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New computationally efficient methods are proposed for more accurately

analyzing and modeling dynamic processes that are nonlinear and

subject to non-Gaussian noise.
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ABSTRACT | In this paper, a new version of the quadrature

Kalman filter (QKF) is developed theoretically and tested

experimentally. We first derive the new QKF for nonlinear

systems with additive Gaussian noise by linearizing the process

and measurement functions using statistical linear regression

(SLR) through a set of Gauss–Hermite quadrature points that

parameterize the Gaussian density. Moreover, we discuss how

the new QKF can be extended andmodified to take into account

specific details of a given application. We then go on to extend

the use of the new QKF to discrete-time, nonlinear systems with

additive, possibly non-Gaussian noise. A bank of parallel QKFs,

called the Gaussian sum-quadrature Kalman filter (GS-QKF)

approximates the predicted and posterior densities as a finite

number of weighted sums of Gaussian densities. The weights

are obtained from the residuals of the QKFs. Three different

Gaussian mixture reduction techniques are presented to

alleviate the growing number of the Gaussian sum terms

inherent to the GS-QKFs. Simulation results exhibit a significant

improvement of the GS-QKFs over other nonlinear filtering

approaches, namely, the basic bootstrap (particle) filters and

Gaussian-sum extended Kalman filters, to solve nonlinear non-

Gaussian filtering problems.

KEYWORDS | Gauss–Hermite Quadrature Rule; Gaussian sum

filter; nonlinear filtering; quadrature Kalman filter; statistical

linear regression (SLR)

I . INTRODUCTION

The analysis and making of inferences about a dynamic

system arise in a wide variety of applications in many
disciplines. Examples include tracking the channel state

information of a rapidly changing wireless channel [24],

radar-based tracking of ships and aircraft [5], estimating

the volatility of financial instruments using stock market

data [1], and many others. The Bayesian framework is the

most commonly used method for the study of these

dynamic systems. In general, a Bayesian framework re-

quires a dynamic state-space model (DSSM), which con-
sists of two components: first, a process model describing

the evolution of a hidden state of the system and second, a

measurement model on noisy observables related to the

hidden state. In the Bayesian approach, the posterior

density of the state, obtained from Bayes’ theorem, pro-

vides a complete statistical description of the state variable

at that time [3].

A closed-form expression for the posterior density is
available only for a restricted class of dynamic systems.

For example, if the DSSM is linear with additive

Gaussian noise and the prior distribution of the state

variable is Gaussian, the predicted and posterior densities

can be described by Gaussian densities. For this special

case, the celebrated Kalman filter yields the optimal

solution in the minimum-mean-square-error (MMSE)

sense, the maximum likelihood (ML) sense, and the max-
imum a posteriori (MAP) sense [3], [18], [32]. However,

the application of Bayesian estimation to real-world

problems is plagued by two major difficulties: first, a

realistic process and/or measurement model for a dynamic

system of interest is often nonlinear, and second, the

process noise and/or the measurement noise sources can

be non-Gaussian.
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In this paper, we develop approximate, recursive
Gaussian filters for nonlinear dynamics with additive

Gaussian or non-Gaussian noise:

1) A new quadrature Kalman filter (QKF) is devel-

oped for a nonlinear Gaussian dynamic system.

Essentially, the new QKF is a rederivation of the

existing QKF of Ito and Xiong [27] from a dif-

ferent perspective. This new QKF uses statistical

linear regression (SLR) to linearize a nonlinear
function through a set of Gauss–Hermite quadra-

ture points. The new perspective allows us to

make various extensions and modifications by

taking into account specific details of a given

application.

2) The new QKF algorithm is extended to a more

general setting. A Gaussian-sum filter using a

bank of new QKFs is employed for the general
case of a nonlinear non-Gaussian dynamic system.

The resulting algorithm is referred to as the

Gaussian sum quadrature Kalman filter (GS-

QKF). It is known that the non-Gaussian noise

can be well approximated by a Gaussian-mixture1

[2], [9], [24]. Hence, the non-Gaussian noise is

modeled by a parallel combination of additive

nonlinear Gaussian systems and consequently, the
new QKF can be employed as a basic building

block of GS-QKF.

The main issue in the GS-QKF design is that the

number of terms in the Gaussian sum grows exponentially

with time. In order to apply the GS-QKF in practice, we

present three different Gaussian mixture reduction tech-

niques to alleviate the growing memory problem.

The rest of the paper is organized as follows: Section II
presents a general Bayesian framework for discrete-time

nonlinear filtering. Section III highlights some of the key

contributions in discrete-time nonlinear filtering since the

development of the Kalman filter. Section IV briefly

reviews the Gauss–Hermite quadrature rule, which is the

basic building block of the new QKF. Section V presents

the theory of SLR. In Section VI, the new QKF algorithm is

developed using linear regression theory and the Gauss–
Hermite quadrature rule. Section VII presents the GS-QKF

filtering algorithm. Section VIII presents the Gaussian

mixture reduction techniques. Section IX summarizes the

GS-QKF filter. Section X analyzes the accuracy and the

computational complexity of the Gauss–Hermite quadra-

ture estimate. Section XI presents extended applications

of the QKF. Section XII provides computer simula-

tions, demonstrating the effectiveness of the new QKF
algorithms over currently used methods for a nonlinear

non-Gaussian filtering problem. Section XIII concludes

the paper.

II . GENERAL BAYESIAN FRAMEWORK
FOR NONLINEAR FILTERING

A continuous-time dynamic system, subject to random

disturbances, can often be represented by the Itô stochastic
differential equation [45]:

dxt ¼ fðxt;ut; tÞdt þ gðxt; tÞdvt (1)

where xt 2 Rnx is a continuous-time signal, f : Rnx � Rnu�
R ! Rnx is a known function, ut 2 Rnu is the input
vector, fvt; t 	 0g is an r-dimensional standard Brownian

motion, and g : Rnx � R ! Rnx � Rr is called the diffu-

sion coefficient. The behavior of the system is observed

imperfectly through the continuous observation process

zt 2 Rnz that is related to the process xt by the equation

zt ¼
Z t

0

hðxs;us; sÞds þ
ffiffiffiffi
Rt

p
wt (2)

where h : Rnx � Rnu � R ! Rnz is a known function, and

fwt; t 	 0g is an nz-dimensional standard Brownian
motion, which is independent of vt and the initial state

x0. Write =t ¼ Bðzs; s 
 tÞ, where Bð:Þ is the completion

of the minimal �-field over which the random variables in

the parenthesis are measurable. The dynamics of the

conditional density pðxtj=tÞ of xt, given =t, are defined by

the Kushner equation [36]:

dpðxtj=tÞ ¼ Lpðxtj=tÞdt þ pðxtj=tÞR�1
t ðdzt � ĥtdtÞ (3)

where

L ¼ �
Xnx

i¼1

fiðxt;ut; tÞ @

@xi
þ 1

2

Xnx

i;j¼1

Q i;j
@2

@xi@xj

ĥt ¼E hðxt;ut; tÞj=tð Þ
Q i;j ¼fg gTgi;j

We use the symbol E for the expectation operator

throughout this paper.

1The Gaussian mixture model has widely been used in the literature
to model non-Gaussian noise sources. For example, in tracking a target in
the presence of glint noise, the glint noise is modeled by a Gaussian
mixture [9]. Similarly, in wireless communications, the measurement
noise in an urban environment is modeled by a Gaussian mixture to
capture the heavy tailed noise distribution due to outliers [24].
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A simpler solution to the above continuous-time filter
is given by the Zakai equation [63]:

d�ðxtj=tÞ ¼ L�ðxtj=tÞdt þ R�1
t hðxt;ut; tÞ�ðxtj=tÞdzt

(4)

where �ðxtj=tÞ denotes an unnormalized conditional

density of xt, given =t. The Fokker–Planck operator L is

defined as defined before. Although the Zakai equation

and the Kushner equation have a one-to-one correspon-

dence, the Zakai equation is simpler because it is linear in

�ð:Þ. However, only for Gaussian densities that arise in the
linear Gaussian case and for the Beneš type of nonlinearity,

can the Zakai equation be solved explicitly [17], [25].

Numerous efforts have been devoted in the past to solve

the Zakai equation for a general dynamic system.

Approximate solutions to the Zakai equation can be found

by applying numerical techniques. We cite the survey

paper [22] and the references therein for the numerical

techniques available in the literature. These methods are
neither recursive nor computationally efficient.

When the continuous-time dynamic system is approx-

imated by a discrete-time system, the derivatives in the

continuous-time domain are approximated by difference

equations in discrete-time. That is, consider

xk ¼ fðxk�1;uk�1; kÞ þ vk (5)

zk ¼ hðxk;uk; kÞ þwk: (6)

The nonlinear models given by (5) and (6) are respectively

known as the process equation and the measurement

(observation) equation. Using (5) and (6), the posterior

density pðxkjz1:kÞ at time k, where z1:j ¼ fz1; . . . ; zjg, can
be determined recursively in two steps: i) a time-update

step and ii) a measurement update step.

Suppose the posterior density pðxk�1jz1:k�1Þ at time k is

known. Using (5), it is possible to obtain the predicted

density of the state pðxkjz1:k�1Þ at time k as

pðxkjz1:k�1Þ ¼
Z
Rnx

pðxk�1jz1:k�1Þpðxkjxk�1Þdxk�1 (7)

which is called the time update.

On the receipt of a new measurement zk, the posterior

density pðxkjz1:kÞ can be written using Bayes’ theorem as

pðxkjz1:kÞ ¼
1

ck
pðxkjz1:k�1ÞpðzkjxkÞ: (8)

Here, the normalizing constant ck is expressed as

ck ¼ pðzkjz1:k�1Þ

¼
Z
Rnx

pðxkjz1:k�1ÞpðzkjxkÞdxk: (9)

Determination of the posterior density from the predicted

density and the current measurement is called the

measurement update. The filter is required to complete

these two steps at every time step. The recurrence
relationships (7) and (8) form the basis for the optimal

Bayesian solution.2 Knowledge of the posterior density

pðxkjz1:kÞ enables us to compute an optimal state estimate

with respect to any criterion. For example, we may seek to

find the optimal state estimate x̂kjk in the minimum-mean-

squared-error (MMSE) sense.

x̂kjk ¼ Eðxkjz1:kÞ ¼
Z
Rnx

xkpðxkjz1:kÞdxk:

Similarly, the measure of accuracy of the state estimate,

given by the covariance matrix Pkjk, is

Pkjk ¼ E ðxk � x̂kjkÞðxk � x̂kjkÞTjz1:k

� �
¼
Z
Rnx

ðxk � x̂kjkÞðxk � x̂kjkÞTpðxkjz1:kÞdxk:

However, for nonlinear filtering problems, the prop-
agation of posterior density over time is only a conceptual

solution, in the sense that in general it cannot be

determined analytically. The implementation of the

conceptual solution requires the storage of the entire

probability density function. In general terms, this is

equivalent to an infinite dimensional quantity except in a

restricted set of cases, which can be exactly characterized

by sufficient statistics of fixed and finite dimension. Since
the analytical solution of (7) and (8) in most practical

situations is intractable, we consider approximations to

obtain a suboptimal solution.

