter Calculate Acceleration as the new label.
Return to the Simulation palette and select the Continuous Linear Systems palette.

Place an Integrator function on the simulation diagram. You will use this function to calculate
velocity by integrating acceleration.

Label this Integrator function Calculate Velocity.

Press the <Ctrl> key and click and drag the Integrator function to another location on the
simulation diagram. This action creates a copy of the Integrator function, which you will use

Tutorial: Control and Simulation in LabVIEW

22

Simulation

11.

12.

13.
14.

to calculate position by integrating velocity. Label this new Integrator function Calculate
Position.

Select the Graph Utilities palette and place two SimTime Waveform functions on the
simulation diagram. You will use these functions to view the results of the simulation over
time.

Each SimTime Waveform function has an associated Waveform Chart. Label the first
waveform chart Velocity and the second waveform chart Position.

Arrange the functions to look like the following simulation diagram.

Save this VI by selecting File»Save. Save this VI to a convenient location as “Spring-Mass
Damper Example.vi”.

The Block Diagram should now look like this:

Input Node Control & Simulation Loop Cukput Mode

N ||

Caloulake Acceleration

Calculate Welocity Simulation Time Wavefarm 2

o

ST STy
&N s -
5 Welocit

Calculate Position

e
.

Sirulation Time Waveform

Position

Wiring the Simulation Functions Together

The next step is wiring the functions together to represent the flow of data from one function to

another.

Note! Wires on the simulation diagram include arrows that show the direction of the dataflow,

whereas wires on a LabVIEW block diagram do not show these arrows.

Complete the following steps to wire these functions together.

1.

Right-click the Operand1 input of the Calculate Acceleration function and select
Create»Control from the shortcut menu to add a numeric control to the front panel window.
Label this control Force.

Double-click this control on the simulation diagram. LabVIEW displays the front panel and
highlights the Force control.

Display the block diagram and create a control for the Operand2 input of the Calculate
Acceleration function. Label this new control Mass.

Tutorial: Control and Simulation in LabVIEW

23 Simulation

5. Wire the Result output of the Calculate Acceleration function to the input input of the
Calculate Velocity function.

6. Wire the output output of the Calculate Velocity function to the input input of the Calculate
Position function.

7. Right-click the wire you just created and select Create Wire Branch from the shortcut menu.
Wire this branch to the Value input of the SimTime Waveform function that has the Velocity
waveform chart.

8. Wire the output output of the Calculate Position function to the Value input of the SimTime
Waveform function that has the Position waveform chart.

The Block Diagram should now look like this:

Input Kode Cantral & Simulation Loop Qukput Mode

Calculate Acceleration

Calculate Yelocity Simulation Time Waveform 2

EGE CEE
welocit

Calculate Position

HeT

Simulation Time Waweform

Position

Running the Simulation

You now can run this simulation to test that the data is flowing properly through the Simulation
functions. Complete the following steps to run this simulation.

1. Select Window»Show Front Panel, or press <Ctrl-E>, to view the front panel of this
simulation. The front panel displays the following objects: a control labeled Force, a control
labeled Mass, a waveform chart labeled Velocity, and a waveform chart labeled Position.

2. If necessary, rearrange these controls and indicators so that all objects are visible.

3. Enter -9.8 in the Force numeric control. This value represents the force of gravity, 9.8 meters
per second squared, acting on the dynamic system.

4. Enter 1inthe Mass numeric control. This value represents a mass of one kilogram.

5. Click the Run button, or press the <Ctrl-R> keys, to run the VI.

The Front Panel should look like this:

Tutorial: Control and Simulation in LabVIEW

24 Simulation

Yelocity Plat 0 m]

Amplitude

Simulation Time

Position Pt AN

Anplitude

Simulakion Time

In the Figure above notice that the force of gravity causes the mass position and velocity to

constantly decrease. However, in the real world, a mass attached to a spring oscillates up and down.
This simulated spring does not oscillate because the simulation diagram does not represent damping
or stiffness. You must represent these factors to have a complete simulation of the dynamic system.

Representing Damping and Stiffness

Representing damping and stiffness involves feeding back the velocity and position, each multiplied
by a different constant, to the input of the Calculate Acceleration function. Recall the following
differential equation this VI simulates.

F(t) — cx(t) — kx(t) = m&(b)

In the previous equation, notice you multiply the damping constant c by the velocity of the mass x.
You multiply the stiffness constant k by the mass position x(t). You then subtract these quantities

from the external force applied to the mass.
Complete the following steps to represent damping and stiffness in this dynamic system model.

1. View the simulation diagram.
2. Select the Signal Arithmetic palette and place a Summation function on the simulation
diagram. Move this function to the left of the Force and Mass controls.

Tutorial: Control and Simulation in LabVIEW

25 Simulation

3. Double-click the Summation function to configure its operation. By default, the Summation
function displays the following three input terminals: a @ symbol, a + symbol, and a — symbol.
This configuration subtracts one input signal from another.

