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Abstract— The problem of nonlinear non-Gaussian target
tracking with glint measurement noise is addressed in this
work. The heavy-tailed glint noise distribution is modeled
by mixture of two Gaussians. A new nonlinear Gaussian
mixture Kalman filter (NL-GMKF), is applied to this prob-
lem. The tracking performance of the NL-GMKF is evalu-
ated and compared to the particle filter (PF) and the ex-
tended Kalman filter (EKF) via simulations. It is shown that
the NL-GMKF outperforms both the PF and the EKF.

I. Motivation

The problem of target tracking has been intensively in-
vestigated [1]-[2] for application in military surveillance sys-
tems, sonar and air-traffic control systems. Most of the
tracking algorithms use dynamic state-space (DSS) model-
ing approach [3]. The unobserved system state in the DSS
model, which usually characterizes the time-varying tar-
get dynamics, can be effectively estimated according to the
Bayesian approach via posterior probability density func-
tion (PDF) [4]. The Kalman filter (KF) is widely used in
tracking problems. It optimally estimates in the minimum-
mean-squared error (MMSE) sense, the target dynamics
from noisy measurements in linear, Gaussian systems [1]-
[2]. However, the Gaussianity and linearity assumptions
are restrictive and extension of the KF to non-Gaussian
nonlinear models has been intensively studied [1]-[2], [5]
and [6].

Practical radar tracking systems are rarely Gaussian due
to many factors. One of them is changes in the aspect to-
ward the radar, which can cause irregular electromagnetic
wave reflection, resulting in significant variations of radar
reflections [7]. This phenomenon gives rise to outliers in
angle tracking, and it is referred to as target glint. The
concept of angular glint was initially proposed in [8], and
was explained as the tilt of wave-front normal, resulting
from the distortion of target echo signal phase front. It
was found that glint has a long-tailed PDF [7].

The statistical characteristics of the glint noise and its
mathematical models have been studied in [7], [9] and [10].
The glint has been modeled by a Student’s t distribution in
[10], based on theoretical studies. A mixture model of two
zero-mean Gaussians for glint noise has been proposed in
[7], based on the statistical analysis. This model consists
of one Gaussian with high probability and small variance
and another with small probability of occurrence and very
high variance. In [9], the glint noise was alternatively mod-
eled by mixture of zero-mean, small-variance Gaussian with

heavy-tailed Laplacian. The last two models are commonly
used for glint noise modeling [5].

Tracking precision of the KF can be greatly degraded due
to glint noise [11] with non-Gaussian PDF, tracking com-
plex and large targets at short ranges. Many researches
addressed the problem of filtering in non-Gaussian mod-
els, however only few techniques have been found to be
effective. One of them is Masreliez’s algorithm [11]. This
algorithm is based on the score function and was used in
[12] in the target tracking problem with glint noise. The
main disadvantage of this approach is that it involves a
complicated score function calculation.

Recently, two new filtering approaches were proposed. In
90’s, a new class of filtering methods was proposed based
on the sequential Monte Carlo (MC) approach for nonlin-
ear non-Gaussian problems, as an alternative to linearized
Kalman-type filters (see for example [4]). In these tech-
niques the filtering is performed recursively generating MC
samples of the state variables. The most popular realiza-
tion of the MC approach is the particle filters (PF), which
approximate the posterior distribution by a set of random
samples with associated weights, rather than using an ana-
lytic model [4]. In [13], the PF was applied to the problem
of tracking in glint noise environment.

In [14], the idea of interacting multiple model (IMM)
was utilized in the problem of target tracking with glint
noise and the IMM algorithm was implemented with two
extended Kalman filters (EKF). The IMM approach with
EKF in the tracking problem with glint provides poor per-
formance due to the linearization, involved in the EKF. The
IMM approach was further studied in many later works
[5] and was extended to the problem of maneuvering tar-
get tracking in the presence of glint [12], where Masreliez’s
filter was used instead of EKF. The IMM approach with
Masreliez’s filter involves complicated score function calcu-
lation and therefore has limited practical implementation.

Recently, the Gaussian mixture Kalman filter (GMKF)
was proposed in [15]. This algorithm was shown to be
optimal under the minimum-mean-square error (MMSE)
criterion for linear non-Gaussian problems. In this DSS
model, the PDFs of the system initial state, system noise,
and the posterior state are assumed to be described by the
Gaussian mixture model (GMM).

