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Lecture 23: Common Emitter Amplifier 
Frequency Response. Miller’s Theorem. 

 
We’ll use the high frequency model for the BJT we developed in 
the previous lecture and compute the frequency response of a 
common emitter amplifier, as shown below in Fig. 5.71a. 

  

   (Fig. 5.71) 
 
As we discussed in the previous lecture, there are three distinct 
region of frequency operation for this – and most – transistor 
amplifier circuits. We’ll examine the operation of this CE 
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amplifier more closely when operated in three frequency 
regimes. 
 
 

Mid-band Frequency Response of the CE Amplifier 
 
At the mid-band frequencies, the DC blocking capacitors are 
assumed to have very small impedances so they can be replaced 
by short circuits, while the impedances of Cπ and Cμ are very 
large so they can be replaced by open circuits. The equivalent 
small-signal model for the mid-band frequency response is then 

 

We’ll define 
 || ||L o C LR r R R′ =  (1) 
so that at the output 
 o m LV g R Vπ

′= −  (2) 
 
Using Thévenin’s theorem followed by voltage division at the 
input we find 
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 sig
sig sig||

B
TH

x TH x B B

r r RV V V
r r R r r R R R R

π π
π

π π

= = ⋅
+ + + + +

 (3) 

 
Substituting (3) into (2) we find the mid-band voltage gain Am to 
be 

 ( )
sig sig sig

|| ||
||

o m B
m o C L

x B B

V g r RA r R R
V r r R R R R

π

π

−
≡ = ⋅ ⋅

+ + +
 (4) 

 
 

High Frequency Response of the CE Amplifier 
 
For the high frequency response of the CE amplifier of Fig. 
5.71a, the impedance of the blocking capacitors is still 
negligibly small, but now the internal capacitances of the BJT 
are no longer effectively open circuits. 
 
Using the high frequency small-signal model of the BJT 
discussed in the previous lecture, the equivalent small-signal 
circuit of the CE amplifier now becomes: 

  (Fig. 5.72a) 
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We’ll simplify this circuit a little by calculating a Thévenin 
equivalent circuit at the input and using the definition for LR ′  in 
(1): 

  (Fig. 5.72b) 

where it can be easily shown that sigV ′ is Vπ  given in (3) 

 sig sig
sig sig||

B

x B B

r RV V
r r R R R R

π

π

′ = ⋅
+ + +

 (5.167),(5) 

while ( )sig sig|| ||x BR r r R Rπ
′ ⎡ ⎤= +⎣ ⎦  (5.168),(6) 

 
 

Miller’s Theorem 
 
We can analyze the circuit in Fig. 5.72b through traditional 
methods, but if we apply Miller’s theorem we can greatly 
simplify the effort. Plus, it will be easier to apply an 
approximation that will arise if we use Miller’s theorem. 
 
You may have seen Miller’s theorem previously in circuit 
analysis. It is another equivalent circuit theorem for linear 
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circuits akin to Thévenin’s and Norton’s theorems. Miller’s 
theorem applies to this circuit topology: 

  (Fig. 1) 

The equivalent Miller’s theorem circuit is 

  (Fig. 2) 

where 

 
1

x
A

B

A

ZZ v
v

=
−

   and   
1

x
B

A

B

ZZ v
v

=
−

 (7),(8) 

 
The equivalence of these two circuits can be easily verified. For 
example, using KVL in Fig. 1 
 A A x Bv i Z v= +  

or A B
A

x

v vi
Z
−

=  (9) 

while using KVL in the left-hand figure of Fig. 2 gives 
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 A
A

A

vi
Z

=  (10) 

 
Now, for the left-hand figure to be equivalent to the circuit in 
Fig. 1, then iA in (9) and iA in (10) must be equal. Therefore, 

 A B A

x A

v v v
Z Z
−

=  

The equivalent impedance ZA can be obtained from this equation 
as 

 
1

x A x
A

BA B

A

Z v ZZ vv v
v

= =
− −

 

which is the same as (7). A similar result verifies (8). 
 
