BJT ÇнÀ¼­

 

[BJT(bipolar junction transistor)ÀÇ ¿ª»ç]

BJT = 2±ØÁ¢ÇÕ Æ®·£Áö½ºÅÍ

1948³â ¹Ì±¹ º§¿¬±¸¼Ò J. Bardeen, W. Brattain, W. Shockley¿¡ ÀÇÇØ ¹ß¸í(1956³â ³ëº§»ó ¼ö»ó). BJT°¡ ¹ß¸íµÈ ÈÄ À̸¦ ±â¹ÝÀ¸·Î ¿©·¯ °¡Áö ÇüÅÂÀÇ Æ®·£Áö½ºÅÍ°¡ °³¹ßµÇ¾ú´Ù. °³º° Æ®·£Áö½ºÅÍ ¼ÒÀÚ»Ó¸¸ ¾Æ´Ï¶ó ÁýÀûȸ·Î(IC) ¼ÒÀڷεµ ³Î¸® »ç¿ëµÇ°í ÀÖ´Ù.

transistor = transfer + resistorÀÇ ÇÕ¼º¾î

 

[BJTÀÇ ¿ëµµ]

 ÁõÆø±â, ON/OFF ½ºÀ§Ä¡, ¹ßÁø±â, Àü·Âȸ·Î ¼ÒÀÚ

 

´ÙÀ̳»¹Í(moving coil) ¸¶ÀÌÅ© ÁõÆøȸ·Î

http://sub.allaboutcircuits.com/images/quiz/01587x01.png

 

Æ®·£Áö½ºÅÍ ³í¸®È¸·Î:  TTL, DTL

1) DTL NOT gate

 

http://sub.allaboutcircuits.com/images/04075.png

2) DTL NAND gate

http://upload.wikimedia.org/wikipedia/commons/thumb/0/02/DTL_NAND_Gate.svg/280px-DTL_NAND_Gate.svg.png

3) TTL Inverter

http://www.play-hookey.com/digital_experiments/ttl/images/ttl_inverter_sch.gif

 

Æ®·£Áö½ºÅÍ ½ºÀ§Ä¡:

1) Relay Driver

http://www.rason.org/Projects/transwit/image3.gif

 

]

[BJTÀÇ ¿©·¯ °¡Áö ÆÐÅ°Áö ÇüÅÂ]

Æ®·£Áö½ºÅÍ Àü·ù±Ô°Ý(cuffent rarings): Çã¿ë ÃÖ´ë Ä÷ºÅÍ (À̹ÌÅÍ) Àü·ù. Àü·ù±Ô°Ý¿¡ µû¶ó Æ®·£Áö½ºÅÍ ¸ð¾çÀÌ ´Ù¸£´Ù. ¼ÒÀü·ù Æ®·£Áö½ºÅÍ = DÀÚ ¸ð¾ç Çöó½ºÆ½ ÆÐÅ°Áö, ´ëÀü·ù Æ®·£Áö½ºÅÍ = ±Ý¼Óĵ(heat sink¿¡ ºÎÂø)

 

http://upload.wikimedia.org/wikipedia/commons/e/e1/Transbauformen.jpg  http://upload.wikimedia.org/wikipedia/commons/2/2c/Transistorer_%28croped%29.jpg

 

Æ®·£Áö½ºÅÍÀÇ Á¾·ù

1) ÀúÁÖÆÄ Æ®·£Áö½ºÅÍ

BJT(bipolar junction transistor):

FET(field effect transistor):

     JFET(junction FET)

     MOSET(metal-oxide FET) = IGFET(insulated gate FET)

     M   ESFET

IGBT(insulated gate bipolar transistor): ´ëÀü·Â ½ºÀ§Äª¿ë

 

2) °íÁÖÆÄ/¸¶ÀÌÅ©·ÎÆÄ Æ®·£Áö½ºÅÍ

MESFET(metal semiconductor field effect transistor)

HBT(heterojunction bipolar transistor)

HEMT(high electron mobility transistor)

http://www.microwaves101.com/encyclopedia/images/discretes/Amperex%20transistors.jpg http://www.microwaves101.com/encyclopedia/images/discretes/ST%20power%20transistors.jpg  http://electronicdesign.com/content/15001/60733-fig-2.jpg

 

3) CMOS(complementary metal-oxide-semiconductor) ȸ·Î

Á÷Á¢È¸·Î(IC)ÀÇ Æ®·£Áö½ºÅÍ ±¸Á¶. °ÔÀÌÆ®´ç µÎ °³ÀÇ º¸¿ÏÀûÀÎ Æ®·£Áö½ºÅÍ »ç¿ë(N Çü, P Çü). ÀâÀ½¿¡ °­ÇÏ°í Àü·Â¼Ò¸ð°¡ Àû´Ù.

¿ëµµ:

     µðÁöÅÐ IC = ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­, SRAM

     ¾Æ³¯·Î±× IC = À̹ÌÁö ¼¾¼­, AD/DA º¯È¯±â, Åë½Å¿ë °íÁýÀû ¼Û¼ö½ÅºÎ(transceiver)

 

CMOS Logic Gate

http://iroi.seu.edu.cn/books/asics/Book2/CH02/CH02-2.gif

 

CMOS Àü·ÂÁõÆø±â

http://mwrf.com/files/30/17507/17507_Figure_04.jpg

 

CMOS Frequency Upconverter

http://mwrf.com/files/30/23926/fig_02.jpg

435MHz CMOS Receiver Chip

Diagram Photograph of final prototype receiver chip

 

CMOS Image Sensor

http://upload.wikimedia.org/wikipedia/commons/2/28/Equivalent_circuit_of_CMOS_Image_Sensor_pixel.pnghttp://t1.gstatic.com/images?q=tbn:ANd9GcTq2YBxK03gf_zYQGRvJumx3rlGeQT0gghxxVyuQOwy6tCC9wzn4jab0NoO1Q http://www.cvel.clemson.edu/auto/sensors/images/CMOS.png CMOS image sensor