In the present work, the GMKF, presented in [15] was
generalized to nonlinear non-Gaussian problems and was
applied to the problem of radar target tracking with glint
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noise, modeled by heavy-tailed angle measurement noise.
Using the property that any PDF can be approximated by
a mixture of finite number of Gaussians [2], the distribu-
tions of the system initial state, measurement noise and the
posterior state, were modeled by GMMs. In this work, the
glint noise was modeled by mixture of two zero-mean Gaus-
sians. The properties of the GMM are used in the proposed
algorithm, thus, the expectation-maximization (EM) algo-
rithm was used for GMM order reduction. The proposed
algorithm does not involve any complicated calculations.
This algorithm does not involve linearization and therefore
is expected to outperform any EKF-based algorithms. The
tracking performance of the proposed NL-GMKF is com-
pared to the PF and to the EKF via simulations.

The paper is organized as follows. The problem of tar-
get tracking with glint noise is stated in Section II. The
NL-GMKF, used in this work is described in Section III.
Tracking performances of the proposed algorithm are pre-
sented in Section IV. Our conclusions are summarized in
Section V.

II. Problem formulation

A. DSS model

Consider a state sequence {s[n], n = 0, 1, 2, . . .} and
observations {x[n], n = 0, 1, 2, . . .} whose time evolution
and observation equations are described by the following
nonlinear non-Gaussian DSS model

s[n] = a(s[n− 1],u[n]) , (1)
x[n] = h(s[n],w[n]) , (2)

where the nonlinear transition function, a(·, ·), and the ob-
servation function, h(·, ·), are known. The initial state
s[−1], the zero-mean measurement noise w[n] and the zero-
mean driving noise u[n] are independent with the following
distributions

s[−1]∼GMM(αsl[−1],µsl[−1],Γsl[−1]; l = 1, . . . , L) ,
w[n]∼GMM(αwk[n],µwk[n],Γwk[n]; k = 1, . . . ,K) ,
u[n]∼N (µu[n],Γu[n]) ,

where GMM(αm,µm,Γm,m = 1, . . . ,M) denotes an
M -order Gaussian mixture distribution with weights,
{αm}M

m=1, mean vectors, {µm}M
m=1, and covariance matri-

ces, {Γm}M
m=1. Distribution of the measurement noise w[n]

is fw(w). The driving noise and the measurement noise
are temporally independent, i.e. u[n] and u[n′], and w[n]
and w[n′] are mutually independent for any time instances
n = 0, 1, 2, . . . ; n′ = 0, 1, 2, . . . ; n �= n′ . Addressing the
problem of non-maneuvering target tracking, the Gaussian
distribution was assumed for the driving noise.

The PDF of a GMM-distributed random vector y ∼
GMM(αym,µym,Γym;m = 1, . . . ,M) is given by

fy(y) =
M∑

m=1

αymΦ(y;θm) , (3)

where Φ(y;θm) is a complex Gaussian PDF and θm con-
tains the mean vector, µym and the covariance matrix,
Γym.

B. Target tracking model

The non-maneuvering target tracking problem with glint
noise can be modeled by nearly-constant target motion
model [3] where the transition function in (1) is

a (s[n− 1],u[n]) =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 s[n− 1]

+




T 2

2 0
T 0
0 T 2

2
0 T


u[n] , (4)

in which T is the sampling interval and {s[n], n =
0, 1, 2, . . .} is a state sequence which consists of two-
dimensional target position [rx[n] ry[n]]T and velocity
[ṙx[n] ṙy[n]]T : s[n] = [rx[n] ṙx[n] ry[n] ṙy[n] ]T .

We assume that the radar is placed at the origin [0 0]T

and therefore, the radar measurements: range r[n] =
[rx[n] ry[n]]T and bearing β[n] of the target are described
by the measurement function

x[n] = h (s[n],w[n]) =
[
r[n]
β[n]

]
+ w[n]

=

[
(r2x[n] + r2y[n])

1
2

arctan
(

ry [n]
rx[n]

)
]

+ w[n] ,

where w[n] is the glint noise.