4. Click the @ symbol twice to change this terminal to the — symbol. This Summation function
now subtracts the top and bottom input signals from the left input signal.

5. Click the OK button to save changes and return to the simulation diagram.

6. Select the Signal Arithmetic palette and place a Gain function on the simulation diagram.
Move this function above the existing simulation diagram code but still within the Control &
Simulation Loop.

7. The input of the Gain function is on the left side of the function, and the output is on the
right side. You can reverse the direction of these terminals to indicate feedback better.
Right-click the Gain function and select Reverse Terminals from the shortcut menu. The Gain
function now points toward the left side of the simulation diagram.

8. Label this Gain function Damping.

9. Press the <Ctrl> key and drag the Gain function to create a separate copy. Move this copy
below the existing simulation diagram code but still within the Control & Simulation Loop.
Label this function Stiffness.

10. Right-click the wire connecting the Force control to the Calculate Acceleration function and
select Delete Wire Branch from the shortcut menu. Move the Force control to the left of the
Summation function, and wire this control to the Operand2 input of the Summation function.

11. Create wires 1-5 as indicated in the Figure below. The simulation diagram now fully
represents the equation that defines the behavior of the dynamic system.

12. Press <Ctrl-S> to save the VI.

The Block Diagram should now look like this:

Input Mode Control & Simulation Loop Cubput Mod:
e

Damping

2]

Farce = Calculate Acceleration
3@ _

r
~ Calculate velocity Sirnulation Time Waveform 2

Mass AL il
[W alocit

Zalculate Position
4

Stiffriess Simulation Time Wwawveform

[Position

Tutorial: Control and Simulation in LabVIEW

26

Simulation

Configuring the Stiffness of the Spring

Before you run the simulation again, you must configure the stiffness of the simulated spring.
Complete the following steps to configure this Simulation function.

1.

Double-click the Stiffness function to display the Gain Configuration dialog box.

Enter 100 in the gain numeric control. This value represents a stiffness of 100 Newtons per
meter.

Click OK to return to the simulation diagram. Notice that the Stiffness function displays 100.
Display the front panel and ensure the Force control is set to -9.8 and the Mass control is set
to 1.

Run the simulation. The Velocity and Position charts display the behavior of the mass as the
spring oscillates. Notice the new behavior compared to the last time you ran the simulation.
This time, the velocity and position do not constantly decrease. Both values oscillate, which is
how a spring behaves in the real world.

Change the value of the Mass control to 10 and run the simulation again. Notice the different
behavior in the Velocity and Position charts. The 10 kg mass forces the spring to oscillate less
frequently and within a smaller velocity/position range.

The Front Panel should look like this:

Faree
H-aa
&

_Mass

Yelacity A | _

f
Inn .
I (i SN

Amplitude

|||| 11y
If ¥
| ¥

Simulation Time:

Pasition Pioto _

Amplitude

Simulation Time

Configuring Simulation Functions Programmatically

Tutorial: Control and Simulation in LabVIEW

27

Simulation

The previous section provided information about configuring Simulation functions using the
configuration dialog box. Instead of using the configuration dialog box, you can improve the
interactivity of a simulation by creating front panel controls that configure a Simulation function

programmatically. Complete the following steps to configure the Stiffness function programmatically.

1.

If you are not already viewing the Context Help window, press <Ctrl-H> to display this
window.

Display the block diagram and move the cursor over the Stiffness function. Notice this
function has only one input terminal.

Display the Gain Configuration dialog box of the Stiffness function.

Select Terminal from the Parameter source pull-down menu. This action disables the gain
numeric control.

Click the OK button to save changes and return to the block diagram.

Move the cursor over the Stiffness function. Notice the Context Help window displays the
Gain function with the new gain input terminal.

Create a control for this input, and label the control gain (k).

View the front panel. Notice the new control gain (k). Enter a value of 100 for this control
and run the simulation. Notice the behavior is exactly the same as when you used the
configuration dialog box to configure the Stiffness function.

Modularizing Simulation Diagram Code

You can create simulation subsystems to divide simulation diagrams into components that are

modular, reusable, and independently verifiable. Complete the following steps to create a simulation

subsystem from this simulation diagram.

1.

View the simulation diagram.

Select the Calculate Acceleration, Calculate Velocity, and Calculate Position functions by
pressing the <Shift> key and clicking each function.

Select Edit»Create Simulation Subsystem. LabVIEW replaces these three functions with a
single function that represents the simulation subsystem, which is circled in the Figure
below. The inputs and outputs of the simulation subsystem include the inputs and outputs of
all the functions you selected. Also, notice the amount of blank space on the simulation
diagram. Because you combined three functions into a subsystem, you can resize the Control
& Simulation Loop and reposition the functions to make the simulation diagram easier to
view.

Press <Ctrl-S> to save the simulation diagram. LabVIEW prompts you to save the simulation
subsystem you just created. Click the Yes button and save this simulation subsystem as
“Newton.vi”. You now have a simulation subsystem that obtains the position of a mass by
using Newton's Second Law of Motion.