2The recursive equations (7) and (8) can also be derived using the
conditional expectations and change of measure (see [17] and [62] for
more details). When estimating with Gaussian random variables, the
conditional expectation is the projection onto the space of variables on
which one conditions.
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III . THE DEVELOPMENT OF NONLINEAR
FILTERING: BRIEF HISTORY

The purpose of this section is to give a brief survey of
major milestones in discrete-time nonlinear filtering, fol-

lowing the development of the Kalman filter. As

described in Section I, the Kalman filter performs poorly

when the assumptions of system linearity and/or

Gaussianity of additive noise sources are violated [2],

[52]. This has motivated intensive search for nonlinear

filters for over four decades. As mentioned earlier, a

computationally efficient, recursive optimal solution is
available only for a limited class of dynamic systems.

Subsequent investigations of nonlinear filtering have

involved finding suboptimal solutions and may be clas-

sified into two major approaches: a local approach, ap-

proximating the posterior density function by some

particular form, and a global approach, computing the

posterior density function without making any explicit

assumptions about its form.

A. Local Approach to Nonlinear Filtering
In the local approach to nonlinear filtering, we first

mention an approximate Gaussian filter which is one of a

broad class of suboptimal filters used in nonlinear,
Gaussian filtering problems. Since the Gaussian filter

approximates both the predicted density and the posterior

density using Gaussian densities, it maintains the elegant

recursive update form of the Kalman filter. An extended
Kalman filter (EKF) is an example of such a filter [3], [5],

[18], [28]. The EKF linearizes both the nonlinear process

and the measurement dynamics with a first-order Taylor

series expansion about the current state estimate, so that
the Kalman filter recursions can be applied. Its accuracy,

however, depends heavily on the Bseverity[ of the

nonlinearities; when the nonlinearities become severe,

or they cannot be well approximated by a linear function,

the EKF gives a divergent estimate [28], [30]. Since the

Taylor series approximation of a nonlinear function is

more accurate only in some neighborhood of a reference

point, it fails to capture the global properties of that
function. To improve the approximation, higher order

terms of the Taylor series expansion can be retained. For

example, a second-order EKF retains the Taylor series

expansion up to a second term [5], [28]. However, it is

questionable whether or not the higher order approxima-

tions improve the performance in cases where the standard

EKF diverges. Furthermore, the second-order EKF requires

Jacobians (first-order partial derivatives) and Hessians
(second-order partial derivatives), whereas the standard

EKF requires Jacobians only. Calculation of Jacobians and

Hessians is often numerically unstable and computation-

ally intensive. In some systems, the Jacobians and Hessians

do not exist (e.g., for a process model representing

abruptly changing behavior). Even if the function is

differentiable, computing the Jacobian and Hessian may be

hard if it is represented as a black-box rather than by some
analytical form.

Another attempt to improve the performance of the

EKF involves the use of an iterative update, and the

resulting algorithm is called the iterated Kalman filter (IKF)

[18], [28]. The basic idea of IKF is to linearize the

measurement model around the updated state, rather than

the predicted state. This is achieved iteratively, and it

involves the use of the current measurement. It has been
shown that the measurement update step of the IKF is more

accurate only when the measurement model fully observes

the state, and this is rarely the case in practice [39].

Recently, the unscented transformation has been used

in the Kalman filter framework and the resulting filter is

refereed to as the unscented Kalman filter [29]–[31]. The

basic idea in the UKF is to choose deterministic sample

(sigma), points that capture the mean and covariance of a
Gaussian density. When propagated through a nonlinear

function, these points capture the true mean and

covariance up to a second-order of the nonlinear function.

Instead of ignoring the high order terms, the UKF can also

account for some of their effects by tuning a parameter

used in the point selection. Despite its increased accuracy

over the EKF, the sigma point scheme can be used with

discontinuous functions as sigma points can straddle a
discontinuity. For a state vector dimension higher than

three, however, this scheme may require some Bfine

tuning[ in order to prevent the propagation of a

nonpositive definite covariance matrix. The unscented
transformation is founded on intuition [30]:

BIt is easier to approximate a probability density than

it is to approximate an arbitrary nonlinear function.[

Another Gaussian filter, known as the divided difference
filter (DDF) was introduced in [44] using Stirling’s inter-

polations formula. Similar to the approach taken in the

UKF, the DDF uses a deterministic sampling approach to

propagate Gaussian statistics through a nonlinear function.
Since the DDF shares a number of similarities with the

UKF, such as deterministic sampling and weighted

statistical estimation, both UKF and DDF algorithms are

commonly referred to as sigma point filters [56].

Recently, Ito and Xiong introduced another subopti-

mal, nonlinear filter called the quadrature Kalman filter
(QKF) [27]. The QKF uses the Gauss–Hermite numerical

integration rule to calculate exactly the recursive Bayesian
estimation integrals under the Gaussian assumption.

Related works, presented in [14] and [35] on the use of

Gauss–Hermite rule to approximate the moments of a

conditional density in the context of nonlinear filtering,

deserve recognition.

So far, we have discussed various algorithms based on

Gaussian assumptions. In some nonlinear filtering cases,

the densities can be multimodal or heavily skewed and
can no longer be approximated by a single Gaussian. To

Arasaratnam et al.: Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

956 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



eliminate the Gaussian assumption, the Gram–Charlier or
Edgeworth expansion can be used [53], [54]. This expansion

is a series of Hermite polynomials which are orthogonal

with respect to a Gaussian density, and it can be used to

represent a wide class of density functions. This method

seems to be more useful when the densities are unimodal

though not Gaussian [52]. However, the main issue is that a

large number of terms is required to obtain a reasonable

approximation of a distinctly non-Gaussian density. More-
over, it is observed that the behavior of the estimator is

sensitive to truncation of the infinite series [52].

Another approach taken in approximating the non-

Gaussian density is a Gaussian-sum representation. Based

on the fact that non-Gaussian densities can be approxi-

mated reasonably well by a finite sum of Gaussian densities

(a Gaussian-sum), Alspach and Sorenson introduced the

Gaussian-sum filter (GSF) for nonlinear systems [2]. In the
Gaussian-sum approach, the key idea is to approximate

both the predicted and the posterior densities as a sum of

Gaussian densities, where the mean and covariance of each

Gaussian density is calculated using the EKF algorithm.

Essentially, the Gaussian sum filter of Alspach and

Sorenson is a bank of EKFs running in parallel, where the

state estimate is given by the weighted sum of the filters’

outputs. The weights are estimated from the residuals of
the EKFs. However, the main issue with the Gaussian sum

approach is that the number of components in the Gaussian

sum density grows exponentially with time.

B. Global Approach to Nonlinear Filtering
A second major direction taken in the literature on

nonlinear filtering is a global approach that approximates

the densities directly, so that the integrations involved in
the Bayesian estimation framework are made as tractable as

possible. The computational requirement of the global ap-

proach is, in general, greater than that of filters that assume

a particular density such as the Gaussian density. However,

the performance advantage offered by the global method

may make the additional computational cost worthwhile.

The simplest method in the global approach is the

point-mass method, where the densities are approximated
by point masses located on a rectangular grid [10]. As a

consequence, the recursive Bayesian estimation integrals

can be evaluated numerically as a discrete, nonlinear

convolution. A direct numerical computation of the mean

and error covariance of the posterior density can also be

evaluated by quadrature methods [14], [35], [59]. In the

global approximation described in [33], piecewise constant

functions are used to approximate the densities. This
method is more sophisticated, and requires less computa-

tional cost than the point mass method. More sophisticat-

ed interpolation schemes, such as different spline

approximations, have also been investigated in the

literature [11], [15], [58].

Lastly, a relatively new technique called the sequential
Monte Carlo (SMC) method uses a set of randomly chosen

samples with associated weights to approximate the
density [16], [21], [48]. Since the basic idea in the form

of plain importance sampling degenerates over time, the

SMC method includes a resampling step. As the number of

samples becomes larger, the Monte Carlo characterization

of the posterior density function becomes more accurate.

However, the large number of samples often makes the

use of SMC methods computationally expensive. Further-

more, the performance of SMC methods is crucially
dependent on the selection of the so-called proposal

distribution [16]. An intense research activity in the SMC

field over more than a decade, however, has resulted in

many improvements of the SMC methods and their

applications. The SMC method consists of a large number

of variants; many more are being constantly proposed in

an attempt to improve both the statistical and computa-

tional efficiency (see [12], [13], [16], and the references
therein).

The next section describes a local approach taken to

approximate the integrals involved in the Bayesian

filtering framework using the so-called Gauss–Hermite

quadrature points. Consequently, a suboptimal solution to

the state estimate is derived.

IV. GAUSS–HERMITE
QUADRATURE RULE

Consider the following weighted integral of an integrable

function gðxÞ over the interval ða; bÞ:

IðgÞ ¼
Zb

a

WðxÞgðxÞdx

where WðxÞ is a weight function which is positive almost
everywhere except for a few points where it may be zero.

An m-point numerical quadrature (integration) is an

approximation of IðgÞ of the form [47]:

IðgÞ �
Xm

l¼1

!l gð�lÞ:

Here, �l are the quadrature points and !l are the associated
weights. Given m distinct quadrature points, we can

calculate !i by first computing the moments Mi of the

integral

Mi ¼
Zb

a

xiWðxÞdx; for i 2 0; 1; . . . ; ðm � 1Þf g;
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and then solving the following Vandermonde system of
equations [20]:

1 1 . . . 1

�1 �2 . . . �m

..

. ..
. ..

.

�m�1
1 �m�1

2 . . . �m�1
m

0
BBB@

1
CCCA

!1

!2

..

.

!m

0
BBB@

1
CCCA¼

M0

M1

..

.

Mm�1

0
BBB@

1
CCCA: (10)

The above nonlinear system of equations is also known as

the system of moment equations. In the Gauss–Hermite

quadrature rule, the weight function is chosen to be the

standard Gaussian density with zero mean and unit
variance Nðx; 0; 1Þ. The interval of interest is chosen to

be ð�1;1Þ. An obvious but algebraically difficult way of

obtaining the quadrature points and weights is to seek

solutions to the above nonlinear system. An alternative

method is to take the quadrature points f�ig to be some

appropriately chosen values and solve the above system for

the weights f!ig only. According to the fundamental

theorem of Gauss–Hermite quadrature [47], the quadra-
ture points are chosen to be the zeros of the m-th order

Hermite polynomial. Since the zeros of the Hermite

polynomials are distinct, it is noteworthy that the

determinant of the coefficient matrix in (10) is the well-

known Vandermonde’s determinant that is nonzero.

Hence the solution vector ð!1; . . . ; !mÞ is unique. Because

we estimate 2m unknown parameters (m quadrature points

and m associated weights), for an m-point quadrature
scheme, the resulting quadrature rule is exact for all

polynomials of degree 
 ð2m � 1Þ.
Consider a scalar random variable x having a Gaussian

probability density Nðx; 0; 1Þ. The expected value of the

function gðxÞ can be approximated as

E gðxÞð Þ ¼
Z
R

gðxÞN ðx; 0; 1Þdx

�
Xm

l¼1

!l gð�lÞ: (11)

Instead of finding quadrature points using root-finding

methods, which may be mathematically unstable, a
computationally better approach is presented in [19] to

find the quadrature points and weights. This approach

exploits the relationship between orthogonal polynomials

and tridiagonals.