C. Glint noise

As mentioned in [7], the glint noise has a non-Gaussian
distribution. A mixture approach is widely used in model-
ing the non-Gaussian glint noise. It was obtained that the
glint is Gaussian-like around the mean (at origin) and has
a non-Gaussian, long-tailed nature in the tail region. The
data at the tail region represent outliers, caused by the glint
spikes. The outliers with low occurrence probability have
a significant influence on the conventional target tracking
algorithms, such as the KF. In [9], it was proposed that the
heavy-tailed behavior of the glint noise is the best modeled
as the mixture of a zero-mean Gaussian noise with high oc-
currence probability and a Laplacian noise with low occur-
rence probability. In [7], [12] and [13], the glint noise was
modeled as a mixture of two zero-mean Gaussians, where
the outliers were represented by a zero-mean Gaussian with
large (comparing to the thermal noise) covariance matrix:

fw[n](w) = αwΦ(w,θw1) + (1 − αw)Φ(w,θw2) ,
n = 0, 1, 2, . . . ,

where αw is the glint probability. In the proposed tracking
algorithm, the non-Gaussian distributions are modeled by
GMM. Therefore, GMM with two Gaussians was chosen to
model the glint noise.
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III. Nonlinear Gaussian mixture Kalman filter

Implementation of the NL-GMKF involves the following
recursion.
1. Initialization:
Initialize the L-order GMM parameters of the state vector
at time instance n = −1.

αs[−1| − 1, ηsl[−1]] = αsl[−1] ,
µs[−1| − 1, ηsl[−1]] = µsl[−1] ,
Γs[−1| − 1, ηsl[−1]] = Γsl[−1] .

Set n = 0.
2. Mixture parameters of nonlinear function:
• Generate an artificial data set D from the conditional

distribution of


 s[n− 1]

u[n]
w[n]


, given X [n − 1], according to

the PDF of s[n − 1]|X [n − 1] from the previous step and
PDFs of u[n] and w[n].

• Apply the nonlinear function G(·) =
[

a(·, ·)
h(a(·, ·), ·)

]
on

D and obtain a new artificial data set D′ = G (D).

• Model the conditional distribution of
[

s[n]
x̂[n]

]
given

X [n − 1] using the new artificial data D′ by GMM of or-
der M , obtained using a model order selection algorithm
such as the minimum description length (MDL) [16]. The
following parameters are obtained in this process

θx̂m[n|n− 1]={µx̂[n|n− 1, η̃m[n]],Γx̂[n|n− 1, η̃m[n]]} ,
θsm[n|n− 1]={µs[n|n− 1, η̃m[n]],Γs[n|n− 1, η̃m[n]]} ,
αx̂[n|n− 1, η̃m[n]] ,Γsx̂[n|n− 1, η̃m[n]].

3. Innovation:
The measurement prediction is calculated using these pa-
rameters as follows

x̂[n|n− 1] =
M∑

m=1

αx̂[n|n− 1, η̃m[n]]µx̂[n|n− 1, η̃m[n]] ,

and the innovation is calculated according to

x̃[n] = x[n] − x̂[n|n− 1] .

The parameters of the innovation PDF, modeled by GMM
are:

θx̃m[n]={µx̃[n|n− 1, η̃m[n]],Γx̃[n|n− 1, η̃m[n]]} .

Obtain these parameters as follows:

αx̃[n|n− 1, η̃m[n]] = αx̂[n|n− 1, η̃m[n]] ,
µx̃[n|n− 1, η̃m[n]] = µx̂[n|n− 1, η̃m[n]] − x̂[n|n− 1] ,
Γx̃[n|n− 1, η̃m[n]] = Γx̂[n|n− 1, η̃m[n]]
Γsx̃[n|n− 1, η̃m[n]] = Γsx̂[n|n− 1, η̃m[n]] .

The conditional distribution of
[

s[n]
x̃[n]

]
given X [n − 1] is

obtained in this process.

4. Kalman gain:

Km[n]
�
= Γsx̃[n|n− 1, η̃m[n]]Γ−1

x̃ [n|n− 1, η̃m[n]].

5a. Estimated state mixture parameters:

αs[n|n, η̃m[n]]= αx̃[n|n−1,η̃m[n]]Φ(x̃[n];θx̃m[n])
M∑

m′=1

αx̃[n|n−1,η̃m′ [n]]Φ(x̃[n];θx̃m′ [n])

,

µs[n|n, η̃m[n]]=µs[n|n− 1, η̃m[n]]
+Km[n] (x̃[n] − µx̃[n|n− 1, η̃m[n]]) ,

Γs[n|n, η̃m[n]]=Γs[n|n− 1, η̃m[n]]
−Km[n]Γx̃s[n|n− 1, η̃m[n]] ,
∀ m = 1, . . . ,M .