 

 

BJT ±¸Á¶ ¹× ȸ·Î±âÈ£

º£À̽º, À̹ÌÅÍ, Ä÷ºÅÍ, NPN, PNP

transistors1.gif  transistorBJT1.gif

 

BJT µ¿ÀÛ¿ø¸®

 Àü·ùÁõÆø °³³ä

CE.gif

CEnpn.gif

 

Æ®·£Áö½ºÅÍÀÇ µ¿ÀÛ ¿µ¿ª

     È°¼º(active) ¿µ¿ª: Æ®·£Áö½ºÅÍ°¡ ÁõÆø±â·Î µ¿ÀÛ, BE  Á¢ÇÕ = ¼ø¹æÇâ ¹ÙÀ̾, CB Á¢ÇÕ = ¿ª¹æÇâ ¹ÙÀ̾

     Æ÷È­(saturated) ¿µ¿ª: Æ®·£Áö½ºÅÍÀÇ E, C°¡ ¿¬°áµÊ. BE = ¼ø¹æÇâ, CB = ¼ø¹æÇâ

     Â÷´Ü(cutoff)  ¿µ¿ª: Æ®·£Áö½ºÅÍÀÇ  E, C °¡ ²÷±è. BE = ¿ª, CB = ¿ª

 

Æ®·£Áö½ºÅÍ ÁõÆø±â

±¸Á¶ ¹× µî°¡È¸·Î

AmplifierSourceLoad.gif

 

Æ®·£Áö½ºÅÍ µ¿ÀÛ¸ðµå

 

Class A ÁõÆø±â: ÀԷ½ÅÈ£°¡ ¿Ö°î¾øÀÌ ÁõÆøµÇ¾î Ãâ·ÂÀ¸·Î ³ª¿È.

Class AB ÁõÆø±â: ½ÅÈ£ÀÇ minus half cycleÀÇ ÀϺΠ±¸°£¿¡¼­ Æ®·£Áö½ºÅÍ cutoff. º£À̽º ¹ÙÀ̾ Àü¾ÐÀÌ ½ÅÈ£ÀÇ peak Àü¾Ðº¸´Ù ÀÛÀ» °æ¿ì. Class AB ÁõÆø±â´Â Class B ÁõÆø±âÀÇ ´ÜÁ¡ÀÎ crossover ¿Ö°îÀ» ±Øº¹Çϱâ À§ÇÑ push-pull ÁõÆø±â¿¡¼­ »ç¿ëµÊ.

Class B ÁõÆø±â: ½ÅÈ£°¡ À½ÀÌ µÇ´Â ±¸°£¿¡¼­ Æ®·£Áö½ºÅÍ cutoff. ÀԷ½ÅÈ£°¡ ¾øÀ» °æ¿ì º£À̽º Àü·ù°¡ 0ÀÌ µÇµµ·Ï ¹ÙÀ̾ ¼³Á¤. ¿ëµµ = °íÃâ·Â ¿Àµð¿À ÁõÆø±â, ¹«¼± ¼Û½Å±â µå¶óÀ̹ö ÁõÆø±â¿Í Àü·ÂÁõÆø±â

Class C ÁõÆø±â: ½ÅÈ£°¡ ¾çÀÇ ÀϺΠ±¸°£¿¡¼­¸¸ ÁõÆøµÊ. º£À̽º-À̹ÌÅÍ Á¢ÇÕÀÌ ¿ª¹æÇâÀ¸·Î ¹ÙÀ̾ µÊ. ¿ëµµ = ¹«¼± ¼Û½Å±â

 

Overdriven amplifier: ÀԷ½ÅÈ£ÀÇ Å©±â°¡ °úµµÇÏ¿© Class A ÁõÆø±âÀÇ Æ®·£Áö½ºÅÍ°¡ Æ÷È­ ¹× Â÷´Ü »óŸ¦ ¹Ýº¹ÀûÀ¸·Î °ÅÄ¡´Â °æ¿ì

 

 

Æ®·£Áö½ºÅÍ ¹ÙÀ̾

Æ®·£Áö½ºÅÍ°¡ ÀûÀýÇÑ ÁõÆø±â Ư¼ºÀ» ¹ßÈÖÇϵµ·Ï ¿ÜºÎ¿¡¼­ DC Àü¾ÐÀ» Àΰ¡ÇØ ÁÖ´Â °ÍÀ» biasingÀ̶ó ÇÑ´Ù.

Æ®·£Áö½ºÅÍÀÇ µ¿ÀÛÁ¶°Ç °áÁ¤

BJTÀÇ Æ¯¼º ±×·¡ÇÁ: ÀÔ·ÂƯ¼º, ÀÔ·Â-Ãâ·Â °ü°è Ư¼º, Ãâ·ÂƯ¼º

BJTÀÇ Ãâ·ÂƯ¼º ±×·¡ÇÁ: ÀÔ·ÂÀü·ù¿¡ µû¸¥ Ãâ·ÂÀü·ù ´ë Ãâ·ÂÀü¾Ð ±×·¡ÇÁ. Æ®·£Áö½ºÅÍÀÇ °á¼±(CB, CE, CC)¿¡ µû¶ó ¾à°£ ´Ù¸§.