So, for a resistive element Rx, Miller’s theorem states that 

 
1

x
A

B

A

RR v
v

=
−

  and   
1

x
B

A

B

RR v
v

=
−

 (12),(13) 

while for a capacitive element Cx, Miller’s theorem states that 

 1 B
A x

A

vC C
v

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  and   1 A

B x
B

vC C
v

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (14),(15) 
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High Frequency Response of the CE Amplifier (cont.) 
 
Returning now to the CE amplifier equivalent small-signal 
circuit of Fig. 5.72b, we’ll apply Miller’s theorem of Figs. 1 and 
2 to this circuit and the capacitor Cμ to give 

 (Fig. 3) 

where, using (14) and (15), 

 1 o
A

VC C
Vμ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  and   1B

o

VC C
V
π

μ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (16),(17) 

 
Actually, this equivalent circuit of Fig. 3 is no simpler to 
analyze than the one in Fig. 5.72b because of the dependence of 
CA and CB on the voltages Vo and Vπ. 
 
However, this equivalent circuit of Fig. 3 will prove valuable for 
the following approximation. Note from Fig. 5.72b that 
 L mI I g Vμ π

′ + =    ⇒    L mI g V Iπ μ
′ = −  (18) 

Up to frequencies near fH and better, the current Iμ in the small 
capacitor Cμ will be much smaller than mg Vπ . Consequently, 
from (18) 
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 L mI g Vπ
′ ≈  (19) 

and o L L m LV I R g R Vπ
′ ′ ′≈ − = −  (5.169),(20) 

 
Using this last result in (16) and (17) we find that 

 ( )1 1m L
A m L

g R VC C C g R
V

π
μ μ

π

⎛ ⎞′
′≈ + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 (21) 

and 11 1B

m L m L

VC C C
g R V g R

π
μ μ

π

⎛ ⎞ ⎛ ⎞
≈ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

 (22) 

 
Most often for this type of amplifier, 1m Lg R ′  so that in (22) 

BC Cμ≈ . But as we initially assumed, the current through Cμ is 
much smaller than that through the dependent current source 

mg Vπ , which ultimately led to equation (19). 
 
Consequently, we can ignore CB in parallel with mg Vπ  and the 
final high frequency small-signal equivalent circuit for the CE 
amplifier in Fig. 5.71a is 

     (Fig. 5.72c) 
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where ( )in 1A m LC C C C C g Rπ π μ
′≡ + = + +  (5.173),(22) 

Based on this small-signal equivalent circuit, we’ll derive the 
high-frequency response of this CE amplifier. At the input 

 in

in

sig

sig

C

C

Z
V V

Z R
π

′=
′+

 (23) 

while at the output 
 o m LV g R Vπ

′= −  (24) 
 
Substituting (23) into (24) gives 

 in

in

sig

sig

C
o m L

C

Z
V g R V

Z R
′ ′= −

′+
 (25) 

Since ( )
in

1
inCZ j Cω −=  then (25) becomes 

 in
sig sig

in sigsig
in

1

1 1
m L

o m L
g Rj CV g R V V

j C RR
j C

ω
ω

ω

′−′ ′ ′= − =
′+′+

 (26) 

If we define 

 
in sig

1
H

C R
ω =

′
 (27) 

then substitute this into (26) gives 

 
sig 1 1

o m L m L

H H

V g R g R
fV j j
f

ω
ω

′ ′− −
= =

′ + +
 (28) 
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where 
in sig

1
2 2

H
Hf

C R
ω
π π

= =
′

 (5.176),(29) 

 
You should recognize this transfer function (28) as that for a low 
pass circuit with a cut-off frequency (or 3-dB frequency) of ωH. 
This is the response of a single time constant circuit, which is 
what we have in the circuit of Fig. 5.72c. 
 