Suppose J is a symmetric tridiagonal matrix with zero

diagonal elements and

Ji;iþ1 ¼
ffiffiffiffiffiffi
i=2

p
; 1 
 i 
 ðm � 1Þ:

Then the quadrature point �l is taken to be �l ¼
ffiffiffi
2

p
"l,

where "l is the l-th eigenvalue of J; and the corresponding

weight !l ¼ ð	lÞ2
1 , where ð	lÞ1 is the first element of the

l-th normalized eigenvector of J.

Now consider a vector-valued random variable x
having a Gaussian density pðxÞ ¼ N ðx;0; Inx

Þ, where Inx

is the identity matrix of dimensions nx � nx. Since the

individual components of x are mutually uncorrelated,

the 1-D quadrature formula in (11) can be extended to the
multidimensional quadrature formula by successively

applying it to compute the expectation

E gðxÞð Þ ¼
Z
Rnx

gðxÞN x;0; Inx
ð Þdx

�
Xm

lnx¼1

!lnx
. . .
Xm

l1¼1

!l1 g �l1 . . . �lnx


 �

¼
Xmnx

l¼1

!l gð�lÞ: (12)

Here �l ¼ ½�l1 . . . �lnx
�T and !l ¼

Qnx

j¼1 !lj .

On the other hand, if we consider the probability
density function pðxÞ ¼ N ðx; �x;�Þ, the individual com-

ponents are mutually correlated and the cartesian product

rule of (12) cannot be efficiently applied [51]. This issue is

illustrated in Fig. 1 for the 2-D case. The stylized contours

in Fig. 1(a) indicate that the lattice of integration points

formed from the product of two 1-D grids does not

efficiently cover the bulk of the density function. This is

due to the high correlation among individual components
of the density, and the correlation leads to many of the

lattice points falling in the areas of negligible density, thus

yielding a poor estimate of the integration. The density in

Fig. 1(b) is obtained from the density in Fig. 1(a) when the

stochastic decoupling [50] technique is applied. This

technique essentially eliminates the correlation of the

original density, and thus improves the spread of the

density equally in all directions. We now describe how
the stochastic decoupling technique is exploited to im-

prove the estimate of an integration.

Suppose that the square-root3 of the covariance matrix,

� is written as
ffiffiffiffi
�

p

� ¼
ffiffiffiffi
�

p
ð
ffiffiffiffi
�

p
ÞT:

3There are many types of matrix decomposition techniques that
factorize a covariance matrix P in the form of P ¼ SST [8]. E.g., the
Cholesky decomposition, the singular value decomposition (SVD) and the
eigenvector decomposition. Choosing which one to use primarily depends
upon the particular application, numerical concerns and desired level of
accuracy. For example, the SVD is the most robust algorithm to factorize a
covariance matrix especially when the covariance matrix P becomes nearly
singular [8]. However, it is also one of the most computationally expensive
algorithms. In the case of SVD, the square-root factor of P, S can be
chosen to be S ¼ U

ffiffiffi
D

p
, where the SVD of P can be expressed as

P ¼ UDUT with D a diagonal matrix.
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where the superscript T denotes the matrix transpose. By

applying the linear transformation (coordinate rotation)
and writing

y ¼ ð
ffiffiffiffi
�

p
Þ�1ðx� �xÞ (13)

the stochastic decoupling technique yields a new density

with uncorrelated elements of unity variance as shown in

Fig. 1(b). Here A�1 refers to the inverse of matrix A. Now,

the Cartesian product rule can be efficiently used to

evaluate the expectation:

E gðxÞð Þ ¼
Z
Rnx

gðxÞN ðx; �x;�Þdx

¼
Z
Rnx

gðxÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
�x

p
j

� exp � 1

2
ðx� �xÞT��1

x ðx� �xÞ
� �

dx: (14)

Now the Jacobian of transformation rxy equals ð
ffiffiffiffi
�

p
Þ�1

,

so substituting (13) into (14) yields

E gðxÞð Þ ¼
Z
Rnx

gð
ffiffiffiffi
�

p
yþ �xÞ 1

ð2
Þ
nx
2

exp � 1

2
yTy

� �
dy

¼
Z
Rnx

gð
ffiffiffiffi
�

p
yþ �xÞN ðy;0; Inx

Þdy: (15)

Since (15) takes a form similar to (12), we can now apply

the Gauss–Hermite quadrature rule to approximate (15)
as follows:

E gðxÞð Þ¼
Xm

lnx¼1

!lnx
. . .
Xm

l1¼1

!l1 g
ffiffiffiffi
�

p
�l1 . . . �lnx

� �Tþ �x
� �

¼
Xmnx

l¼1

!l gð
ffiffiffiffi
�

p
�l þ �xÞ: (16)

Let �l ¼
ffiffiffiffi
�

p
�l þ �x. We can therefore rewrite EðgðxÞÞ

in (16) as

E gðxÞð Þ ¼
Xmnx

l¼1

!l gð�lÞ: (17)

As
Pmnx

l¼1 !l ¼ 1 and !l 9 0 for l ¼ 1; 2; . . . ;mnx , the right

side of (17) resembles the expectation of a function of the

random variable � such that

E gðxÞð Þ ¼
Xmnx

l¼1

!l gð�lÞ ¼
Xmnx

l¼1

gð�lÞpf� ¼ �lg;

where the probability pf� ¼ �lg ¼ !l. This insight and

the SLR, described later in Section V, are applied to

develop the new QKF algorithm in Section VI.

Fig. 1. Contour plots of zero mean Gaussian densities with covariances [1 0.9; 0.9 1] [see Fig. 1(a)] and [1 0; 0 1] [see Fig. 1(b)] respectively.

Arasaratnam et al. : Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 959



V. STATISTICAL LINEAR REGRESSION

This section briefly reviews the background of SLR theory,

which is the basic building block of our new filtering
algorithm presented in Section VI. The SLR takes into

account the uncertainty, or Bprobabilistic spread,[ of the

prior random variable when linearizing a nonlinear func-

tion, which operates on that random variable. By doing so,

the resulting linearized function is more accurate in a

statistical sense than simply using a first-order truncated

Taylor series expansion of the function around a single

point, say a prior mean [18].
Suppose x is an nx dimensional random variable with a

Gaussian density having mean �x and covariance Pxx.

Suppose a second random variable y is related to x
through the nonlinear function

y ¼ gðxÞ:

The objective is to obtain a linear estimator of y, ŷ
such that

ŷ ¼ Axþ b: (18)

Here A and b are respectively a matrix and vector which

are to be determined by minimizing the mean-squared
error as the criterion function

fA;bg ¼ arg min EðeTeÞ: (19)

where e is the linearization error defined as

e ¼ y� ŷ: (20)

The following exposition follows closely that of [18]

(chap. 6, pp. 203–209) and [38]. Substituting (20) into
(19) and setting the partial derivative of (19) with respect

to b to zero, we obtain

ð�2ÞEðy� Ax� bÞ ¼ 0: (21)

Solving (21) for b gives

b ¼ �y� A�x: (22)

Here �x ¼ EðxÞ and �y ¼ EðyÞ. Substituting b from (22)
into (19) and setting the gradient with respect to A to zero,

we obtain

ð�2ÞE ðy� �yÞ � Aðx� �xÞ½ �½x� �x�T

 �

¼ 0: (23)

Solving (23) for A yields

A ¼ PT
xyP�1

xx (24)

where Pxx ¼ E½ðx� �xÞðx� �xÞT� and Pxy ¼ E½ðx� �xÞ
ðy� �yÞT�. The equation for the regression line is therefore

given by

ŷ ¼ Axþ b (25)

where the regression coefficients A and b are given by (24)
and (22). The mean error �e is given by

�e ¼ EðeÞ ¼ Eðy� ŷÞ
¼ E y� ðAxþ bÞ½ �
¼ �y� A�x� b

¼0: (26)

The error covariance matrix Pee is given by

Pee ¼ EðeeTÞ
¼ E ðy� �yÞ � Aðx� �xÞ½ � ðy� �yÞ � Aðx� �xÞ½ �T

¼ Pyy � APxy � PyxAT þ APxxAT

¼ Pyy � APxxAT: (27)

It is noteworthy here that the regression coefficients can
be derived in another way using the principle of
orthogonality [34].

A. Evaluation of Regression Coefficients Using
Gauss–Hermite Quadrature Points

For a Gaussian random variable x with mean �x and

covariance Pxx, we can choose the 3-point (per axis)

Gauss–Hermite quadrature point set, which obeys the
following conditions:

�x ¼ EðxÞ ¼
Xm

l¼1

!lXl (28)

Pxx ¼ E ðx� �xÞðx� �xÞT� �
¼
Xm

l¼1

!lðXl � �xÞðXl � �xÞT: (29)
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For the 3-point Gauss–Hermite quadrature, m is given by
m ¼ 3nx . Moreover, as described in Section IV, the

statistics of the random variable y, which is related to x
by y ¼ gðxÞ, can be approximately calculated from

f!l;Xlgm
l¼1 using the Gauss–Hermite quadrature rule

�y ¼ EðyÞ �
Xm

l¼1

!lYl (30)

Pyy ¼ E ðy� yÞðy� yÞT� �
�
Xm

l¼1

!lðYl � �yÞðYl � �yÞT (31)

Pxy ¼ E ðx� �xÞðy� �yÞT� �
�
Xm

l¼1

!lðXl � �xÞðYl � �yÞT: (32)

Here Yl ¼ gðXlÞ. Given the set of weighted points

fXl; Ylgm
l¼1 and the associated weights or probabilities

f!lgm
l¼1, we can find the linear regression of y on x

given by

ŷ ¼ Axþ b (33)

where

A ¼ PT
xyP�1

xx

¼
Xm

l¼1

!lðYl � �yÞðXl � �xÞT

" #

�
Xm

l¼1

!lðXl � �xÞðXl � �xÞT

" #�1

b ¼ �y� A�x:

Here �x and �y are given by (28) and (30). Since the

estimate ŷ is a random variable, its mean is given by

EðŷÞ ¼ A�xþ b

¼ �y

¼
Xm

l¼1

!lYl: (34)

The error covariance is given by

covðŷÞ ¼ APxxAT

¼ Pyy � Pee

¼
Xm

l¼1

!lðYl � �yÞðYl � �yÞT � Pee: (35)

In summary, this section shows how the statistics computed

via the Gauss–Hermite quadrature rule can be used to

linearize a nonlinear function gðxÞ in the minimum-mean-

squared-error sense, when a Gaussian random variable x is
provided as its argument. The regression coefficients A and

b of the linearized function of gðxÞ, Axþ b, are

determined from the Gauss–Hermite quadrature points.

In the next section, the linearization technique is applied to

nonlinear process and measurement functions; thus a new

QKF algorithm in the Kalman filter framework is derived.

Remark:
• From (27), we have Pyy ¼ Pee þ APxxAT. This

implies that the more severe the nonlinearity is

over the Buncertainty region[ of x, the larger the

error covariance of y, Pyy, will be and accordingly

the estimate of y, ŷ, will be less accurate.