Note! You can resize the simulation subsystem to better display its simulation diagram. You also can

double-click the simulation subsystem to display the configuration dialog box of that simulation

subsystem.

Tutorial: Control and Simulation in LabVIEW

28 Simulation

The simulation subsystem should look like this:

Input Node Control & Simulation Loop Cukput Node

Darnpirig

Sirmulation Time ‘Waveform 2

*
Stiffiness

<

Simulakion Time \Wawefarm

Editing the Simulation Subsystem

Edit the simulation subsystem “Newton.vi” by right-clicking this subsystem and selecting Open
Subsystem from the shortcut menu. View the simulation diagram.

Notice this simulation subsystem does not contain a Control & Simulation Loop, but the entire
background is pale yellow to indicate a simulation diagram. If you place this simulation subsystem in
a Control & Simulation Loop, the simulation subsystem inherits all simulation parameters from the
Control & Simulation Loop.

If you run this subsystem as a stand-alone VI, you can configure the simulation parameters by
selecting Operate»Configure Simulation Parameters. Any parameters you configure using this
method do not take effect when the subsystem is within another Control & Simulation Loop. If you
place this simulation subsystem on a block diagram outside a Control & Simulation Loop, you can
configure the simulation parameters by double-clicking the simulation subsystem to display the
configuration dialog box of that simulation subsystem.

Configuring Simulation Parameters Programmatically

Earlier in this exercise, you used the Configure Simulation Parameters dialog box to configure the
parameters of “Spring-Mass Damper Example.vi”. You also can configure simulation parameters
programmatically by using the Input Node of the Control & Simulation Loop. Complete the following
steps to configure simulation parameters programmatically.

1. View the simulation diagram of “Spring-Mass Damper Example.vi”.
Move the cursor over the Input Node to display resizing handles.

3. Drag the bottom handle down to display all available Node inputs. You use these inputs to
configure the simulation parameters without displaying the Configure Simulation Parameters

Tutorial: Control and Simulation in LabVIEW

29

Simulation

dialog box. You also can right-click the Input Node and select Show All Inputs from the
shortcut menu.

Notice the gray boxes next to each input. These boxes display values you configure in the
Configure Simulation Parameters dialog box. For example, the third gray box from the top
displays 10.0000, which is the value of the Final Time numeric control that you configured.
The fifth gray box from the top displays RK 23. This box specifies the current ODE solver,
which you configured as Runge-Kutta 23 (variable). Move the cursor over the left edge of
each Node input to display the label of that input.

Right-click the input terminal of the ODE Solver input and select Create»Constant from the
shortcut menu. A block diagram constant appears outside the Control & Simulation Loop.
The value of this constant is Runge-Kutta 1 (Euler), which is different than what you
configured in the Configure Simulation Parameters dialog box. However, the gray box
disappears from the Input Node, indicating that the value of this parameter does not come
from the Configure Simulation Parameters dialog box. Values that you programmatically
configure override any settings you made in the Configure Simulation Parameters dialog box.

The Input Node should now looks like the following figure:

¥
w1, [0, 000001
1= (1000001
At (O T0000

|*Runge-Kutta 1 {(Euler) |H

Summary

This exercise introduced you to the following concepts:

The simulation diagram reflects the dynamic system model you want to simulate. This dynamic
system model is a differential or difference equation that represents a dynamic system.

Tutorial: Control and Simulation in LabVIEW

30 Simulation

The Control & Simulation Loop contains the parameters that define the behavior of the simulation.
The Control & Simulation Loop also defines the visual boundary of the simulation diagram.
Double-click the Input Node of the Control & Simulation Loop to access configurable parameters. You
also can expand the Input Node to access these parameters.

The Simulation palette contains the VIs and functions you use to build a simulation. You can
double-click most Simulation functions to display a dialog box that configures that function. You also
can create input terminals for function inputs.

You can create simulation subsystems to modularize, encapsulate, validate, and re-use portions of
the simulation diagram.

Tutorial: Control and Simulation in LabVIEW

5PID Control

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm
used in industry. Often, people use PID to control processes that include heating and cooling
systems, fluid level monitoring, flow control, and pressure control. In PID control, you must specify a
process variable and a setpoint. The process variable is the system parameter you want to control,
such as temperature, pressure, or flow rate, and the setpoint is the desired value for the parameter
you are controlling. A PID controller determines a controller output value, such as the heater power
or valve position. The controller applies the controller output value to the system, which in turn
drives the process variable toward the setpoint value.

=

=] _»
*u;w-n‘-{z:} Eqpor o | K.f\,tr)‘f_- I '{x} O —
[i) 'y

The PID controller compares the setpoint (SP) to the process variable (PV) to obtain the error (e).
£=5P—-FPV

Then the PID controller calculates the controller action, u(t), where Kc is controller gain.

de |

I PR Ny
ut) = irll.e+ jzjnedr 1:’.:;’:]

Ti is the integral time in minutes, also called the reset time, and Td is the derivative time in minutes,
also called the rate time.