¼±Çü(È°¼º) ¿µ¿ª = ÁõÆø±â ¶Ç´Â ¹ßÁø±âÀÇ °æ¿ì, Â÷´Ü ¹× Æ÷È­ ¿µ¿ª = ½ºÀ§Ä¡ÀÇ °æ¿ì

 

¿¹: CE °á¼±ÀÇ °æ¿ì Ãâ·ÂƯ¼º ±×·¡ÇÁ

http://www.zen22142.zen.co.uk/Design/graph/opchar.gif

µ¿ÀÛÁ¡(Q Á¡, ¹ÙÀ̾): Ä÷ºÅÍ Àü¾ÐÀÌ Àü¿øÀü¾ÐÀÇ 1/2ÀÇ °æ¿ì Ãâ·ÂÀü¾Ð º¯È­(swing)¸¦ Ŭ¸®ÇÎ ¾øÀÌ °¡Àå Å©°Ô ÇÒ ¼ö ÀÖ´Ù. ÀÔ·ÂÀü¾ÐÀÌ ¸Å¿ì ÀÛ°í ÁõÆøµµ°¡ Å©Áö ¾Ê¾Æ¼­(¼³°è»óÀÇ ÀÌÀ¯·Î) Ãâ·ÂÀü¾ÐÀÌ ÀÛÀ» °æ¿ì(1V ÀÌÇÏ)¿¡´Â QÁ¡À» Àü¿øÀü¾ÐÀÇ 1/2·Î ÇÒ ÇÊ¿ä°¡ ¾ø´Ù.

 

Ŭ¸®ÇÎÀÌ µÈ °æ¿ì: Àü¿øÀü¾Ð = 10V, Ä÷ºÅÍ Àü¾Ð = 2V

http://www.zen22142.zen.co.uk/Design/graph/clip.gif

Ŭ¸®ÇÎÀÌ ¾ÈµÈ °æ¿ì: Àü¿øÀü¾Ð = 10V, Ä÷ºÅÍ Àü¾Ð = 4V

http://www.zen22142.zen.co.uk/Design/graph/nonclip.gif 

¿¹: CE °á¼±ÀÇ °æ¿ì ÀÔ·ÂƯ¼º ±×·¡ÇÁ

http://www.zen22142.zen.co.uk/Design/graph/inputchar.gif

VBE = 0.6-0.7V

IB°¡ 50¥ìAÀÏ °æ¿ì VBE = 0.6V, IB°¡ Å« °æ¿ì VBE = 0.7V

´ëÇü Àü·Â¿ë Æ®·£Áö½ºÅÍÀÇ °æ¿ì VBE°¡ 0.8 ¶Ç´Â 0.9V°¡ µÉ ¼ö ÀÖ´Ù.

 

1) Fixed-Current Bias = Base Current Bias

¿Âµµ¿¡ µû¸¥ ICÀÇ Áõ°¡¸¦ ÀÚµ¿À¸·Î ¾ïÁ¦ÇÏ´Â automatic feedback ±â´ÉÀÌ ¾ø´Â °íÁ¤µÈ IB¸¦ Á¦°øÇÏ´Â ¹ÙÀ̾ ȸ·Î

transistorbiasinga.giffixedbias2.gif

 

°è»ê ¿¹:

http://www.zen22142.zen.co.uk/Design/rb.gif

http://www.zen22142.zen.co.uk/Design/graph/bc107aop.gif


 

hFE = DC beta: 290. ±Ô°Ý¼­¿¡¼­ ÁöÁ¤. °°Àº ¸ðµ¨ÀÌ¶óµµ Æ®·£Áö½ºÅ͸¶´Ù Á¶±Ý¾¿ ´Ù¸§. °¡Àå ÀÛÀº °ªÀ¸·Î »ç¿ëÇÏ´Â °ÍÀÌ ¾ÈÀü.

Ãâ·ÂƯ¼º ±×·¡ÇÁ·ÎºÎÅÍ IB = 20¥ìA, VCE = 10V ¡æ IC = 3.9mA ¡æ

VBE = 0.6V

Rb´Â IB¸¦ °áÁ¤: ¡æ 1M¥Ø »ç¿ë. ÀÌ °æ¿ì VBE°¡ ¿Âµµ¿¡ µû¶ó ´Þ¶óÁö´Â °Í¿¡ IB°¡ °ÅÀÇ º¯ÇÏÁö ¾Ê¾Æ¾ß ÇÔ.

RC´Â VC¸¦ °áÁ¤: ¡æ  ¡æ 2.8k¥Ø »ç¿ë.

 

À§ ¹ÙÀ̾ÀÇ ¹®Á¦Á¡: VCC, ¿Âµµ, Æ®·£Áö½ºÅÍ¿¡ µû¶ó QÁ¡ º¯È­. ¾Æ·¡ ±×·¡ÇÁ ÂüÁ¶.

http://www.zen22142.zen.co.uk/Design/graph/tempstab.gif

 

2) Self-Bias

RB: base feedback ÀúÇ×. ¿Âµµ »ó½ÂÀ¸·Î Ä÷ºÅÍ Àü·ù°¡ Áõ°¡Çϸé Q1ÀÇ Ä÷ºÅÍ Àü¾ÐÀÌ °¨¼ÒÇÏ¿© RB¸¦ ÅëÇÏ¿© º£À̽º·Î Èê·¯ µé¾î°¡´Â Àü·ù¸¦ °¨¼Ò½ÃÅ´. Ä÷ºÅÍ Àü·ù´Â º£À̽º Àü·ù¿¡ ºñ·ÊÇϹǷΠÄ÷ºÅÍ Àü·ùÀÇ °¨¼Ò·Î À̾îÁü.

°è»ê ¿¹:

 

http://www.zen22142.zen.co.uk/Design/cct/rbstabbias.gif http://www.zen22142.zen.co.uk/Design/graph/rbstab.gif

VCC, VC, IB ÁÖ¾îÁü(¼³°è) ¡æ Rb °áÁ¤, IC °áÁ¤, Rc °áÁ¤

 

3) Combination Bias

°¡Àå ¿ì¼öÇÑ ¹ÙÀ̾ ȸ·Î. Æ®·£Áö½ºÅÍÀÇ ¿ÂµµÆ¯¼º°ú Æ®·£Áö½ºÅͺ° Ư¼ºÂ÷ÀÌ¿¡ µÐ°¨.