Moreover, it is noteworthy that the error covari-

ance Pyy ¼
Pm

l¼1 !lðYl � �yÞðYl � �yÞT
[from (31)],

indirectly incorporates the effect of the lineariza-
tion error because of (27). Consequently, the SLR

technique is proved to yield a consistent estimate.

The estimate ŷ is said to be consistent if

Pyy 	 Eð~y~yTÞ, where ~y is the true error in the

estimate ŷ.

VI. NEW QUADRATURE KALMAN
FILTERING ALGORITHM

This section presents a systematic development of the new

QKF algorithm from a linear regression perspective. Here,

the regression points are Gauss–Hermite quadrature

points that can be used to parameterize a Gaussian

density. We assume that the process noise sequence vk and

the measurement noise sequence wk are both Gaussian

with zero mean, and

E vkv
T
j

� �
¼Q k�kj

E wkw
T
j

� �
¼Rk�kj

E vkw
T
j

� �
¼ 0 for all k; j:

Here � is the Kronecker delta function. The initial state

vector x0 is assumed to be described by a known density
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function pðx0Þ. We derive the new QKF by linearizing the
process and measurement functions by a linear regression

using the set of Gauss–Hermite quadrature points. As a

result, we obtain a closed-form solution for the predicted

and posterior densities. The remainder of the section

presents the new QKF algorithm consisting of two steps:

i) the time update and ii) the measurement update.

A. Time Update of the New QKF
We consider (5) without the additive noise component

for the moment and incorporate its effect into the new
QKF algorithm at the end of this subsection. The new QKF

algorithm first finds the m-regression, or quadrature points

fXl;k�1jk�1gm
l¼1 with the associated weights f!lgm

l¼1 in the

state space, so that these points have the mean x̂k�1jk�1 and

covariance Pk�1jk�1.

Write:

Xl;k�1jk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1jk�1

p
�l þ x̂k�1jk�1: (36)

Here f�lg are Gauss–Hermite quadrature points with

weights f!lg, and they approximate the standard Gaussian
density. The one-step predicted regression points fX�

l;kjk�1g
are obtained by propagating fXl;k�1jk�1g through the

process function fð:Þ:

X�
l;kjk�1 ¼ fðXl;k�1jk�1;uk�1; k � 1Þ

for l ¼ 1; 2; . . . ;m:
(37)

Since the new QKF is developed in the Kalman filter

framework, it uses a linearized process function obtained

by the SLR through fXl;k�1jk�1;X�
l;kjk�1g

m
l¼1. That is, (5) can

now be expressed by the following linear function:

xk ¼ fðxk�1;uk�1; k � 1Þ
¼ Af ;k�1xk�1 þ bf ;k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LA

þ ek|{z}
LE

: (38)

Here BLA[ and BLE[ stand for the linear approximation

and linearization error, respectively. As described in the

previous section, Af ;k�1 and bf ;k�1 are, respectively,

given by

Af ;k�1 ¼ PT
xk�1xk

P�1
k�1jk�1 (39)

and bf ;k�1 ¼ x̂kjk�1 � Af ;k�1x̂k�1jk�1: (40)

Here

Pxk�1xk
¼E ðxk�1 � x̂k�1jk�1Þðxk � x̂kjk�1ÞT� �
¼
Xm

l¼1

!lðXl;k�1jk�1 � x̂k�1jk�1Þ X�
l;kjk�1 � x̂kjk�1

� �T

:

By taking the expectation of (38) conditioned on the

measurements obtained up to ðk � 1Þ, the predicted state

estimate x̂kjk�1 is computed as

x̂kjk�1 ¼ Af ;k�1x̂k�1jk�1 þ bf ;k�1 þ 0: (41)

x̂kjk�1 in (41) can be written as the weighted sum of

regression points [compare (34) with (41)]

x̂kjk�1 ¼
Xm

l¼1

!lX
�
l;kjk�1: (42)

From (38), the predicted error covariance Pkjk�1 is

computed as

Pkjk�1 ¼ AT
f ;k�1Pk�1jk�1AT

f ;k�1 þ Pee: (43)

Pkjk�1 in (43) can be written as the weighted sum of

regression points [compare (35) with (43)]

Pkjk�1¼
Xm

l¼1

!l X�
l;kjk�1 � x̂kjk�1

� �
X�

l;kjk�1 � x̂kjk�1

� �T

:

(44)

Since the sum of quadrature weights equals unity, the

expression for the predicted error covariance in (44) can

be simplified further as

Pkjk�1 ¼
Xm

l¼1

!lX
�
l;kjk�1X�T

l;kjk�1 � x̂kjk�1x̂
T
kjk�1: (45)

For an additive Gaussian process noise with zero mean and

covariance Q k, the expression for the predicted mean is

given by (41), while the predicted error covariance in (45)

is expanded by adding the term Q k, as shown by

Pkjk�1 ¼ Q k þ
Xm

l¼1

!lX
�
l;kjk�1X�T

l;kjk�1 � x̂kjk�1x̂
T
kjk�1: (46)
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Therefore, at the end of the time-update step, the new QKF
approximates the predicted density pðxkjz1:k�1Þ, given by

pðxkjz1:k�1Þ ¼
R
Rnx pðxk�1jz1:k�1Þpðxkjxk�1Þdxk�1, a s a

Gaussian density with mean x̂kjk�1 and covariance Pkjk�1.

B. Measurement Update of the New QKF
Since the points fX�

l;kjk�1; !lgm
l¼1 do not reflect the

added uncertainty due to process noise, the new QKF finds

m-regression or quadrature points fXl;kjk�1gm
l¼1 with the

associated weights f!lgm
l¼1 that have the mean x̂kjk�1 and

covariance Pkjk�1

Xl;kjk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk�1

p
�l þ x̂kjk�1 l ¼ 1 . . .m: (47)

We then linearize the measurement function hð:Þ in a

manner similar to the process function as in Section VI-A.

We summarize the measurement update steps of the new

QKF as follows.

i) Starting from fXl;kjk�1gm
l¼1, the one-step predicted

regression points are propagated through the
measurement model (6) as

Zl;kjk�1 ¼ hðXl;kjk�1;uk; kÞ; l ¼ 1; 2; . . .m: (48)

ii) The new QKF uses a linearized measurement

model obtained by the linear regression through

fXl;kjk�1; Zl;kjk�1gm
l¼1. The estimate of the predicted

measurement ẑkjk�1 is computed as a weighted
sum of regression points

ẑkjk�1 ¼
Xm

l¼1

!lZl;kjk�1: (49)

iii) For an additive measurement noise covariance

Rk, the innovation covariance is computed as a

weighted sum of outer products of regression
points

Pzz;kjk�1 ¼ Rk þ
Xm

l¼1

!lðZl;kjk�1 � ẑkjk�1Þ

� ðZl;kjk�1 � ẑkjk�1ÞT

¼ Rk þ
Xm

l¼1

!lZl;kjk�1ZT
l;kjk�1

� ẑkjk�1ẑ
T
kjk�1: (50)

iv) The cross-covariance matrix is computed as

Pxz;kjk�1¼
Xm

l¼1

!lðXl;kjk�1 � x̂kjk�1ÞðZl;kjk�1 � ẑkjk�1ÞT

¼
Xm

l¼1

!lXl;kjk�1ZT
l;kjk�1 � x̂kjk�1ẑ

T
kjk�1: (51)

Since ½xk zk�T is assumed to be jointly

Gaussian, its sufficient statistics can be expressed

by the mean ½x̂kjk�1 ẑkjk�1�T and covariance

Pkjk�1 Pxz;kjk�1

Pzx;kjk�1 Pzz;kjk�1

� �
respectively. Consequently,

the posterior (conditional) density pðxkjz1:kÞ at

time k can be computed recursively as [3]

pðxkjz1:kÞ ¼ N ðxk; x̂kjk; PkjkÞ: (52)

Here, we have

x̂kjk ¼ x̂kjk�1 þ Wkðzk � ẑkjk�1Þ (53)

and

Pkjk ¼ Pkjk�1 � WkPzz;kjk�1WT
k : (54)

The Kalman gain Wk is defined as

Wk ¼ Pxz;kjk�1P�1
zz;kjk�1:

C. Summary of the New QKF Algorithm
This subsection summarizes the new QKF algorithm

that computes both the time update and measurement

update steps at each time-step. Though the new QKF is

algebraically equivalent to the QKF of Ito and Xiong, it is

in fact a more simplified version as it views the nonlinear

filtering problem from the SLR perspective rather than the
numerical integration perspective.

Time Update Step

1) Assume at time k that the posterior density

function pðxk�1jz1:k�1Þ ¼ N ðx̂k�1jk�1; Pk�1jk�1Þ is

known. Factorize

Pk�1jk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1jk�1

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1jk�1

p
ÞT:
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2) Evaluate the quadrature points fXl;k�1jk�1gm
l¼1 as:

Xl;k�1jk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk�1jk�1

p
�l þ x̂k�1jk�1:

3) Evaluate the propagated quadrature points

fX�
l;kjk�1g

m
l¼1 as:

X�
l;kjk�1 ¼ fðXl;k�1jk�1;uk�1; k � 1Þ:

4) Estimate the predicted state:

x̂kjk�1 ¼
Xm

l¼1

!lX
�
l;kjk�1:

5) Estimate the predicted error covariance:

Pkjk�1 ¼
Xm

l¼1

!lX
�
l;kjk�1X�T

l;kjk�1 � x̂kjk�1x̂
T
kjk�1 þ Q k:

At the end of the time update, we have the pre-

dicted density pðxkjz1:k�1Þ ¼ N ðx̂kjk�1; Pkjk�1Þ.

Measurement Update Step

1) Factorize

Pkjk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk�1

p
ð
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk�1

p
ÞT:

2) Evaluate the quadrature points fXl;kjk�1gm
l¼1 as:

Xl;kjk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pkjk�1

p
�l þ x̂kjk�1:

3) Evaluate the propagated quadrature points

fZl;kjk�1gm
l¼1 as:

Zl;kjk�1 ¼ hðXl;kjk�1;uk; kÞ:

4) Estimate the predicted measurement:

ẑkjk�1 ¼
Xm

l¼1

!lZl;kjk�1:

5) Estimate the innovation covariance matrix:

Pzz;kjk�1 ¼ R k þ
Xm

l¼1

!lZl;kjk�1ZT
l;kjk�1 � ẑkjk�1ẑ

T
kjk�1:

6) Estimate the cross covariance matrix:

Pxz;kjk�1 ¼
Xm

l¼1

!lXl;kjk�1ZT
l;kjk�1 � x̂kjk�1ẑ

T
kjk�1:

7) Estimate the Kalman gain:

Wk ¼ Pxz;kjk�1P�1
zz;kjk�1:

8) Estimate the updated state:

x̂kjk ¼ x̂kjk�1 þ Wkðzk � ẑkjk�1Þ:

9) Estimate the corresponding error covariance:

Pkjk ¼ Pkjk�1 � WkPzz;kjk�1WT
k :

At the end of the measurement update, we have the

posterior density pðxkjz1:kÞ ¼ N ðx̂kjk; PkjkÞ.