The following formula represents the proportional action.
upi 1 = K.e
The following formula represents the integral action.

K _pt
updt) = Tj-uadr

The following formula represents the derivative action.

31

http://en.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png
http://en.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png
http://en.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png
http://en.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png
http://en.wikipedia.org/wiki/File:Pid-feedback-nct-int-correct.png

32 PID Control

5.1 PID Control in LabVIEW

In the “PID” Sub palette we have the functions/SubVIs for PID Control. | recommend that you use the
“PID Advanced.vi”.

‘{]‘ Search | 52 view™
Q,

FID FID PID PID

B T Bf & % %

PIC, vi PID Advance... PID Autotuni... PID Lead-Lag.vi
FID FID PID PID

‘L,_I'_‘\ Fir E-h o E‘E

PIC Setpoint ... PID Conkrol ... PID Gain Sch... PID OutputR...
FlO [T
| e 7 [fni]

PID EGU to P... PID Percenta...

Example: PID Control

Below we see how we can use the PID Advanvanced.vi in order to control a simulated Model.

B! Air Heater [Air Heater, Example.vi] Block Diagram on Air Heater. lvproj/My Computer

Fle Edt Yiew Project Operats Tools Window Help

IEIDﬁ 13pt Application Fonk v] zmv] Evl C?"]"ﬁ
&
Bampling Time T= (= [Errer]
= = [
=

oot

Manual? [Eetpoint (v_5F) range [C]

==

g

D Advanced Vi LTv]- 157 lir Heater Model. vi o] - 020
= m

al--

3|

Filter time-constant TF [s’

o
Fit fem] = :

[c Scaling

E

1 [oBLH
Ti Sealing

e]

Td Scaling

je0

Em—

[E3

Air Heater Mproj/Py Computer | €

|

Tutorial: Control and Simulation in LabVIEW

33 PID Control

5.2 Auto-tuning

The LabVIEW PID and Fuzzy Logic Toolkit include a VI for auto-tuning.

Context Help

PID Autotuning.vi &
autatuning parameters
output range r—
setpoink FID oubput
process variable — [6:) 2 “kuning compleked?
FID gains ﬂﬂ Sy IE:'PID gains out
dkis) dk ouk (5)
reinitialize? {F)
auktotune? (F)
Includes the Autotuning Wizard in addition to the basic PID
algorithm, You can use this Y1 instead of the PID Y, which
implements a basic PID algorithm, Use the additional inputs and
autput af this Y1 ko set aukotuning parameters, invoke the
Autotuning Wizard, and update the PID gains.,
Detailed help v
k]

Tutorial: Control and Simulation in LabVIEW

6Control Design

Control design is a process that involves developing mathematical models that describe a physical
system, analyzing the models to learn about their dynamic characteristics, and creating a controller
to achieve certain dynamic characteristics.

Control System

:' ;

1 1

| Ref | ical System
e »| Controller |—m| Actuators [+ Pmsﬁﬂﬁt"]’
! i

: :

' i

| i

i Sensors -———

| i

e e L 1

6.1 Control Design in LabVIEW

Control Design palette:

Control Design

‘ﬁ‘ Search | o Wiew
Q

Ze ¥ L s ¥ 3
& ——
Model Conste,.. Model Inform,.. Model Conver,.. Model Interco..,
2o U LY @H»f’ TF
S ¥
[ikt x
¢ f L —F
Time Response Frequency R... Dwvnamic Char... Model Reduct...
M M ¥
oF o = A et
=k i [::: =l
State-Space ... State Fesdba... Stochastic Svw... Solvers
M ¥
e, | T@!
[H
PLﬁ‘ K [hFh ‘*‘
Analytical PID. .. Predictive Co... Implementation

34

/System Identification

7.1 System Identification in LabVIEW

The “System Identification Toolkit” combines data acquisition tools with system identification
algorithms for accurate plant modeling. You can take advantage of LabVIEW intuitive data acquisition
tools such as the DAQ Assistant to stimulate and acquire data from the plant and then automatically
identify a dynamic system model. You can convert system identification models to state-space,
transfer function, or pole-zero-gain form for control system analysis and design. The toolkit includes
built-in functions for common tasks such as data preprocessing, model creation, and system analysis.
Using other built-in utilities, you can plot the model with intuitive graphical representation as well as
store the model.

System Identification palette:

System Identification

‘ﬁ“ Search | B2 wiew™
Q,

[» » » 3
} e i [+ [+
e = P = 153
Preprocessing Parametric Frequency Grey-Box Recursive
» » [o 3
et et w2
= LiHit Gs)
Monparametric Yalidakion analysis Conwersion
[»
o 38
Management Lkilities

35

8Fuzzy Logic

Fuzzy logic is a method of rule-based decision making used for expert systems and process control.
Fuzzy logic differs from traditional Boolean logic in that fuzzy logic allows for partial membership in a
set. You can use fuzzy logic to control processes represented by subjective, linguistic descriptions.