R1°ú R2¿¡ ÀÇÇØ Q1ÀÇ º£À̽º¿¡ °íÁ¤ ¹ÙÀ̾ Àü¾ÐÀÌ Àΰ¡µÊ.

RE´Â ¿Âµµº¯È­¿¡ µû¸¥ ¥â º¯È­¿¡ ÀÇÇØ Ä÷ºÅÍ Àü·ù°¡ º¯ÇÏ´Â °ÍÀ» ¾ïÁ¦ÇÏ´Â negative feedback ¼ÒÀÚ·Î ÀÛ¿ë

 

transistorbiasingb.gif

: IC °¡ VBEÀÇ ¿µÇâÀ» ¹Þ´Â °ÍÀ» ¹æÁöÇÏ·Á¸é

 Á¶°ÇÀÌ ¸¸Á·µÇÁö ¾ÊÀ» ¶§, º£À̽º ¿ÞÂÊÀ» Å׺ê´Ñ µî°¡È¸·Î·Î Ç¥ÇöÇÑ ÈÄ Çؼ®.

transistorbiasing1.gif

 

°è»ê ¿¹:

http://www.zen22142.zen.co.uk/Design/cct/pdbias.gif http://www.zen22142.zen.co.uk/Design/graph/pdtemp.gif

R1, R2: Àü¾ÐºÐ¹è±â. Æ®·£Áö½ºÅÍÀÇ º£À̽º Àü¾Ð °áÁ¤. R1°ú R2¿¡ È帣´Â Àü·ù°¡ º£À̽º Àü·ùº¸´Ù ÃÖ¼Ò 10¹è Å©°Ô ÇÔ. µû¶ó¼­ º£À̽º Àü·ù ¹«½ÃÇÒ ¼ö ÀÖ´Ù.

VBE: 0.6V·Î ±Ù»çÈ­ (º£À̽º Àü·ù°¡ ÀÛÀ» °æ¿ì)

Re: Re¿¡¼­ÀÇ Àü¾Ð°­ÇÏ´Â VCCÀÇ 10% Á¤µµ·Î ¼³Á¤

¹ÙÀ̾ ¼³°è °ø½Ä:

IB °áÁ¤: Æ®·£Áö½ºÅÍÀÇ Ãâ·ÂƯ¼º ±×·¡ÇÁ¸¦ °í·ÁÇÏ¿©

VBE ±Ù»çÈ­: 0.6V. ÇÊ¿ä½Ã Á¤È®È÷ °è»ê

 °áÁ¤: hFE ÃÖ¼Ò°ª »ç¿ë

Re °áÁ¤:

Rc °áÁ¤:             

R2 °áÁ¤:

R1 °áÁ¤:

 

ÃÖÀû ¹ÙÀ̾ 

VCEÀÇ ÃÖÀû°ª: ¾Æ·¡ ±×¸²À» ÂüÁ¶Çϸé VC¸¦ VCC/2·Î ÇÏ´Â °ÍÀÌ Ãâ·Â Àü¾ÐÀÌ ¿Ö°î¾øÀÌ Ãâ·ÂµÉ ¼ö ÀÖ´Â Àü¾Ð¹üÀ§°¡ °¡Àå Å©´Ù.

º£À̽º Àü·ù ´ë Ä÷ºÅÍ Àü·ù: º£À̽º Àü·ù °ú¼Ò = Æ®·£Áö½ºÅÍ cutoff, º£À̽º Àü·ù °ú´Ù = Æ®·£Áö½ºÅÍ Æ÷È­

¹ÙÀ̾Á¡¿¡ µû¸¥ Ãâ·Â Àü·ùÀÇ ¿Ö°î

 

http://www.williamson-labs.com/images/2-3crv1b.gif  http://www.williamson-labs.com/images/2-3crv2b.gif http://www.williamson-labs.com/images/2-3crv3b.gif 

 

http://www.williamson-labs.com/480_xtor.htm#emitter-follower

 

 

Æ®·£Áö½ºÅÍ ¼Ò½ÅÈ£ ¸ðµ¨

Æ®·£Áö½ºÅÍ°¡ ÀÛÀº ½ÅÈ£¸¦ ÁõÆøÇÒ ¶§ ±× Ư¼ºÀ» Çؼ®(°è»ê)Çϱâ À§ÇÑ µî°¡È¸·Î

 

´ë½ÅÈ£ ¸ðµ¨: Eber-Molls model, for large input swing

¼Ò½ÅÈ£ ¸ðµ¨: ¼Ò½ÅÈ£ ÀԷ¿¡ µû¶ó Ãâ·ÂÀÌ °ÅÀÇ ¼±ÇüÀû º¯È­. µ¿ÀÛÁ¡ ºÎ±Ù¿¡¼­ Æ®·£Áö½ºÅÍÀÇ Æ¯¼ºÀ» ¼±ÇüÈ­. ¼Ò½ÅÈ£ ¸ðµ¨ÀÇ Æз¯¹ÌÅÍ °ªÀº µ¿ÀÛÁ¡¿¡ µû¶ó ´Ù¸£´Ù.

Á¶°Ç: ¿Âµµ, µ¿ÀÛÁ¡(VCE, IC)

 

À̹ÌÅ͸¦ °øÅë´ÜÀÚ·Î ÇÏ°í º£À̽º-À̹ÌÅÍ »çÀÌ¿¡ ÀԷ½ÅÈ£, Ä÷ºÅÍ-À̹ÌÅÍ »çÀÌ¿¡ Ãâ·Â½ÅÈ£

twoportmodel.giftransistorHmodel.gif

ÇÏÀ̺긮µå ¸ðµ¨

    

    

     : Ãâ·Â´Ü ´Ü¶ô½Ã ÀÔ·Â ÀÓÇÇ´ø½º. ÀÔ·Â´Ü Àü·ù-Àü¾Ð °î¼± ±â¿ï±âÀÇ ¿ª¼öÀÌ´Ù.