VII. GAUSSIAN SUM-QUADRATURE
KALMAN FILTER ALGORITHM

So far we have focussed on nonlinear filtering problems

with additive Gaussian noise. However, in practice,

difficulties with the more general setting arise from two

sources. The first is the occurrence of non-Gaussian
process and/or measurement noise and the second is non-

Gaussian prior information. In this section, our investiga-

tions are directed towards developing methods of Gaussian

sum approximations that allow approximate solution of

nonlinear filtering problems. Consequently, the QKF can

be applied for computing the predicted and posterior

densities as Gaussian sums. By doing so, we derive the

algorithm called Gaussian sum-quadrature Kalman filter
(GS-QKF).

A. Modeling of Non-Gaussian Density
Several models have been used to date to model non-

Gaussian noise environments. Some of these models have
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been developed directly from the underlying physical
phenomenon, most notably the Middleton class A, B, and

C models [41]. On the other hand, empirically devised

noise models have been used over the years to approx-

imate many non-Gaussian noise distributions. Based on

the Wiener approximation theorem, any non-Gaussian

noise distribution can be expressed as, or approximated

sufficiently well by, a finite sum of known Gaussian

densities.
The so-called Gaussian sum approach is summarized in

the following lemma [3]:

Lemma: Any density pðxÞ associated with an n-

dimensional vector x can be approximated as closely as

desired by a density of the form

pAðxÞ ¼
Xn

i¼1

aiNð�xi;�iÞ

for some integer n, and positive scalars ai withPn
i¼1 ai ¼ 1.

It can be shown that the density pAðxÞ converges

uniformly to any density function of practical interest by

letting the number of terms increase and each elemental

covariance approach to zero [3].

This approximation procedure has been used to
develop empirical densities which relate to many physical

non-Gaussian phenomena. The "-mixture noise model has

been extensively used to describe a non-Gaussian noise

environments in communication and control systems,

target tracking in the presence of glint noise, jamming or

clutter suppression, outlier rejection in image processing

applications, and intelligent processing in interferometric

and multirage measurement systems.
Non-Gaussian noise densities can be approximated

empirically by Gaussian-sums as closely as possible using

Gaussian mixture learning algorithms such as the

expectation-maximization (EM) algorithm and the k-

means algorithm [57].4 Consequently, for a state-space

model, such as the one described in (5) and (6) with a

Gaussian-sum additive noise sources, it is possible to

obtain both the predicted and posterior densities as
Gaussian-sums. Assume at time k that the additive pro-

cess and measurement noise are both available as ap-
proximate Gaussian sums

pðvkÞ �
Xl1

i¼1


kipiðvkÞ

¼
Xl1

i¼1


kiNðvk; �vki;Q kiÞ (55)

pðwkÞ �
Xl2

i¼1

�kipiðwkÞ

¼
Xl2

i¼1

�kiNðwk; �wki; R kiÞ (56)

where, 
ki and �ki are nonnegative constants satisfying

Xl1

i¼1


ki ¼ 1 and
Xl2

i¼1

�ki ¼ 1:

Moreover, the prior density at time zero is also assumed to

be a Gaussian sum

pðx0Þ ¼
Xl0

i¼1

�0ipiðx0Þ

¼
Xl0

i¼1

�0iNðx0; �x0i; �P0Þ: (57)

Here, �0i are nonnegative constants and
Pl0

i¼1 �0i ¼ 1. The

GS-QKF is required to compute the time and measurement

update steps at each sampling instant and these two steps

are derived in the sequel.

B. Time Update of the GS-QKF
Assume at time k the Gaussian sum approximation of

the the posterior density pðxk�1jz1:k�1Þ is known and

given by

pðxk�1jz1:k�1Þ ¼
Xn

i¼1

�ðk�1jk�1ÞiN

� xk�1; x̂ðk�1jk�1Þi; Pðk�1jk�1Þi

 �

: (58)

For a process noise model of (55), the transition prior

pðxkjxk�1Þ can be obtained as

pðxkjxk�1Þ ¼
Xl1

j¼1


kjN xk; fðxk�1Þ þ �vkj;Q kj


 �
: (59)

4The EM algorithm learns the parameters of a stochastic model from
a set of incomplete data. For example, in fitting the data points to a
mixture model, the EM algorithm seeks to find the mixture model
parameters having a large likelihood for the given data set. On the other
hand, k-means algorithm takes an incremental approach to find the
homogenous groups of data points known as clusters. It dynamically adds
cluster-centers through a deterministic global search procedure. The
MATLAB source code for these mixture learning algorithms can be
downloaded from http://lear.inrealpes.fr/verbeek/software.
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Using (8), the predicted density of xk can then be writ-
ten as

pðxkjz1:k�1Þ ¼
Xl1

j¼1

Xn

i¼1

�ðk�1jk�1Þi
kj

�
Z
Rnx

N x; x̂ðkjk�1Þi; Pðkjk�1Þi

 �

�N xk; fðxÞ þ �vkj;Q kj


 �
dx: (60)

The integral on the right side is approximated by a

Gaussian sum in xk using the time update of the QKF.

The predicted density pðxkjz1:k�1Þ is therefore approxi-
mated as

pðxkjz1:k�1Þ �
Xl1

j¼1

Xn

i¼1

�ðkjk�1Þij

�N xk; x̂ðkjk�1Þij; Pðkjk�1Þij


 �
¼
Xnl1

r¼1

�ðkjk�1ÞrN xk;x̂ðkjk�1Þr;Pðkjk�1Þr

 �

: (61)

Here, we have

�ðkjk�1Þr ¼�ðk�1jk�1Þi
kj

x̂ðkjk�1Þr ¼
Xm

l¼1

!lX
�
li;kjk�1 þ �vkj

Pðkjk�1Þr ¼Q kj þ
Xm

l¼1

!lX
�
li;kjk�1X�T

li;kjk�1

� ðx̂ðkjk�1Þr � �vkjÞðx̂ðkjk�1Þr � �vkjÞT

X�
li;kjk�1 ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk�1jk�1Þi

p
�l þ x̂ðk�1jk�1Þi;uk�1; k � 1


 �
l ¼ 1; . . . ;m:

C. Measurement Update of the GS-QKF
Assume that the measurement noise sequence is non-

Gaussian and modeled by a Gaussian mixture as given by
(56). The measurement likelihood function pðzkjxkÞ can

be written as

pðzkjxkÞ ¼
Xl2

j¼1

�kjN zk; hðxkÞ þ �wkj; Rkj


 �
: (62)

The posterior density pðxkjz1:kÞ can be approximated by a
Gaussian sum after receiving the measurement zk using

the measurement update step of the new QKF:

pðxkjz1:kÞ �
Xnl1

i¼1

Xl2

j¼1

�ðkjkÞrN xk; x̂ðkjkÞr; PðkjkÞr


 �

¼
Xnl1 l2

r¼1

�ðkjkÞrN xk; x̂ðkjkÞr; PðkjkÞr


 �
: (63)

Here

x̂ðkjkÞr ¼ x̂ðkjk�1Þi þ Wkr zk � ẑðkjk�1Þr

 �

PðkjkÞr ¼ Pðkjk�1Þi � WkrPzz;rW
T
kr

�ðkjkÞr ¼
�ðkjk�1Þi�kr�kjPl2

j¼1

Pnl1
i¼1 �ðkjk�1Þi�kr�kj

with

Wkr ¼ Pxz;rP
�1
zz;r

Pxz;r ¼
Xm

l¼1

!lXlðkjk�1ÞiZ
T
lðkjk�1Þi�x̂ðkjk�1Þiðẑðkjk�1Þr��wkjÞT

Pzz;r ¼Rkj þ
Xm

l¼1

!lZlðkjk�1ÞiZ
T
lðkjk�1Þi

� ðẑðkjk�1Þr � �wkjÞðẑðkjk�1Þr � �wkjÞT

ẑðkjk�1Þr ¼
Xm

l¼1

!lZlðkjk�1Þi þ �wkj

Zlðkjk�1Þi ¼ h Xlðkjk�1Þi;uk; k

 �

Xlðkjk�1Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðkjk�1Þi

p
�l þ x̂ðkjk�1Þi l ¼ 1; 2; . . . ;m

�kr ¼N zk; ẑðkjk�1Þr; Pzz;r


 �
:

The final state estimate x̂kjk in the minimum-mean-

squared-error sense and the associated covariance Pkjk are

computed using the following theorem [37]:

Theorem: Let pðxÞ be the density function of a

normalized mixture of n Gaussians such that pðxÞ ¼Pn
i¼1 !iNð�i;�iÞ. Let pAðxÞ ¼ N ð�;�Þ be a Gaussian

density defined as

� ¼
Xn

i¼1

!i�i (64)

� ¼
Xn

i¼1

!i �i þ ½�i � ��½�i � ��T

 �

: (65)
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Then pAðxÞ has first two moments (mean and covariance)
as pðxÞ. Furthermore, pAðxÞ minimizes the Kullback-

Leibler divergence between pðxÞ and any Gaussian

density.

From (63), observe that the number of Gaussian terms

has increased from n to nl1l2 at the end of the mea-

surement update step of the GS-QKF due to Gaussian-sum

approximation of the process and measurement noise.

Consequently, the growth in the number of terms at each
time step will reduce the practicability of this approxi-

mation. The next section is devoted to various Gaussian

mixture reduction techniques that can be used to solve

this issue.

VIII . GAUSSIAN MIXTURE REDUCTION

There are three classes of methods for dealing with large-

scale Gaussian mixture reduction (GMR) techniques [23],

[55]Vi) decision directed methods where the number of
Gaussian terms are pruned according to specific decision

rules; ii) randomized pruning which includes methods such

as probabilistic teacher; and iii) quasi-Bayesian approxi-

mation. Since it is required to reduce dynamically a large

number of Gaussian sum components into a small number,

this paper adopts quasi-Bayesian approximation. It includes

three different techniques. They are: i) pruning; ii) joining;

and iii) integral squared error-based GMR.

A. Pruning
Pruning means discarding Gaussian mixture compo-

nents with negligible probability weights and keeping the

remaining ones in a Gaussian sum density. This can be

accomplished by adopting any one of the following

methods:

• retaining Gaussian mixture components with

the largest weights and discarding the remain-

ing ones;
• discarding the set of Gaussian mixture components

with the smallest weights such that the total

weights discarded do not exceed a threshold �;
• retaining all components with weights greater

than or equal to a threshold � and discarding

Gaussian mixture components with weights less

than �, where � is chosen depending on the prob-

lem at hand.

B. Joining
In this method, the distance measure used to gauge the

similarity of two Gaussian mixture components i and j is

based on the Mahalonobis distance dij [49]:

d2
ij ¼

�i�j

�i þ �j
ð�xi � �xjÞT��1ð�xi � �xjÞ: (66)

Here, � is the combined covariance for the entire Gaussian
sum density, �i and �j are the means of the weights and �xi

and �xj are the i-th and j-th Gaussian mixture components.