A fuzzy system is a system of variables that are associated using fuzzy logic. A fuzzy controller uses
defined rules to control a fuzzy system based on the current values of input variables.

Crizp Input
Data 1 Hule Bass
STl >
IF .. AND .. THEN ..
Crisp Input ..AND .. THEN ... gﬁ:’m

Data 2

Data
... AND ...THEN ... —> i 'ii >

Crizp Input
Data n

%%g

IF ... AND ... THEN ...

Fuzzification Implameantation of a Defuzzification
Limguistic Control Strategy

8.1 Fuzzy Logic in LabVIEW

The Fuzzy Logic palette in LabVIEW:

e O\Search o e ¥

E=] [BT [Erara]

L= L=
D e EE
FL Fuzzy Con... FL Save Fuzz... FL Load Fuzz...

4 .. ¥
3 A Then

FL Mew Fuzzy, .. ‘ariables Membership Fules

;
B,

36

9LabVIEW MathScript

Requires: MathScript RT Module

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file script
commands and see immediate results, variables and commands history. The window includes a
command-line interface where you can enter commands one-by-one for quick calculations, script
debugging or learning. Alternatively, you can enter and execute groups of commands through a script
editor window.

As you work, a variable display updates to show the graphical / textual results and a history window
tracks your commands. The history view facilitates algorithm development by allowing you to use the
clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also can enter
batch scripts in a simple text editor window, loaded from a text file, or imported from a separate text
editor. The “LabVIEW MathScript Window” provides immediate feedback in a variety of forms, such
as graphs and text.

O Lot Maniicr it Ot
e IR Yew (peen Dk gedow 9

s e T

Pot delp, mtet “Maly classes -

JMieD Cloremes =
Textual
| Output
MathScript ool
H Command
Window History

Gt Wb

Command
Window

e |, Colams |

Example:

37

38

LabVIEW MathScript

B LabVIEW MathScript

File Edit Wew Operate Tools ‘Window Help

Cutput Window

| Variables | Seript | History |

ans = A
D | 'J'D | C:itempiLabVIEW Datalsimple.m |
-0.95592
function [r] = simplefa) |
S r = sin{a)
A=
1 Z
E:| 4
Frinv (4]
ans =
2 1
1.5 -0.5
>det(A)
ans =
-2 F
&
)
Command ‘Window
)
| L]
a0 | | Idle Line: 3, Column: 11

9.1 Help

You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

9.2 Examples

| advise you to test all the examples in this text in LabVIEW MathScript in order to get familiar with
the program and its syntax. All examples in the text are outlined in a frame like this:

>>

Tutorial: Control and Simulation in LabVIEW

39 LabVIEW MathScript

This is commands you should write in the Command Window.

You type all your commands in the Command Window. | will use the symbol “>>” to illustrate that
the commands should be written in the Command Window.

Example: Matrices

Defining the following matrix

-l 3

The syntax is as follows:

>> A

[1 2;0 3]

Or

> A = [1,2;0,3]

If you, for an example, want to find the answer to

a+ b,wherea=4,b =23

>>a=4
>>b=3
>>a+b

MathScript then responds:

ans =
7

MathScript provides a simple way to define simple arrays using the syntax:
“init:increment:terminator”. For instance:

>> array = 1:2:9
array =
13579

defines a variable named array (or assigns a new value to an existing variable with the name array)
which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the init value),
increments with each step from the previous value by 2 (the increment value), and stops once it
reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to use a
default value of 1.

>> ari = 1:5
ari =
1 2345

Tutorial: Control and Simulation in LabVIEW

40 LabVIEW MathScript

assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default value of 1
is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in mathematics. This
is atypical for programming languages, whose arrays more often start with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and using a
semicolon to terminate each row. The list of elements should be surrounded by square brackets: [].
Parentheses: () are used to access elements and subarrays (they are also used to denote a function
argument list).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
>> A(2,3)
ans =
11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For
example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written as:

>> A(2:4,3:4)

N —

A square identity matrix of size n can be generated using the function eye, and matrices of any size
with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye (3)
ans =

1 00

010

001
>> zeros (2,3)
ans =

000

000
>> ones (2, 3)
ans =

111

111

9.3 Useful commands

Tutorial: Control and Simulation in LabVIEW

41

LabVIEW MathScript

Here are some useful commands:

Command

Description

eye(x), eye(x,y)
ones (x) , ones (x,y)
zeros (x) , zeros(x,y)
diag([x y z])

size (A)

AI

Identity matrix of order x
A matrix with only ones
A matrix with only zeros
Diagonal matrix
Dimension of matrix A
Inverse of matrix A

9.4 Plotting

This chapter explains the basic concepts of creating plots in MathScript.