What we’re ultimately interested in is the overall transfer 
function sigoV V  from input to output. This can be easily derived 
from the work we’ve already done here. Since 

 sig

sig sigsig

o o VV V
V VV

′
=

′
 (30) 

We can use (28) for the first term in the RHS of (30), and use (5) 
for the second giving 

 
sig sig sig||1
o m L B

x B B

H

V g R r R
fV r r R R R Rj
f

π

π

′−
= ⋅ ⋅

+ + ++
 (31) 

We can recognize Am from (4) in this expression giving 

 
sig 1
o m

H

V A
fV j
f

=
+

 (5.175),(32) 

Once again, this is the frequency response of a low pass circuit, 
as shown below: 
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    (Fig. 5.72d) 

 
 

Comments and the Miller Effect 
 
• Equation (32) gives the mid-band and high frequency 

response of the CE amplifier circuit. It is not valid for the low 
frequency response near fL and lower frequencies, as shown in 
Fig. 5.71b. 
 

• It turns out that Cin in (22) is usually dominated by 
( )1A m LC C g Rμ

′= + . Even though Cμ is usually much smaller 
than Cπ its effects at the input are accentuated by the factor 
1 m Lg R ′+ . 

 
• The reason that CA undergoes this multiplication is because it 

is connected between two nodes (B’ and C in Fig. 5.72a) that 
experience a large voltage gain. This effect is called the 
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Miller effect and the multiplying factor 1 m Lg R ′+  in (22) is 
called the Miller multiplier. 

 
• Because of this Miller effect and the Miller multiplier, the 

input capacitance Cin of the CE amplifier is usually quite 
large. Consequently, from (20) the fH of this amplifier is 
reduced. In other words, this Miller effect limits the high 
frequency applications of the CE amplifier because the 
bandwidth and gain will be limited. 

 
 
 

Low Frequency Response of the CE Amplifier 
 
On the other end of the spectrum, the low frequency response of 
the CE amplifier – and all other capacitively coupled amplifiers 
– is limited by the DC blocking and bypass capacitors. 
 
This type of low frequency response analysis is rather 
complicated because there is more than a single time constant 
response involved. In the circuit of Fig. 5.71a there are three 
capacitors involved, CC1, CC2, and CE. All three of these greatly 
affect the low frequency response of the amplifier and can’t be 
ignored. 
 



Whites, EE 320 Lecture 23 Page 13 of 17  

The text presents an approximate solution in which the low 
frequency response is modeled as the product of three high pass 
single time constant circuits cascaded together so that 

 
sig 1 2 3

o
m

p p p

V j j jA
V j j j

ω ω ω
ω ω ω ω ω ω

⎛ ⎞⎛ ⎞⎛ ⎞
≈ − ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠⎝ ⎠

 (5.183),(33) 

   (Fig. 5.73e) 

So there isn’t a single fL as suggested by Fig. 5.71b but rather a 
more complicated response at low frequencies as we see in Fig. 
5.73e above. Computer simulation is perhaps the best predictor 
for this complicated frequency response, but an approximate 
formula for fL is given in the text as 

 1 2 3
1 1 2 2

1 1 1 1
2L p p p

C C E E C C

f f f f
C R C R C Rπ

⎛ ⎞
≈ + + = + +⎜ ⎟

⎝ ⎠
  

  (5.184),(5.185),(34) 
where 1CR , ER , and 2CR  are the resistances seen by 1CC , EC , and 

2CC , respectively, with the signal source sig 0V =  and the other 
two capacitors replaced by short circuits. 
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Example N23.1. Compute the mid-band small-signal voltage 
gain and the upper 3-dB cutoff frequency of the small-signal 
voltage gain for the CE amplifier shown in Fig. 5.71a. Use a 
2N2222A transistor and the circuit element and DC source 
values listed in Example 5.18 in the text. Use 10 μF blocking 
and bypass capacitors. 
 