From (66), it can be inferred that this algorithm favors

merging Gaussian mixture components carrying lower

probability weights over those carrying higher probability

weights. The assumption under merging is that the mean

and covariance of the original Gaussian mixture density

should be preserved. In light of this assumption, Gaussian
mixture components with the lowest distance can be

merged as shown below [49], [61].

weight : �c ¼�i þ �j

mean : �xc ¼
1

�i þ �j
f�i�xi þ �j�xjg

Covariance : �c ¼
1

�i þ �j
�i�i þ �j�j þ

�i�j

�i þ �j

�

� ð�xi � �xjÞð�xi � �xjÞT

 
:

C. Integral Squared Error-Based Gaussian
Mixture Reduction

Pruning and joining techniques reduce the Gaussian

mixture components by considering the individual pairs of

Gaussian mixture. In contrast, the Gaussian mixture

reduction (GMR) in the minimum-integral-squared error
sense takes into account the full density and minimizes the

integral squared error-based cost function [61].

	r ¼ arg min

Z
Rnx

pðx; 	hÞ � pðx; 	rÞð Þ2dx: (67)

Here pðx; 	hÞ denotes the original Gaussian mixture with

parameters 	h and pðx; 	rÞ is the density with a reduced
number of components and parameters given by 	r. The

GMR in the minimum-integral-squared error sense utilizes

(67) to determine if merging or pruning action is to be

performed on Gaussian mixture components so that the

chosen action will tend to produce a small increase in

the cost function. Since both the original density and the

potential reduced order approximation of this density are

Gaussian mixtures, we can express both the cost function
and its derivative in a closed form. Consequently, a

gradient descent-based optimization strategy can be

utilized to improve the results. A detailed derivation of

this method can be found in [61].

Remarks:
• The Gaussian sum filter algorithm is derived

assuming Bsmall[ covariances [2]. However, the
covariance of each Gaussian sum term grows,

especially when the covariance of the process noise
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is large. To combat this problem, it has been

suggested that we approximate the Gaussian

process noise as a finite sum of Gaussians [2].
• The number of terms of the Gaussian sum which

are retained at each iteration is guided by the

problem at hand. This criterion can be chosen as a

compromise between computational complexity

and performance gain.

IX. GS-QKF FILTER STRUCTURE

This section summarizes the structure of the proposed GS-

QKF. The block diagram of the new GS-QKF is presented

in Fig. 2. It consists of five stages.

Stage 1: Previous Estimate

Assume at time k that the Gaussian sum approximate

posterior density pðxk�1jz1:k�1Þ ¼
Pn

i¼1 �ðk�1jk�1ÞiNðxk�1;
x̂ðk�1jk�1Þi; Pðk�1jk�1ÞiÞ is known.

Stage 2: Time Update

The posterior density pðxk�1jz1:k�1Þ from stage 1 and
the Gaussian sum approximate process noise vk �Pl1

i¼1 
kiNðvk; �vki;Q kiÞ are fed to the bank of n � l1 QKF

time update modules. At the end of this stage, the

predicted densi ty pðxkjz1:k�1Þ�
Pnl1

r¼1 �ðkjk�1ÞrNðxk;
x̂ðkjk�1Þr; Pðkjk�1ÞrÞ is obtained as in (61).

Stage 3: Measurement Update

The predicted density pðxkjz1:k�1Þ from stage 2 and the

Gaussian sum approximate measurement noise wk �Pl2
i¼1 �kiNðwk; �wki; RkiÞ are fed to the bank of n � l1 � l2

QKF measurement update modules. At the end of this

stage, the posterior density pðxkjz1:kÞ �
Pnl1l2

r¼1 �ðkjkÞr �
Nðxk; x̂ðkjkÞr; PðkjkÞrÞ is obtained as in (63).

Stage 4: Output of the State Estimate

The state estimate x̂kjk in the minimum-mean-squared-

error sense and the associated covariance Pkjk are

estimated from the Gaussian sum approximate posterior

density as in (64) and (65) respectively.

Stage 5: Mixture Reduction

Lastly, to control the number of Gaussian terms in the

posterior density pðxkjz1:kÞ, one of the proposed GMR
techniques is applied.

The five stage procedure is repeated at each time step.

X. ACCURACY AND COMPUTATIONAL
COMPLEXITY OF QUADRATURE
POINT APPROACH

We can gain valuable insight into the QKF by analyzing

the theoretical accuracy of the quadrature point scheme.

For this purpose, consider a Gaussian-distributed scalar

valued random variable x with mean �x and variance �x.

We wish to calculate the mean �y and the variance �y of a

random variable y which is related to x through the

nonlinear function y ¼ gðxÞ. As discussed in Section IV,
the integral �y ¼

R
R

gðxÞN ðx; �x;�xÞdx is exact if gðxÞ is a

polynomial of order less than or equal to ð2m � 1Þ,
where m is number of quadrature points. Similarly, �y ¼
½
R
R

g 2ðxÞN ðx; �x;�xÞdx � �y2� is exact if the order of the

polynomial gðxÞ is less than m.

Fig. 2. Flow Diagram of the GS-QKF.
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For a polynomial of order greater than ð2m � 1Þ, the
error, e associated with the m-point Gauss–Hermite

quadrature approximation is given by [43], [46]:

e ¼ m!gð2mÞð"Þ
ð2mÞ! : (68)

Here gð2mÞð"Þ is the 2m-th derivative of g evaluated at some

appropriate (but unknown), where " is in the same region

as x, and the weight function is assumed to be the standard

Gaussian density function. This error analysis can be

extended readily to the multidimensional case as well. On

the other hand, the linearization approach built into the

EKF truncates the Taylor series expanded with respect to �x
after the first term, and so it is only correct up to the first
order of the Taylor series. A detailed error analysis of the

EKF can be found in the appendix of [31].

From the above discussion, we see that the higher the

number m of quadrature points (per axis) is, the lesser the

estimation error becomes. However, the estimation

accuracy comes with an increased computational com-

plexity. In the QKF case, the evaluation of initial

quadrature points and weights, f!l; �lgm
l¼1 requires the

most computations; they are determined from a quadra-

ture point set which approximates the univariate standard

Gaussian density. These initial points and the associated

weights can be determined off-line in advance. In terms

of on-line computation, the QKF requires OðmnxÞ func-

tional evaluations. The number of functional evaluations

scales geometrically with the size of the state vector

dimension. Fortunately, due to the increasing availability
of cheap and powerful commercially-off-the-shelf (COTS)

computational resources (e.g., general purpose CPUs,

DSPs, etc.), on-line functional evaluations become viable

even for a Blarge[ dimensional state space model. For

m ¼ 3 and nx ¼ 5, for example, the QKF is required to

perform some hundreds of functional evaluations which

can be done on-line with currently available computa-

tional resources.

A. Numerical Example
Consider a random variable zp ¼ ½r ��T in polar

coordinates, distributed as a Gaussian density described

by pðzpÞ ¼ N ð�zp;�pÞ. The first component of this ran-

dom variable r corresponds to the Brange[ and the second

� to the Bangle[. Let the mean range �r be 80 units and the

mean angle �� be 0.61 radians, with �p ¼ diag½60 0:6�.
Then the random variable zp in polar coordinates is con-

verted to zc ¼ ½x y�T in Cartesian coordinates using the

nonlinear transformation

zc ¼ gðzpÞ ¼
r cos �

r sin �

� �
:

Our objective is to compare the statistics of the
nonlinearly transformed random variable zc obtained from

different schemes. Fig. 3 shows the results of this

transformation. The cloud of random samples represents

the true density of the random variable zc. Observe that

the transformed variable zc is clearly non-Gaussian. This

cloud is obtained by the Monte Carlo approach: 5000

samples were drawn from the Gaussian density Nð�zp;�pÞ.
Each sample was then propagated through the nonlinear
transformation gð:Þ. The true mean and the covariance of y
were computed from this sample cloud.

Essentially, three different linearization techniques

were applied to capture the mean and the associated error

covariance of the transformed variable zc. Firstly, the

statistical linearization approach built into the QKF was

applied via the linear regression through the quadrature

(regression) points. The quadrature points were chosen
such that they would capture the mean and covariance of

the random variable zp. These points were then propagated

through the nonlinear function gð:Þ. The mean and

covariance of the random variable y were computed as

described in Section IV.

Secondly, the set of sigma points built into the

unscented Kalman filter (UKF) was propagated through

the nonlinear function and the mean and covariance were
computed as in [29].

Finally, the analytical linearization approach built into

the EKF, was applied. It linearizes the nonlinear function

gð:Þ through a first-order Taylor series expansion around

the mean �zp. The density of zc is then approximated by a

Gaussian density with mean gð�zpÞ and the associated

covariance G�pGT , where

G ¼ rzp
gðzpÞ

� �
zp¼�zp

¼ cos � sin �
�r sin � r cos �:

� �
�¼��;r¼�r:

Fig. 3 illustrates the true mean and covariance (a 2�-

ellipse), of zc together with the statistical linearization

obtained via 3-point and 5-point quadrature scheme (per

axis), and the analytical linearization approach. In this 2-D

example, the true 2�-ellipse should contain approximately

86% of random samples [48].

As can be seen in Fig. 3, the mean values calculated via
the statistical linearization using the 3-point and 5-point

quadrature scheme lie on top of the true mean whereas the

the mean obtained by the analytical linearization (EKF) is

biased with respect to the true mean. This can be

attributed to the fact that the statistical linearization

employs a nonzero bias correction term, Bb[, whereas in

the analytical linearization, the corresponding bias term

Gðzp � �zpÞ is zero. Moreover, the 5-point quadrature
scheme yields a more accurate well-conditioned (since it is

less elongated), covariance estimate than the 3-point

scheme, as expected. However, increasing the number of
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quadrature points beyond a certain limit at the expense of

increased computational cost will not improve the filter

performance significantly. The reason is that the QKF is a
linear estimator which requires only the first two

moments. In contrast, an increased number of quadrature

points may improve the performance of the estimators

which propagate higher order moments and this is yet to

be investigated. In the considered example, 32ð¼ 9Þ
points are required in the 3-point quadrature scheme,

whereas the number of quadrature points is 52ð¼ 25Þ in

the 5-point scheme. As shown in Fig. 3, the QKFs’
contours lie on top of the true contour almost everywhere

implying a more consistent estimate whereas, the

linearization approach yields an inconsistent estimate.

The contour plot of the sigma point scheme was seen to

fall closely on top of the 3-point QKF and it is not shown

in Fig. 3 for the clarity of the picture. Hence, it can be

concluded that the 5-point quadrature scheme is more

accurate than the sigma point scheme.

XI. FURTHER APPLICATIONS OF
THE NEW QKF

In the previous section, we illustrated how the Gauss–

Hermite rule can be used to estimate the statistics of a

nonlinearly transformed Gaussian variable. Moreover, the

consistency of the new QKF estimate was justified

mathematically using the SLR theory in Section V. In

addition, the new insight obtained from the development

of the new QKF can be used to extend its applicability
further in the following ways:

• The new QKF gives a more accurate least-squares

solution: Conventionally, the nonlinear, least-

squares problem is solved by the on-line Gauss–

Newton method, which iteratively approximates the

inverse of the empirical Fisher information matrix.

The nonlinear least-squares problem can also be

formulated as a parameter-estimation, and subse-
quently, the iterative EKF can be applied [6], [56].

Since it is possible to obtain a more accurate,

statistically linearized measurement model, Ah,

which can also be viewed as the statistically

averaged Jacobian matrix of hðxkÞ, the least-squares

problem can be solved efficiently using the

measurement update of the new QKF.