     : ÀÔ·Â´Ü °³¹æ½Ã ¿ªÀü¾ÐÀü´Þ°è¼ö. ÀϹÝÀûÀ¸·Î ¸Å¿ì À۾Ƽ­ ¹«½ÃÇÒ ¼ö ÀÖ´Ù.

     : Ãâ·Â´Ü ´Ü¶ô½Ã º£À̽º-Ä÷ºÅÍ Àü·ùÀü´Þ°è¼ö

     : ÀÔ·Â´Ü °³¹æ½Ã Ãâ·Â´Ü ÀÓÇÇ´ø½º. Ãâ·Â´Ü Àü·ù-Àü¾Ð °î¼±ÀÇ ±â¿ï±â. ¸Å¿ì À۾Ƽ­ ÈçÈ÷ ¹«½ÃÇÒ ¼ö ÀÖ´Ù.

    

     `

 

smallsignalmodelBJT1.gif http://www.zen22142.zen.co.uk/Theory/ce_config.png

 

    

Ä÷ºÅÍ Àü·ù°¡ 1mAÀÏ °æ¿ì ÀüÇüÀûÀÎ °ª:

    

 

 

Ä÷ºÅÍ Àü·ù´Â À̹ÌÅÍ Àü·ù¿Í °ÅÀÇ °°À¸¸ç À̹ÌÅÍ Àü·ù(Ä÷¼ÅÍ Àü·ù)´Â º£À̽º Àü·ù¿¡ ÀÇÇØ Á¦¾îµÈ´Ù.

À̹ÌÅÍ Àü·ù:

      (´ÙÀÌ¿Àµå ¹æÁ¤½Ä), ÃÑ(ac + dc) º£À̽º-Àü¾ÐÀÇ ÇÔ¼ö

ÃÑ º£À̽º-À̹ÌÅÍ Àü¾Ð:

    

Æ®·£½º ÄÁ´öÅϽº gm:

    

À̹ÌÅÍ ÀúÇ× re:

    

º£À̽º ÀúÇ× r¥ð:

    

 

Hybrid-¥ð ¸ðµ¨: °¡Àå À¯¿ë

 (VT = 26mV at 300K)

1mA Ä÷ºÅÍ Àü·ùÀÇ °æ¿ì ÀüÇüÀûÀÎ °ª:

 

T ¸ðµ¨: ȸ·Î Á¾·ù¿¡ µû¶ó T-¸ðµ¨ÀÌ À¯¿ëÇÒ °æ¿ì°¡ ÀÖÀ½.

http://people.seas.harvard.edu/~jones/es154/lectures/lecture_3/bjt_models/t_model_2.jpg

 

Æ®·£Áö½ºÅÍ ±Ô°Ý

¿¹: NEC 2SC945 Æ®·£Áö½ºÅÍ(AF µå¶óÀ̹ö ÁõÆø±â, Àú¼Ó ½ºÀ§Äª ¿ë)

1) Å©±â(package dimensions)

2) ÃÖ´ë Çã¿ëÄ¡(absolute maximum ratings) @ 25¡ÆC

 

2) Àü±âÀû ±Ô°Ý @ 25¡ÆC

 

3) Ư¼º °î¼±

IC vs VCE  w/ IB as a parameter

 

hFE vs IC


 


[Æ®·£Áö½ºÅÍ ÁõÆø±â ±¸¼º]

Æ®·£Áö½ºÅÍÀÇ ÀԷ½ÅÈ£¿Í Ãâ·Â½ÅÈ£°¡

     Base ´ÜÀÚ¸¦ °øÀ¯ÇÒ °æ¿ì CB(common base)

     Emitter ´ÜÀÚ¸¦ °øÀ¯ÇÒ °æ¿ì CE(common emitter)

     Collector ´ÜÀÚ¸¦ °øÀ¯ÇÒ °æ¿ì CC(common collector)

 

CE ÁõÆø±â: ¿ì¼öÇÑ Àü¾Ð, Àü·ù, Àü·Â À̵æ Á¦°ø. ÀÔ·Â ÀÓÇÇ´ø½º = 0.5-1.5kW, Ãâ·Â ÀÓÇÇ´ø½º = 30-50kW. ÀÔ·ÂÀü¾ÐÀÌ ¹ÝÀü ÁõÆøµÇ¾î Ãâ·ÂÀ¸·Î ³ª¿È.

CB ÁõÆø±â = current buffer: Àü·ùÀ̵æ 1º¸´Ù ¾à°£ ÀÛÀ½. Àü¾ÐÀ̵æ 1º¸´Ù Å­. ÀÔ·ÂÀúÇ× = 30-160W, Ãâ·ÂÀúÇ× = 250-550kW. ¿ëµµ = ÀÓÇÇ´ø½º Á¤ÇÕ (ÀÛÀº ÀúÇ×À» Å« ÀúÇ×À¸·Î º¯È¯), ÀúÀÔ·ÂÀúÇ× ÁõÆø±â(¸¶ÀÌÅ© ÁõÆø±â)

CC ÁõÆø±â = emitter follower = voltage buffer: Àü·ùÀ̵æ Å­. Àü¾ÐÀ̵æ 1º¸´Ù ¾à°£ ÀÛÀ½. ÀÔ·ÂÀúÇ× = 2-500kW, Ãâ·ÂÀúÇ× = 50-1500W. Àü·ÂÀ̵æÀÌ CE, CB °æ¿ìº¸´Ù ÀÛÀ½. ¿ëµµ = current driver, ½ºÀ§Äª ȸ·Î(¾ç¹æÇâ Àü·ùÈ帧 °¡´É), ÀÓÇÇ´ø½º Á¤ÇÕ(Å« ÀúÇ×À» ÀÛÀº ÀúÇ×À¸·Î)

 

[CE(common emitter, °øÅëÀ̹ÌÅÍ) ÁõÆø±â]