The circuit in Agilent Advanced Design System appears as: 
 

vo

vi

AC
AC1

Step=100 Hz
Stop=1.0 MHz
Start=100 Hz

AC

C
C3
C=10 uF

I_DC
SRC4
Idc=1 mA

V_DC
SRC3
Vdc=-10.0 V

R
R4
R=5 kOhm

R
R3
R=5 kOhm

R
R2
R=8 kOhm

R
R1
R=100 kOhm

V_DC
SRC2
Vdc=10.0 V

C
C2
C=10 uF

C
C1
C=10 uF

V_AC
SRC1

Freq=freq
Vac=polar(1,0) V ap_npn_2N2222A_19930601

Q1

 
 
From the results of the ADS circuit simulation 
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 ( )2.03 V 400 mV 2.43 VCBV = − − =  
 ( )0.4 V 1.02 V 0.62 VBEV = − − − =  
 
From Fig. 9 in the Motorola 2N2222A datasheet (see the 
previous set of lecture notes) 

• For 2.43 VCBV =    ⇒    5.8cbC Cμ= ≈  pF. 
• For 0.62 VBEV =    ⇒    20ebC Cπ= ≈  pF. 

 

 1 mA 0.04
25 mV

C
m

T

Ig
V

= = =  S 

From (5.163), 

 ( ) ( )
0.04 246.8

2 20 pF 5.8 pF2
m

T
gf

C Cπ μ ππ
≈ = =

++
 MHz 

This value agrees fairly with the datasheet value of 300 MHz. 
 

0 265β ≈  from the ADS parts list for this 2N2222A transistor. 
Therefore, 

 0 265 6,625
0.04m

r
gπ
β

= = =  Ω 

 
From the 2N2222A datasheet, the nominal output resistance at 
IC = 1 mA is 50or ≈  kΩ. 
 
What about rx? It’s so small in value (~ 50 Ω) that we’ll easily 
be able to ignore it for the Am calculations compared to rπ (which 
is 6,625 Ω as we just calculated). From (4), 
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 ( )
sig sig

2,898.6
0.02327 0.9524

|| ||
||

L

m B
m o C L

x B B
R

g r RA r R R
r r R R R R

π

π
′=

−

−
= ⋅ ⋅

+ + +
 

Therefore, V64.24
VmA = −  

or in decibels ( )10 36.22 g Bl do0 mm AA = =  
 
From ADS: 

1E3 1E4 1E51E2 1E6

15

20

25

30

35

10

40

freq, Hz

d
B

(v
o

)

m1
m2m3

m1
freq=
dB(vo)=36.053

6.300kHz
m2
freq=
dB(vo)=33.046

84.40kHz
m3
freq=
dB(vo)=33.632

400.0 Hz

 
 
From this plot, ADS computes a mid-band gain of 36.05mA =  
dB, which agrees closely with the predicted value above. 
 

From (29), 
in sig

1
2

Hf
C Rπ

≈
′
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where from (22) 

 ( ) ( )in 1 20 5.8 1 0.04 2,898.6  pF

20 678.3 698.3 pF

m LC C C g Rπ μ
′= + + = + + ⋅

= + =
 

while from (6) 
 ( )sig sig|| ||x BR r r R Rπ

′ ⎡ ⎤= +⎣ ⎦  

Because sig|| 100 k || 5 k 4,761.9BR R = =  Ω is so much larger 
than rx (on the order of 50 Ω), we can safely ignore rx. Then, 

sig 6,625 || 4,762 2,771R ′ ≈ =  Ω. 
 
Therefore, 
 12 82.2 698.3 10 7 21 52,7Hf π −≈ ⋅ × ⋅ =  kHz 
This agrees very closely with the value of 84.40 kHz predicted 
by the ADS simulation shown above. 
 
 
Add a short discussion on the gain-bandwidth product m HA f . 