• The new QKF gives a more accurate prediction in a
continuous-time process model: for a continuous-

time, nonlinear process model, an approximate

closed form solution for the prediction covariance

can be obtained if the nonlinear process model can

be expressed as a linear model as closely as possible

during the sampling time interval �, [4]. In the case

of a continuous-time, linear process model with

process matrix AðtÞ at time t, the one step

Fig. 3. The probability density function of a nonlinearly transformed Gaussian random variable.
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predicted error covariance matrix is given by the
solution of the following Riccati equation [4]:

dPðtÞ
dt

¼ AðtÞPðtÞ þ PðtÞATðtÞ þ QðtÞ: (69)

The matrix differential equation in (69) can be

solved by assuming that Að:Þ remains constant for

the time interval ½k; k þ �� so that

Pkjkþ� ¼ expðA�ÞPkjk expðAT�Þ þ �QðkÞ
� ðk; k þ �ÞPkjk 

Tðk; k þ �Þ þ �QðkÞ (70)

where

 ðk; k þ �Þ ¼ Inx
þ �AðkÞ þ 1

2
�2AðkÞ2: (71)

In the case of the new QKF framework, AðkÞ can be
replaced by the statistically linearized process

matrix Af ;k in order to obtain more accurate

predicted error covariance matrix.

• The linear regression allows the estimation of a

nonlinear system with discontinuous functions:

since the new QKF requires only the functional

evaluations and not the derivatives of the fð:Þ and

hð:Þ, it can be applied to nonsmooth, nonanalytical
systems (e.g., a saturation function).

• The new QKF algorithm allows the estimation in

correlated or nonadditive noise: The new QKF

allows us to extend its applicability to correlated,

or nonadditive Gaussian process and measurement

noise by augmenting the state vector and the

associated covariance. Such structures commonly

arise in algorithms such as the Schmidt-Kalman
filter and UKF.

Since the new QKF shares a number of similarities

such as point-wise evaluation of nonlinearities and

weighted sum statistics, it can be considered as a new

member of the family of sigma point filters. In the

Gaussian quadrature scheme, we choose the quadrature

points in one dimension and use them to create a grid of

points in Rnx . On the other hand, the sigma points are
chosen by taking into account the whole spread of the

distribution. The plain quadrature points in the 3-point per

axis scheme lie at the corners and the mid-points of a

hyper-cube with fixed dimension, whereas the plain sigma

points lie at the intersection of the axes and the surface of a

hyper-sphere with fixed radius except a point at the center

in both schemes. Hence, the number of quadrature points

scales geometrically with the state vector dimension,

whereas the number of sigma points increases linearly. It is
noteworthy here that the 3-point quadrature point set is

exactly identical to the sigma point set in a 1-D state space.

In the multidimensional case, the calculation of the mean

and covariance of a nonlinearly transformed variable,

using the 3-point quadrature scheme, will be exact if the

highest order of the nonlinear function is less than or equal

to five, whereas it is correctly to the third order in the case

of sigma points. Another major difference between these
two schemes is that the weights in the quadrature point

scheme are positive and the unit sum with the obvious

advantage of SLR interpretation, whereas the weights can

be negative in the sigma point filters. However, if we view

the nonlinear filtering problem as a numerical integration

problem, the quadrature and sigma point sets are two

instances of the numerical integration technique.

XII. EXPERIMENTAL RESULTS

We present three examples to compare the performance of

the QKF and the GS-QKF with currently used methods,

namely the standard sampling-importance resampling

particle filter (SIR-PF), the EKF, and the GS-EKF. The

first example is a univariate nonstationary growth model

with additive Gaussian noise. The second example
considers the same model as in the first example, but

with heavy-tailed additive gamma distributed process

noise. The third is a practical, target tracking problem in

glint noise over a 4-D state space. Glint is a random

wandering of the apparent measured position of a target

due to reflections from different elements of the target.

Consequently, it affects the radar measurement by

producing a heavy-tailed non-Gaussian distribution. The
glint noise is approximated by various non-Gaussian

distributions (e.g., a Gaussian mixture model [26]).

A. One-Dimensional Nonlinear Example With
Additive Gaussian Noise

Consider the scalar nonlinear system described by

xk ¼ �1xk�1 þ �2x2
k�1 þ 8 cosð!kÞ þ vk

where vk is zero-mean Gaussian white noise with variance

10; ! ¼ 1:2, �1 ¼ 0:2, and �2 ¼ 0:01 are scalar para-
meters. The state xk is to be estimated from the mea-

surement data zk.

zk ¼ x2
k þ wk

where wk is zero-mean Gaussian white noise with variance

0.01. This example is nonlinear, both in the process and

the measurement equation and a similar example is also

considered in [21] for the performance evaluation of
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various filters. The experiment was repeated 100 times. In

each run, the actual initial state x0 is assumed to be a

uniformly distributed random variable in the interval [0, 1].

The prior state x0j0 at time 0 is assumed to be Gaussian
such that x0j0 � Nð0:5; 2Þ. The number of quadrature

points is chosen to be 3. The SIR-PF uses 300 particles.

Fig. 4(a) shows the root-mean-squared-error (RMSE) of

the QKF and the SIR-PF. The performance of the EKF is

not shown in Fig. 4(a), as it often yields a divergent

estimate.

The reason why the SIR-PF performs badly in this

problem is due to the highly peaked measurement-
likelihood function arising from relatively small noise

variance. The SIR-PF uses the transition prior as the
proposal distribution and, consequently, samples of the

transition prior remote from the measurement likelihood

are effectively wasted. However, the SIR-PF can improve

its performance by moving the particles towards the highly

likelihood region with the help of a linearized Kalman

filter [56]. We also vary the measurement noise variance

from 10�4 to 10 and the true RMSE and the filter estimated

RMSE or the square-root of the error variance are obtained
as shown in Fig. 4(b). Observe from Fig. 4(b) that the true

RMSE of the SIR-PF is too high when the measuring device

is more accurate or the measurement noise level is too

small. This is counterintuitive. Moreover, the SIR-PF

underestimates its own error at small noise levels, and

consequently, the discrepancy is more significant. How-

ever, the SIR-PF works well when the sensor possesses the

Bright[ amount of noise. Fig. 4(b) shows that the QKF
estimated RMSE matches well with its overall true RMSE

implying that the QKF yields a consistent estimate

irrespective of the measurement noise level.

B. One-Dimensional Nonlinear
Non-Gaussian Example

We consider the same problem as described in the

first example, but this time the process noise vk is
assumed to be distributed as a heavy-tailed gamma func-

tion and given by vk � �ð3; 2Þ, where � denotes the

gamma distribution. The observation noise wk is assumed

to be zero-mean Gaussian with variance 0.01. The ex-

periment was repeated 100 times with a random

initialization in each run as described in the first

example. The SIR-PF uses 500 particles. We compare

the performance of the GS-QKF against GSEKF and SIR-
PF. Two different GS-QKFs are considered: first, the GS-

QKF (5-1-1) uses a 5-component Gaussian mixture model

(GMM) for the state posterior, and a 1-component GMM

for both the process and measurement noise densities.

Secondly, the GS-QKF (5-3-1) uses a 5-component GMM

for state posterior, a 3-component GMM to approximate

the Bheavy-tailed[ gamma distributed process noise (see

Fig. 5) and a 1-component GMM for the measurement
noise density. For this example, all three GMR techniques

described in Section VIII perform almost equally well,

and we do not provide a performance comparison among

the GMR techniques. Fig. 6 shows the RMSE of the

different filters when pruning is employed as a GMR

technique in Gaussian sum filters.

A factor responsible for the bad performance of the SIR-

PF in this problem can be attributed to the same reason for
the bad performance of the SIR-PF as mentioned in the first

example. In addition to this, the support of the proposal

distribution, or the gamma distribution in this case, may

not be broad enough to cover the actual posterior and this

may be another factor for the performance degradation of

the SIR-PF. The GS-QKF (5-3-1) clearly outperforms the

GS-QKF (5-1-1). The superior performance of the GS-QKF

Fig. 4. One-dimensional nonlinear example with additive Gaussian

noise. (a) Root mean square error (RMSE) of the 3-point QKF and the

SIR-PF with 300 particles. (b) True RMSE and the estimated RMSE of

the QKF and the SIR particle filter with 300 particles for different

measurement noise levels.

Arasaratnam et al.: Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

972 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



(5-3-1) can be attributed to the fact that it models the non-

Gaussian nature of the process noise better than that of
the GS-QKF (5-1-1). We also observe from Fig. 6 that the

GS-EKF performs well without diverging. The reason is

that the Gaussian sum approximate process noise has

mixture terms with sufficiently low noise variances, there-
by validating the EKF’s linearization assumption in a small

region of the state space.

Fig. 5. Gaussian mixture model (GMM) approximation of heavy-tailed, asymmetric gamma distribution. The red curve is the gamma

distribution and the black curve is the single Gaussian approximation of the gamma distribution. The dotted-line, blue curves

show the shape and position of the three Gaussian mixture (GM) components of a GMM approximation shown by solid,

blue line. The GMM was fitted to the gamma distribution using the expectation-maximization (EM) algorithm.

Fig. 6. RMSE of the GS-EKF (5-3-1), GS-QKF (5-3-1), GS-QKF (5-1-1) and SIR particle filter with 500 particles.
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C. Target Tracking With Glint Noise
In this last example, the new GS-QKF is applied to the

problem of radar target tracking with glint noise and its

performance is compared with the GS-EKF and the SIR-PF

with 300 particles. The following state-space model

describes the tracking scenario [5]:

xk¼

1 � 0 0

0 1 0 0

0 0 1 �

0 0 0 1

0
BBB@

1
CCCAxk�1þ

�2=2 0

� 0

0 �2=2

0 �

0
BBB@

1
CCCAvk (72)

zk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

k þ y2
k

p
tan�1 yk

xk

� �
0
@

1
Aþwk: (73)

Here xk ¼ ½xk _xk yk _yk�
T

with x and y denote the car-

tesian coordinates of the target with velocities _x and _y in
x and y directions; the sampling interval � is set to be

0.5 s; the process noise sequence vk is zero mean Gaussian

with covariance Q k ¼ diagð½50 m2s�4 5 m2s�4�Þ; the

glint measurement noise, wk is modeled by a Gaussian

m i x t u r e a s pðvkÞ ¼ ð1 � 
ÞN ð0; R1Þ þ 
Nð0; R2Þ,
w h e r e R1 ¼ diagð½50 m2 0:4 mrad2�Þ a n d R2 ¼
diagð½5000 m2 16 mrad2�Þ and 
 refers to the glint noise

probability; the actual initial state is defined to be x0 ¼
½10 000 m 300 ms�1 1000 m � 40 ms�1�T; the initial

estimate x̂0j0 and the associated covariance P0j0 are as-

sumed to be ½10 175 m 295 ms�1 980 m � 35 ms�1�T
and diagð½1002 m2 102 m2s�2 1002 m2 102 m2s�2�Þ re-

spectively. The number of Gaussian terms used in the

Gaussian sum filters is 20 at the end of each iteration. The
a priori density pðx0Þ ¼ N ðx̂0j0; P0j0Þ is also approximated

by a Gaussian sum of 20 components. We assume that the

radar is placed at the origin.