ACamplification1.gifACamplification2a.gif

ACamplifierModel.gif

¿¹Á¦:

DCACloadlineEx.gif

 

[CC ÁõÆø±â = Emitter Follower = Voltage Follower]

emitterfollower.gif emitterfollower2.gif

µ¿ÀÛÁ¡:

¼Ò½ÅÈ£ À̵æ:

    

    

ÀÔ·ÂÀúÇ×:

    

     (CE °æ¿ìº¸´Ù ÀÔ·ÂÀúÇ× ¸Å¿ì Å­)

Ãâ·ÂÀúÇ×:

     (ÀÛÀ½)

°ËÅä: CC ±¸¼ºÀº deep negative feedback ampÀÌ´Ù. Emitter follower´Â º¯È¯ºñ°¡ ÀÎ ÀÓÇÇ´ø½º º¯È¯±âÀÌ´Ù. ºÎÇÏÀúÇ× ÀÌ  ¹è·Î Áõ°¡µÇ¾î ÀÔ·ÂÀúÇ×ÀÌ µÇ¸ç ÀÔ·ÂÀúÇ× ´Â  ¹è·Î °¨¼ÒÇÏ¿© Ãâ·Â´Ü¿¡ ³ªÅ¸³².

¿ëµµ: Å« ÀÔ·ÂÀúÇ×°ú ³·Àº Ãâ·ÂÀúÇ×À¸·Î ÀÎÇØ ´Ù´Ü ÁõÆø±âÀÇ ÀԷ´ܰú Ãâ·Â´Ü¿¡ »ç¿ë

 

[CB ÁõÆø±â = Àü·ù¹öÆÛ]

 

 

 (Å­)

 (ÀÛÀ½)

 (Áß°£-³ôÀ½)

 

[´Ù´Ü(multistage) ÁõÆø±â]

°áÇÕ¹æ¹ý

Ä¿ÆнÃÅÍ °áÇÕ: µÎ Æ®·£Áö½ºÅÍÀÇ µ¿ÀÛÁ¡À» µ¶¸³ÀûÀ¸·Î ¼³Á¤ °¡´É. DC¿Í ÀúÁÖÆÄ ÁõÆø °ï¶õ

coupling_capacitor.gif

º¯¾Ð±â °áÇÕ: Æ®·£Áö½ºÅÍÀÇ µ¶¸³ÀûÀÎ µ¿ÀÛÁ¡, ÀÓÇÇ´ø½º Á¤ÇÕÀ¸·Î ÃÖ´ëÃâ·Â °¡´É, DC¿Í ÀúÁÖÆÄ ÁõÆø °ï¶õ

coupling_transformer.gif

Á÷Á¢°áÇÕ: µÎ Æ®·£Áö½ºÅÍÀÇ µ¿ÀÛÁ¡ÀÌ µ¶¸³ÀûÀÌÁö ¾ÊÀ½. DC¿Í AC ½ÅÈ£ ¸ðµÎ ÁõÆø°¡´É. IC¿¡ ±¸Çö ¿ëÀÌ

 

[Â÷µ¿ ÁõÆø±â(differential amplifier)]

¿ëµµ: ¿¬»êÁõÆø±â ÀԷ´Ü, ºñ±³±â ÀÔ·Â, ºñµð¿À ÁõÆø±â, µðÁöÅÐ µ¥ÀÌÅÍ Åë½Å¿¡¼­ÀÇ balanced-line receiver

http://www.williamson-labs.com/images/diff-254.gif http://www.williamson-labs.com/images/diffamp.gif

differential_amplify.gif

µ¿ÀÛ¿ø¸®: RE°¡ °øÅëÀ¸·Î »ç¿ëµÇ¾î À§ ±×¸²¿¡¼­¿Í °°ÀÌ vi1¿¡ ÀÇÇØ Å©±â°¡ °°°í À§»óÀÌ 180¡Æ Â÷ÀÌ ³ª´Â vo1°ú vo2¹ß»ý. vi1 = vi2ÀÏ ¶§ µÎ Æ®·£Áö½ºÅÍÀÇ Ãâ·ÂÀº 0ÀÌ µÈ´Ù. ºñÀÌ»óÀûÀÎ Æ®·£Áö½ºÅÍ ½ÖÀÇ Æ¯¼ºÀ» º¸¿ÏÇϱâ À§ÇØ R¡©E ´ë½Å Á¤Àü·ù¿ø »ç¿ëÇÔ.

 

°øÅë¸ðµå ½ÅÈ£:

I1 Àü·ù °¨¼Ò:

I2 Àü·ù °¨¼Ò:

Â÷µ¿¸ðµå ½ÅÈ£:

 

[Darlington Pair]

Àü·ù°¡ 2¹ø ÁõÆøµÊ. . ¿ëµµ = ¼ÒÀü·ù·Î ´ëÀü·ù ½ºÀ§Äª. VB1-VE2 = VBE°¡  2*0.7 = 1.4V ÀÌ»ó µÇ¾î (¶Ç´Â IB1ÀÌ DP¸¦ Æ÷È­½Ãų Á¤µµ·Î ÃæºÐÈ÷ Ŭ °æ¿ì) VCE2 ´Â ¾à 0.9V°¡ µÈ´Ù.

 

Darlington_img01.jpg

 

 

Æ®·£Áö½ºÅÍÀÇ ÁÖÆļö Ư¼º:

Æ®·£Áö½ºÅÍÀÇ Gain-Bandwidth Product (fT): ¼Ò½ÅÈ£ Àü·ù À̵æ hfe °¡ 1ÀÌ µÇ´Â ÁÖÆļö.