Topics:

e Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:p1/100:2*pi;
y = sin(x);
plot(x,y)

Tutorial: Control and Simulation in LabVIEW

10 Discretization

Often we need to develop discrete algorithms of our process. In addition we might need to create
our own discrete PI(D) controller. A discrete low-pass filter is also good to have.

There exists lots of different discretization methods like the “Zero Order Hold” (ZOH) method,
Tustin’s method and Euler’s methods (Forward and Backward). We will focus on Eulers methods in
this document, because they are very easy to use.

Euler Forward discretization method:

i~ Xk+1 — Xk
Ts

Euler Backward discretization method:

i~ X — Xk-1
Ts

T, is the Sampling Time.

10.1 Low-pass Filter

The transfer function for a first-order low-pass filter may be written:

yr(s) 1

H(s) = y(s) Tps+1

Where T is the time-constant of the filter, y(s) is the filter inputand y;(s) is the filter output.

Discrete version:

It can be shown that a discrete version can be stated as:
Yk =1 —-a)ysr-1+ayg

Where

43 Discretization

Where T is the Sampling Time.

Itis a golden rule that T; < T and in practice we should use the following rule:

Example:
We will implement the discrete low-pass filter algorithm below using a Formula Node in LabVIEW:

Yk = (1 —a)ypir—1 +ayk

Where

The Block Diagram becomes:

First Call?

................ X Boolean To (0,1
i T10

: a=Ts/(TF+Ts);

)
1

if finit==1)
[DBL {0out_k=In_k;}
@ else
1
[osLH Out_k=(1-a7*0ut_k1+a*In_k;
p—{HOEL |

The Front Panel:

Tutorial: Control and Simulation in LabVIEW

44 Discretization

B Lowpass Filter.vi Front Panel |Z||E|[Z|
File Edit Wew Project OQperate Tools Window Help HFH
RNE @)E” 13pt Dialog Fant == N B -
-
Filker Input Filker Gutput
Hz0 20
TF [5]
=1
Ts [=]
N1
g
2 &

It is a good idea to build this as a SubVls, and then we can easily reuse the Low-pass filter in all our
applications.

We will test the discrete low-pass filter, to make sure it works as expected:

We create a simple test application where we add some random white noise to a sine signal. We will
plot the unfiltered and the filtered signal to see if the low-pass filter is able to remove the noise from
the sine signal.

®) Test of Filter.vi Block Diagram

File Edit Wew Project Operate Tools Window Help .,,H
(S]] ©[n][@][ex] [wal@]or [130t vpicaton Fore |~ (8~ |G~][5+l [Q 2]
e
N
WI bvaveForm Graph|
T3]
s [+ ' o EE— o
IEl]niFDrm White |Noise PEEwPE, il [
T I=]] Lowpass Filker,vi
2
Ts [5]
[DBLK
[i] o =
A
<+ %

We get the following results:

Tutorial: Control and Simulation in LabVIEW

45 Discretization

k. Test of Filter.vi Front Panel

File Edit “ew Project Operate Tools Window Help | Fw
— — e gl
2 [& @u@ [13pt Dialog Font 2= ERIEENE i
S
W aveform Graph Plot 0 m |
TF [s]
o5
Ts [s]
40,1 E
: =
2
c
=
2 1 1 1 1 i i 1
0 20 40 (=1} an 100 120 140
Time
L
< >

We see that the filter works fine. The red line is the unfiltered sine signal with white noise, while the
red line is the filtered results.

[End of Example]

10.2 PI Controller

A PI controller may be written:

~

K t
u(t) = uy + Kye(t) +?pf ed
0

i

Where u is the controller output and e is the control error:
e(t) =r(t) —y()

Laplace version:

u(s) = Kpe(s) + %e(s)

Discrete version:

We start with:

Tutorial: Control and Simulation in LabVIEW

46 Discretization

K t
u(t) = up + Kpe(t) + ?pj edt
i Jo

4

In order to make a discrete version using, e.g., Euler, we can derive both sides of the equation:

S . Ky
u=1uy+Kye+——
T;
If we use Euler Forward we get:
Uy — Up_ Uy — U k— e, — e_ K
k k=1 _ Yok 0,k1+ka k1+_pek
Ts Ts Ts Ti
Then we get:
Ky
Up = Up_q + U — Ugp—1 + Kp(er —er_q) + TTsek
14
Where

€k =Tk — Vi
We can also split the equation above in 2 different pars by setting:
Aup = up — Ug—1

This gives the following Pl control algorithm:

€ =Tk — Yk
Ky
Auy = ugp —Ug -1+ Kp(ep — ex_q) + —Tsey

T;

U = Ug-—1 + Auk

This algorithm can easily be implemented in LabVIEW or other languages such as, e.g., C# or
MATLAB.

For more details about how to implement this in C#, see the Tutorial “Data Acquisition in C#”,
available from http://home.hit.no/~hansha.