5b. Estimation:

ŝ[n|n]=
M∑

m=1

αs[n|n, η̃m[n]]µs[n|n, η̃m[n]] .

6. Set n→ n+ 1, go to step 2.
This NL-GMKF is schematically presented in Fig. 1.
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Fig. 1. The NL-GMKF schematic diagram.

IV. Simulation results

In this section, the performance of the NL-GMKF, ap-
plied to the problem of radar target tracking with glint
noise, is evaluated and compared to the PF and the EKF.
The PF was based on the standard sampling importance
resampling (SIR) [4] with 10000 particles.

Samples of the non-maneuvering target with glint noise
were simulated for N = 100 time instances with sampling
interval T = 1 sec. For the glint noise PDF, the following
mixture parameters were used:

θw1 =
{
µw1 = 0,Γw1 = diag

([
0.25 km2 0.4 mrad2

])}
,

θw2 =
{
µw2 = 0,Γw2 = diag

([
2.5 km2 400 mrad2

])}
.
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The covariance matrix of the zero-mean Gaussian driving
noise was assumed to be

Γu[n] = diag
(
[5 × 10−4 km2 5 m2/sec4]

)
. (5)

The conditional distribution of the state vector s[n], given
X [n] was assumed to be GMM of order L = 20. The NL-
GMKF is initialized at time instance n = −1 for m =
1, . . . ,M with

αs[−1| − 1, ηsm[−1]] =
1
M

,

µs[−1| − 1, ηsm[−1]] = 0 ,
Γs[−1| − 1, ηsm[−1]] = 10000I ,

s[−1| − 1] = 0 . (6)

The following initial target position and velocity in the
two-dimensional space was chosen in simulations:

s[−1| − 1] = [10 km 300 m/sec 10 km − 100 m/sec]T .

Fig. 2 shows target trajectories in the two-dimensional
space with glint noise. Target tracking scenarios with glint
noise probability of αw = 0.15, and αw = 0.25 are shown in
Figs. 2(a) and 2(b), respectively. Each of these tracks was
randomly selected from 100 simulation trials for different
glint noise probabilities. These figures show that the NL-
GMKF tracks the target in the glint environment for any
probability of the glint noise with small errors comparing
to the PF and the EKF.

For performance evaluation the root-mean-squared error
(RMSE) of the estimate of the two-dimentional position
[rx[n] rx[n]] and the two-dimentional velocity [ṙx[n] ṙy[n]]
were obtained in 100 independent trials. Tracking perfor-
mances of the NL-GMKF, PF and EKF with glint proba-
bility of αw = 0.1, are presented in Figs. 3 and 4. Fig.
3 shows the target tracking performance of the two di-
mentional position and Fig. 4 shows the target tracking
performance of the two dimentional velocity. It can be
observed that the PF outperforms the EKF, and the NL-
GMKF outperforms both of them.

The tracking performance as a function of the glint prob-
ability at time instance n = 50 is presented in Figs. 5 and
6. Fig. 5 shows the target tracking performance of the two
dimentional position and Fig. 5 shows the target tracking
performance of the two dimentional velocity. It can be ob-
served that the NL-GMKF outperforms both the PF and
the EKF for different values of glint probability. These
figures show that the estimation performance of the NL-
GMKF remains almost constant as the probability of the
glint noise increases. These figures also show that the pro-
posed NL-GMKF ouperforms both the PF and the EKF
for all glint noise probabilities.

V. Conclusion

A new NL-GMKF was applied to the problem of tar-
get tracking with non-Gaussian glint noise. The glint noise
was modeled by mixture of two Gaussians. The outliers
were represented by a large variance Gaussian. Tracking
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Fig. 2. Nonlinear non-Gaussian vs. PF and EKF tracking in the two-
dimensional space with the glint noise probabilities of (a) αw = 0.15
and (b) αw = 0.25.

performance of the NL-GMKF for various glint noise prob-
abilities were evaluated. It was shown that the NL-GMKF
outperforms both PF and EKF.
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