 


practical-ce-amp.jpg corrected-audio-response.jpg

 

ÀúÁÖÆÄ ´ë¿ª: ÀÔ·Â´Ü HPF(C1 + ÀÔ·ÂÀúÇ×), Ãâ·Â´Ü HPF (C2 + ºÎÇÏÀúÇ×)¿¡ ÀÇÇØ °áÁ¤µÊ. C3(emitter decoupling capacitor)¿¡ ÀÇÇØ  ÁõÆø±â ÀúÁÖÆÄ ÀÌµæ º¯È­

°íÁÖÆÄ ´ë¿ª: ȸ·Î °á¼± »óÀÇ stray reactance (ÀúÁÖÆÄ¿¡¼­´Â ÁÖ·Î ¿ë·®¼º)ÀÇ ¿µÇâÀ» ¹ÞÀ» ¼öµµ ÀÖÀ¸³ª Æ®·£Áö½ºÅÍ ÀÚüÀÇ pn Á¢ÇÕ Ä¿ÆнÃÅϽº¿¡ ÀÇÇØ °íÁÖÆÄ Æ¯¼ºÀÌ Á¦ÇѵÊ. ÀÌ Ä¿ÆнÃÅϽº´Â °íÁÖÆÄ¿¡¼­ ½ÅÈ£ÀÇ Çǵå¹é °æ·Î Á¦°ø. Cbc¿¡ ÀÇÇÑ Çǵå¹éÀº À§»óÀÌ ¿ªÀüµÊ.

junction-capacitance.jpg

Miller È¿°ú: CE ÁõÆø±â¿¡¼­ gain bandwidth product°¡ ÀÏÁ¤ÇÑ Çö»ó. À̵æÀÌ ÀÛÀ¸¸é ´ë¿ªÆø Áõ°¡, À̵æÀÌ Å©¸é ´ë¿ªÆø °¨¼Ò. CBÁ¢ÇÕÀÇ Ä¿ÆнÃÅϽº°¡ °íÁÖÆÄ¿¡¼­ µÎµå·¯ÁüÀ¸·Î½á feedback ¹ß»ý. CB¿¡ ÄÚÀÏÀ» ¿¬°áÇÏ¿© Ccb¸¦ »ó¼â(peaking coil)

http://www.williamson-labs.com/images/miller-284.gif

 

 

Short-circuit current gain: with output short-circuited

 

´ÙÀ½°ú °°Àº CB ÁõÆø±â¿¡¼­´Â Miller È¿°ú°¡ ¹ß»ýÇÏÁö ¾Ê´Â´Ù. À̹ÌÅÍ-º£À̽º°£ÀÇ ³»ºÎ Ä¿ÆнÃÅϽº¿¡ ÀÇÇØ °íÁÖÆÄ¿¡¼­ À̵æÀÌ Áõ°¡. CE, CC ±¸¼ºº¸´Ù ´ë¿ªÆøÀÌ ÈξÀ ³ô´Ù.

http://www.williamson-labs.com/images/com_base.gif

 

ºñ¹ÝÀü ºñµð¿À ÁõÆø±â: ºñ¹ÝÀü, ±¤´ë¿ª, ±ä µ¿Ã༱ drive

http://www.williamson-labs.com/images/video-s-286.gif

 

¿ÜºÎÇÊÅÍ È¸·Î: À§ ±×¸²¿¡¼­ C4´Â °íÁÖÆÄ ´ë¿ª Á¦ÇÑ. Ä÷ºÅÍ¿¡ BPF¸¦ »ðÀÔÇÏ¿© RF tuned amplifier ±¸Çö.

RF response curves.jpg TV response curves.jpg

 

[°íÁÖÆÄ ÁõÆø±â]

BJTÀÇ S Æз¯¹ÌÅÍ: RF ÁõÆø±â ¼³°è¿¡ ÇʼöÀû

°íÁÖÆÄ Æ®·£Áö½ºÅÍ:

    MRF157: BJT by Motorola, fT = 8GHz

    BF199: BJT by Philips, HF, VHF bands, fT = 550MHz

 

RF Æ®·£Áö½ºÅÍ µî°¡È¸·Î: R, L, C °ªÀº °íÁÖÆÄ¿¡¼­ÀÇ ±â»ý¼ÒÀÚ

http://users.cecs.anu.edu.au/~Gerard.Borg/engn4545_borg/transistors/RF_trans.jpg

º£À̽º Àü·ù°¡ Cbe ¿¡ ÀÇÇØ shuntµÊ: ÀÌµæ °¨¼Ò. ÁÖ¾îÁöÁö ¾ÊÀ» °æ¿ì fT·ÎºÎÅÍ ±¸ÇÒ ¼ö ÀÖ´Ù.

Cbc : Çǵå¹é Ä¿ÆнÃÅϽº ¶Ç´Â Miller Ä¿ÆнÃÅϽº¶ó°íµµ ÇÔ. Ãâ·Â(Ä÷ºÅÍ)¿¡¼­ ÀÔ·Â(º£À̽º)·ÎÀÇ Çǵå¹é °æ·Î¸¦ Á¦°øÇÏ¿© ÁõÆø±â°¡ ¹ßÁøÇÒ °¡´É¼º À¯¹ß

°¢ ´ÜÀÚ¿¡¼­ÀÇ ÀδöÅϽº: È¿°ú°¡ »ó´çÇÔ.

S-Æз¯¹ÌÅÍ: Á¦Á¶»ç¿¡¼­ ¹ÌÁ¦°ø½Ã ÃøÁ¤ ¶Ç´Â SPICE Çؼ®À¸·ÎºÎÅÍ ±¸ÇÔ.

 

°íÁÖÆÄ ÁõÆø±â ¼³°è½Ã ¾ÈÁ¤µµ ºÐ¼®ÀÌ ÇʼöÀû.