LabVIEW Example:

Below we have implemented the discrete Pl controller using a Formula Node in LabVIEW:

Tutorial: Control and Simulation in LabVIEW

http://home.hit.no/~hansha/documents/microsoft.net/tutorials/data%20acquisition%20in%20csharp/Data%20Acquisition%20in%20CSharp.pdf
http://home.hit.no/~hansha

47 Discretization

B/ Pl Controller.vi Block Diagram

File Edit ‘ew Project Qperate Tools Window Help o

c{>|@| ©@|L,u||5r|uﬁ [13pt Application Font |~ |[3][3-Q, [2 Fent.

Float ek;
Floak duk;

ek =r-y;
duk, = {ulk-ulkl) + Ep*{ek-ekl) + (Kp*Ts*ek)/Ti;
k= vkl +dul;

L0k 1=u0k;

if {uk=100)
uk=100;
if {uk<0)

[£

|~
[

The PI controller is implemented as a SubVI, so it is easy to reuse the algorithm in all our applications.

We test our discrete Pl controller with the following application:

Tutorial: Control and Simulation in LabVIEW

48 Discretization

iscrete Pl Simulator, Example.wi Front Panel

File Edit %iew Project Operate Tools Window Help
q>|@| @)EH 13pk Didlog Fork «|[; |._| qQ, ||ﬁ
A

Process Vatiable [~ 60,04
Setpaint [+ 60,75

P¥ Setpoint Dutput
PY: |o0,0357 - - Output |1 15,99
SP: 60,7843 100,0-
100- 80,0-
e 60,0—:'""'""""'""""'"""""'""""'
40,0=
60— g
20,0
40~ 0,01
20- -20,0=
40,07
0= 3
-60,0=
My: [15,99 e
-. ' ' -100,0-} i
-100 1] 100 179 195
process Parameters
PID gains
o static gain (2,50 % | deadband (2,0 3
i i 20,000 E
FliaprETE) @ {3 _ lag (min) 0,30 % noise level % 0,25 3
i] ~ TF [5]
Izl e (1, o) | Al deadcydes |L00 %] intalpy [0,00 % »
AT)

I

load %%

Sampling Time dt {s) |S0m = Stop

bt
4 2

Block Diagram:

B! Discrete PI Simulator Example.vi Block Diagram

File Edit Yiew Project Operate Tools wWindow Help Hn
OE EI o [130t Application Fonk vl ;,;.vl 'T]:vl C;')v”ﬁl H CL ”3'
-~
E\u‘ Setpoint Cutput
jud]
Be:] [ooiy
TBLH Lowpass Filter,vi
IPI Controller. vi
[#orocess Parameters Vefee [initial £ | =

deadband

lag {min}

POBL " n

stakic gain

PID gains - - Joad %

:n FProportional gain (K| dead cycles
Inkeqgral time (Ti, sec) ol level T

inikial P

Barnpling Time dt is B
4
A
< >

[End of Example]

Tutorial: Control and Simulation in LabVIEW

49

Discretization

10.2.1

1 .
We set z=;e=>sz=e=>z=e

This gives:

Where

Discrete version:

Using Euler:

Where T is the Sampling Time.

This gives:

Finally:

PI Controller

Up = erk +

as a State-space

. Zg+1 — Zg
Py LA .1

T
Zr+1 — Zk e
T, K
KP
Up = erk +sz
i

€ =T — Yk

K
L
T;

Zyy1 = 2 + Tsey

model

This algorithm can easily be implemented in LabVIEW or other languages such as, e.g., C# or

MATLAB.

For more details about how to implement this in C#, see the Tutorial “Data Acquisition in C#”,
available from http://home.hit.no/~hansha.

Tutorial: Control and Simulation in LabVIEW

http://home.hit.no/~hansha/documents/microsoft.net/tutorials/data%20acquisition%20in%20csharp/Data%20Acquisition%20in%20CSharp.pdf
http://home.hit.no/~hansha

50 Discretization

10.3 Process Model

We will use a simple water tank to illustrate how to create a discrete version of a mathematical
process model. Below we see an illustration:

A very simple (linear) model of the water tank is as follows:
Ach = Kyu—Fpy,
or
h = [Kyu—Fo]
Ay
Where:

e h [cm] is the level in the water tank
u [V]is the pump control signal to the pump

o A; [cm2]is the cross-sectional area in the tank

e K, [(cm3/s)/V]is the pump gain

o F,,+ [cm3/s]is the outflow through the valve (this outflow can be modeled more accurately
taking into account the valve characteristic expressing the relation between pressure drop
across the valve and the flow through the valve).

We can use the Euler Forward discretization method in order to create a discrete model:

o Xk+1 T Xk
Ts

Then we get:

Tutorial: Control and Simulation in LabVIEW

51 Discretization

Rr1 — Ry _ 1

Ts - A_t [Kpuk_Fout]

Finally:

T
hgiq = hy + A [Kpuk_Fout]
t

This model can easily be implemented in a computer using, e.g., MATLAB, LabVIEW or C#.

For more details for how to do this in C#, see the Tutorial “Data Acquisition in C#”.

In LabVIEW this can, e.g., be implemented in a Formula Node or MathScript Node.

Example:

In this example we will simulate a Bacteria Population.

In this example we will use LabVIEW and the LabVIEW Control Design and Simulation Module to
simulate a simple model of a bacteria population in a jar.

The model is as follows:
birth rate=bx
death rate = px?
Then the total rate of change of bacteria population is:
X = bx — px?
We set b=1/hour and p=0.5 bacteria-hour in our example.

We will simulate the number of bacteria in the jar after 1 hour, assuming that initially there are 100
bacteria present.

We will simulate the system using a For Loop in LabVIEW and implement the discrete model in a
Formula Node.

Step 1: We start by creating the discrete model.

If we use Euler Forward differentiation method:

. Xk+1 T Xk
T

Where T; is the Sampling Time.

We get:

Tutorial: Control and Simulation in LabVIEW

http://home.hit.no/~hansha/documents/microsoft.net/tutorials/data%20acquisition%20in%20csharp/Data%20Acquisition%20in%20CSharp.pdf

52 Discretization

Xk+1 — Xk
———— = bxy — pxj;
Ts

This gives:

Xr1 = Xg + Ts(bxy — pxg)

Step 2: We implement the model in the Formula Node and create a Sub VI.

¥ Discrete Model.vi Block Diagram

File Edit View Project Operate Tools Window Help o
©[m][2][2] [wa]]2 [130t Dislag Fant |4
A~
float by
TOELY float p;
b=1;
p=0.3;
wk=xk1+Ts¥{b*xk1-p*akl*xkl);
p——{FDBL]
S—— J
]
& Ed

Step 3: We create the simulation program using a For Loop.

! Bacteria Simulation-For Loop.vi Block Diagram Z E|g|
File Edit Wiew Project Operate Tools ‘Window Help
D [@] ©[m][?][25] [wa]@ s [130 Dialog Font [|0
~
Murnber of Ikerations (M) Simulation TimefSampling Time b
h= 1/0.01=100
N
100 Waveform Graph
e L R[] DBL]
0,01 ol
[l i r
b
< | >

We get the following results (note the Scaling Factors set in the Graph Properties):

Tutorial: Control and Simulation in LabVIEW

53

Discretization

) Bacteria Simulation-For Loop.

i Front Panel

File Edit View Project Operate Tools ‘Window Help
_ —
|c{>1{§}‘ Q;u@ | 13pt Application Font - ”:’"_'"l .D-v”ﬁvlg 1
~
whaveform Graph Plot 0 m
100-
&
=
£
=
kS
v

&

Appearance

B

Display Format | Plots | Scales Cursors | Documentation | Datz € %

Time (-Axis) -

Hame |Time
Show scale label Autoscale
Show scale 0

[Log

[tnverted

Minimum

Sealing Factors

Expand digital buses Offset

Multiplier

Seale Style and Colors Grid Style and Calors

M tick

: i ‘[k W e orid
Miror

- '”i; e W vinor arid
Marker tesxt

Ignore waveform time stamp on x-axes

[End of Example]

Example:

Given the following mathematical model (nonlinear):

X = _Kl\/; + Kzu

We will create a new application in LabVIEW where we simulate this model using a Formula Node to

implement the discrete model.

We will use the Euler Forward method (because this is a nonlinear equation):

This gives:

Xg+1 — X
Ts

. Xg+1 T Xk
X~ —

Ts

k = —le/E + Kzu

X = Xp—1+ Ts[_le/ Xg—1 T Kzuk—l]

Block Diagram:

Tutorial: Control and Simulation in LabVIEW

Discretization

54
B! Task 3-4 Discretization.vi Block Diagram [Z][E)[X] | ® iscrete Model.vi Black Diagram FEX
Fil= Edit Wiew Project Operate Tools ‘Window Help File Edit Wiew Project Operste Tools Window Help o
[&]@ = 13pt Dislog Fant 2@ @ 95 |ba|/@ | F | 130t Dialog Fort b [s
2| @ of
”~
”~
Mumber of Iterations (M) Simulation Time/Sampling Time iEl I Hoat K1;
= = Float K2;
M= 10{0.1=100 L Kimt;
I Ke=1;
N sk=k 1+ Ts*{-K 1 *sqrk(k 1)+k2%0k1); El
[G
1
! |
0,1
0 7
0
v v
< 4 < b3

Front Panel:

k= Task 3-4 Discretization.vi Front Panel

File Edit Wiew Project Operate Tools Window Help
I:Dl@l I@I@|13pt.ﬂpplicatianFDnt v”!mvlfu:v"ﬁvlg
A~
Waveform Graph Plat 0 m
[}
=l
=
£
=
i
~
< >

[End of Example]

Tutorial: Control and Simulation in LabVIEW

L= [~

I
Hegskolen i Telemark

Telemark University College
Faculty of Technology
Kjolnes Ring 56
N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

Room: B-237a

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