Linvill ¾ÈÁ¤°è¼ö, C: C < 1ÀÏ ¶§ ¹«Á¶°Ç(¿ÜºÎ ¿¬°á ¼öµ¿È¸·Î¿¡ °ü°è¾øÀÌ) ¾ÈÁ¤

Stern ¾ÈÁ¤°è¾¥, K: K > 1ÀÏ ‹š  Á¶°ÇºÎ(sourc, load ÀÓÇÇ´ø½º¸¦ ÀûÀýÈ÷ ¼±ÅÃ) ¾ÈÁ¤

MAG(maximum available gain): ÁõÆø±âÀÇ ÀÌµæ »óÇÑ°ª

Transducer gain: ½ÇÁ¦ À̵æ

 

ÁõÆø±â ¼³°è ÀýÂ÷

1) S-Æз¯¹ÌÅͷκÎÅÍ y Æз¯¹ÌÅÍ ±¸ÇÔ. Matlab ÇÁ·Î±×¸² »ç¿ë.

2) Linvill ¾ÈÁ¤µµ È®ÀÎ: C < 1

3) MAG °è»ê

4) ÃÖ´ëÀü·Â Àü´ÞÀ» À§ÇÑ Àü¿ø ¹× ºÎÇÏ ÀÓÇÇ´ø½º °è»ê

5) Æ®·£Áö½ºÅÍÀÇ ÀÔ·Â´Ü ¹× Ãâ·Â´Ü¿¡ Á¤ÇÕȸ·Î¸¦ ¼³°èÇÏ¿© ÃÖ´ëÀü·Â Àü´Þ Á¶°Ç ¸¸Á·

6) Stern ¾ÈÁ¤µµ È®ÀÎ: K > 1, Àüü µ¿ÀÛÁÖÆļö¿¡¼­

7) °è»êµÈ À̵æÀ» transducer gain°ú ºñ±³

 

¼³°è¿¹:

ÁÖÆļö 100MHz, Vce = 10V, Ic = 5mA

yi = 8 +j5.7 (mS), yo = 0.4 + j1.5, yf = 52 - j20, yr = 0.01-j0.1

C < 1

MAG = 23.8dB

Ys = 6.95 - j12.41 (mS): Æ®·£Áö½ºÅÍ ÀԷ´ܿ¡¼­ ½ÅÈ£¿øÀ» ¹Ù¶ó º¸¾ÒÀ» ¶§ ÃÖ´ë Àü·ÂÀü´ÞÀ» À§ÇÑ ½ÅÈ£¿ø ¾îµå¹ÌÅϽº. Æ®·£Áö½ºÅÍÀÇ ÀÔ·Â ÀÓÇÇ´ø½º´Â ÀÌ °ªÀÇ °ø¾× º¹¼Ò¼ö

YL = 6.95 - j1.84(mS): Æ®·£Áö½ºÅÍÀÇ Ãâ·Â ÀÓÇÇ´ø½º´Â ÀÌ °ªÀÇ °ø¾× º¹¼Ò¼ö

ÀÔ·Â/Ãâ·Â Á¤ÇÕȸ·Î ¼³°è: LC Á¤ÇÕȸ·Î »ç¿ë

http://users.cecs.anu.edu.au/~Gerard.Borg/engn4545_borg/transistors/simple_circuit1.jpg

Àü¿ø(power supply), decoupling capacitor, ¹ÙÀ̾ ȸ·Î ¿¬°á: ¹ÙÀ̾´Â »ç¿ëµÈ y Æз¯¹ÌÅÍ °ªÀÌ ³ª¿À´Â Á¡À¸·Î ¼³Á¤

 

Æ®·£Áö½ºÅÍ°¡ ¹«Á¶°Ç ¾ÈÁ¤µÇÁö ¾ÊÀ» °æ¿ì:

Æ®·£Áö½ºÅÍÀÇ ÀÔÃâ·Â Á¤ÇÕȸ·Î¸¦ Stern ¾ÈÁ¤ Á¶°ÇÀÌ ¸¸Á·µÇµµ·Ï ¼³°è. ÀÌ °æ¿ì À̵æÀÌ ÃÖÀû ÀÌÇÏ(sub-optimal)ÀÌ µÈ´Ù.

1) Gs ¼±ÅÃ: ÀÔ·Â´Ü Q°ª µî Á¶°Ç Àû¿ë

2) Stern ¾ÈÁ¤°è¼ö ¼±ÅÃ: K = 3

3) Stern ¾ÈÁ¤µµ·ÎºÎÅÍ GL °è»ê

4) BL = -b0·Î ¼³Á¤

5) Yin = yi-yr*yf/(y0+YL)

6) Bs = -BinÀÌ µÇ°Ô ÇÔ.

7) Transducer ÀÌµæ °è»ê. ¿ä±¸°ª ºÒ¸¸Á· ½Ã Gs¸¦ º¯°æÇÏ¿© À§ °úÁ¤ ¹Ýº¹

8) °ü½É ÁÖÆļö¿¡¼­ Æ®·£Áö½ºÅÍ ÀÔÃâ·Â´Ü Á¤ÇÕ

9) Àüü ÁÖÆļö¿¡¼­ Stern ¾ÈÁ¤Á¶°Ç(K>1) È®ÀÎ

10) ÁõÆø±âÀÇ À̵æÀ» °è»êÇÏ°í transducer gain °ø½Ä¿¡ ÀÇÇÑ °ª°ú ºñ±³

 

»ç·Ê:

Àü¿ø 12V, ÁõÆø±â BF199, ÁÖÆļö 40MHz, Àü¿ø/ºÎÇÏÀúÇ× 50W

10-100MHz¿¡¼­ ÀÌµæ ±¸Ç϶ó.

Vce = 10V, Ic = 7mA·Î ÇÑ ´ÙÀ½ ÁÖÆļö¿¡ µû¶ó S Æз¯¹ÌÅÍ ±¸ÇÔ. À̸¦ y Æз¯¹ÌÅÍ·Î º¯È¯ÇÏ¿© ¼³°è¿¡ »ç¿ë

 

[Âü°í¹®Çå]

Bhartia, Introduction to transistors