For performance evaluation, the RMSE in the position

and velocity are obtained in 100 trials. Fig. 7(a) shows the

RMSE for a glint noise probability 
 ¼ 0:15. From

Fig. 7(a), it is observed that the GS-EKF performs similarly

to the GS-QKF. The reason is that the nonlinearity is
limited to the measurement model only. However, the

SIR-PF performs badly. This is because the initial

covariance is so Blarge[ that it takes long time to converge.

It should be noted that in the experiment described

herein, the computational complexity of the particle filter

exceeds that of the GS-EKF and GS-QKF. Moreover, the

use of an increased number of particles and/or the

advanced particle filtering techniques could further
improve the performance of the SIR-PF but that would

be at the expense of increased complexity and computa-

tional burden.

The tracking performance of position and velocity as a

function of glint noise probability is presented in Fig. 7(b).

A close inspection of Fig. 7(b) reveals that the GS-QKF, in

general, outperforms the GS-EKF for any value of glint

probability.

XIII . SUMMARY AND DISCUSSION

The celebrated Kalman filter is the optimal solution for

linear Gaussian filtering problems. For many nonlinear

problems, the extended Kalman filter (EKF) has

Fig. 7. Target tracking with glint noise. (a) RMSE of position and velocity of GS-EKF (20-1-2), GS-QKF (20-1-2), and SIR particle filter with

300 particles for the glint noise probability �w ¼ 0:15. (b) RMSE of position and velocity of the GS-EKF (20-1-2), GS-QKF (20-1-2),

and SIR particle filter with 300 particles for various glint noise probabilities.
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successfully been applied. Nevertheless, the EKF does
breakdown when the reference point, say the prior

mean, is far from the posterior mean. The motivation for

this paper is to obtain an improved solution to nonlinear

problems in the Kalman filtering framework. We present

a systematic formulation of the so-called quadrature

Kalman filter (QKF) from the SLR perspective. The

regression points are obtained from the Gauss–Hermite

quadrature scheme which approximates a Gaussian
density discretely. We also explored how this new in-

sight can be used to enhance the performance of the

QKF for a given application. However, the QKF suffers

from the curse of dimensionality; this problem becomes

more severe for a high dimensional problem, especially

when the state vector size goes beyond six.

Since the QKF assumes a Gaussian posterior assump-

tion, it may fail in certain nonlinear non-Gaussian
problems with heavily-tailed or multimodal posterior.

For nonlinear, non-Gaussian problems, a well-known

suboptimal algorithm is the sequential Monte Carlo

(SMC) filter. Although, the SMC filter is rooted in the

Bayesian framework, it is an approximate simulation-based

algorithm. In this paper, we extend the application of the

QKF to nonlinear non-Gaussian problems by incorporating

the conventional Gaussian sum filters. The resulting
filtering algorithm, called the Gaussian sum QKF, approx-

imates both the predicted and posterior densities as

Gaussian sums. The limitation with this approach is that

the number of Gaussian terms grows exponentially over

time. In order to alleviate the growth of Gaussian sum

components, three different Gaussian mixture reduction

techniques are presented. Due to the use of the QKF as a

subcomponent, the GS-QKF also suffers from similar
shortcomings as the QKF. For example, the statistical

linear approximation technique in a highly nonlinear
filtering problem may be insufficient, thereby leading to

divergent state estimate of the QKF; for the same filtering

problem but with additive non-Gaussian noise case, the

GS-QKF is also likely to yield a divergent state estimate.

As an alternative, one could possibly use the SMC method

that has the advantage of having no explicit functional

assumption in this case.

Our future research will focus on the following issues:
1) Exploring extensions of and refinements to the

new nonlinear filtering algorithm, including the

use of square-root filtering for improved compu-

tational accuracy.

2) As already mentioned, tackling nonlinear filtering

problems of high dimensional complexity using

the new algorithms, the curse of dimensionality

could be a serious practical issue; we will explore
the application of supervised learning and cuba-

ture rules as tools for the approximate computa-

tion of the known nonlinear functions that feature

prominently in the algorithm.

3) To test the performance of the new algorithms, we

will undertake the experimental study of a

challenging real-life problem and compare the

performance against the Monte-Carlo methods
currently in use. h

Acknowledgment

The authors would like to thank the Natural Sciences

and Engineering Research Council (NSERC) of Canada

for its financial support. They would also like to thank

Dr. S. Godsill, Dr. V. Krishnamurthy, and Dr. H. Kushner
for their valuable input.

RE FERENCES

[1] L. Aggoun and R. J. Elliott, Measure Theory
and Filtering. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[2] D. L. Alspach and H. W. Sorenson,
BNonlinear Bayesian estimation using
Gaussian sum approximations,[ IEEE
Trans. Autom. Control, vol. AC-17, no. 4,
pp. 439–448, Aug. 1972.

[3] B. D. O. Anderson and J. B. Moore,
Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

[4] M. Athans, R. P. Wishner, and A. Bertolini,
BSuboptimal state estimation for
continuous-time nonlinear systems from
discrete noise measurements,[ IEEE Trans.
Autom. Control, vol. 13, pp. 504–514, 1968.

[5] Y. B. Shalom, X.-R. Li, and T. Kirubarajan,
Estimation With Applications to Tracking and
Navigation. New York: Wiley, 2001.

[6] B. M. Bell and F. W. Cathey, BThe iterated
Kalman filter update as a Gauss-Newton
method,[ IEEE Trans. Autom. Control, vol. 38,
no. 2, pp. 294–297, Feb. 1993.

[7] D. P. Bertsekas, BIncremental least-square
methods and the extended Kalman filters,[
SIAM J. Optim., vol. 6, no. 3, pp. 807–822,
Aug. 1996.

[8] G. J. Bierman, Factorization Methods for
Discrete Sequential Estimation. New York:
Academic, 1977.

[9] I. Bilik and J. Tabrikian, BTarget tracking
in Glint noise environment using nonlinear
non-Gaussian Kalman filter,[ in Proc. 2006
IEEE Int. Radar Conf., pp. 282–286.

[10] R. S. Bucy and K. D. Senne, BDigital synthesis
of nonlinear filters,[ Automatica, vol. 24,
no. 6, pp. 789–801, 1974.

[11] R. S. Bucy and H. Youssef, BNonlinear
filter representation via spline functions,[ in
Proc. 5th Symp. Nonlinear Estimation, 1974,
pp. 51–60.

[12] O. Cappe, E. Moulines, and T. Ryden,
Inference in Hidden Markov Models.
New York: Springer, 2005.

[13] O. Cappe, S. J. Godsill, and E. Moulines,
BAn overview of existing methods and
recent advances in sequential Monte Carlo,[
Proc. IEEE, vol. 95, no. 4, Apr. 2007.

[14] S. Challa, Y. Bar-Shalom, and
V. Krishnamurthy, BNonlinear filtering
via generalized Edgeworth series and Gauss
Hermite Quadrature,[ IEEE Trans. Signal
Process., vol. 48, no. 6, pp. 1816–1820,
Jun. 2000.

[15] R. J. P. de Figueiredo and J. G. Jan,
BSpline filters,[ in Proc. 2nd Symp.
Nonlinear Estimation, 1971, pp. 127–138.

[16] A. Doucet, J. de Freitas, and N. Gordon,
Sequential Monte Carlo in Practice.
Cambridge, U.K.: Cambridge Univ. Press,
2001.

[17] R. J. Elliott, Stochastic Calculus and
Applications. New York: Springer-Verlag,
1982.

[18] A. Gelb, Ed., Applied Optimal Estimation.
Cambridge, MA: MIT Press, 1974.

[19] G. H. Golub and J. H. Welsch, BCalculation of
Gauss Quadrature rules,[ Math. Comput.,
vol. 23, no. 106, pp. 221–230, 1969.

[20] G. H. Golub and C. F. Van Loan,
Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

[21] N. J. Gordon, D. J. Salmond, and
A. F. M. Smith, BNovel approach
to nonlinear/non-Gaussian Bayesian
state estimation,[ IEE Proc. F, vol. 140,
pp. 107–113, Apr. 1993.

[22] I. Gyongy, BApproximations of stochastic
partial differential equations,[ in Stochastic
Partial Differential Equations. New York:
Dekker, 2002, vol. 277, Lecture Notes in Pure
and Applied Mathematics, pp. 287–307.

Arasaratnam et al. : Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 975



[23] P. J. Harrison and C. F. Stevens, BBayesian
forecasting,[ J. Royal Stat. Soc., ser. B, vol. 38,
no. 3, pp. 205–247, 1976.

[24] S. Haykin, K. Huber, and Z. Chen, BBayesian
sequential state estimation for MIMO
wireless communications,[ Proc. IEEE,
vol. 92, no. 3, pp. 439–455, Mar. 2004.

[25] S. Haykin, P. Yee, and E. Derbez, BOptimum
nonlinear filtering,[ IEEE Trans. Signal
Process., vol. 45, no. 11, pp. 2774–2786,
Nov. 1997.

[26] G. A. Hewer, R. D. Martin, and J. Zeh,
BRobust preprocessing for Kalman filtering
of glint noise,[ IEEE Trans. Aerosp. Electron.
Syst., vol. AES-23, no. 1, pp. 120–128,
Jan. 1987.

[27] K. Ito and K. Xiong, BGaussian filters for
nonlinear filtering problems,[ IEEE Trans.
Autom. Control, vol. 45, no. 5, pp. 910–927,
May 2000.

[28] A. Jazwinski, Stochastic Processing and Filtering
Theory. New York: Academic, 1970.

[29] S. J. Julier, BThe scaled unscented
transform,[ in Proc. Amer. Control Conf.,
2000, pp. 4555–4559.

[30] S. J. Julier and J. K. Uhlmann, BUnscented
filtering and nonlinear estimation,[ Proc.
IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[31] S. J. Julier, J. K. Ulhmann, and
H. F. Durrant-Whyte, BA new method
for the nonlinear transformation of means
and covariances in filters and estimators,[
IEEE Trans. Autom. Control, vol. 45, no. 3,
pp. 472–482, Mar. 2000.

[32] R. E. Kalman, BA new approach to linear
filtering and prediction problems,[ Trans.
ASME J. Basic Eng., vol. 82, pp. 34–45,
Mar. 1960.

[33] S. C. Kramer and H. W. Sorenson, BRecursive
Bayesian estimation using piecewise constant
approximation,[ Automatica, vol. 24, no. 6,
pp. 789–801, 1988.

[34] V. Krishnan, Probability and Random
Process. New York: Wiley, 2006.

[35] H. J. Kushner and A. S. Budhiraja,
BA nonlinear filtering algorithm based
on an approximation of the conditional
distribution,[ IEEE Trans. Autom. Control,
vol. 45, no. 3, pp. 580–585, Mar. 2000.

[36] H. J. Kushner, BDynamic equations for
optimal nonlinear filtering,[ J. Differ. Eq.,
vol. 3, pp. 179–190, 1971.

[37] S. Lauriitzen, Graphical Models. New York:
Oxford Univ. Press, 1996.

[38] T. Lefebvre, H. Bruyninckx, and
J. De Schutter, BComment on FA new method
for the nonlinear transformation of means
and covariances in filters and estimators_,[
IEEE Trans. Autom. Control, vol. 47, no. 8,
pp. 1406–1408, Aug. 2002.

[39] T. Lefebvre, H. Bruyninckx, and
J. De Schutter, BKalman filters for non-linear
systems: A comparison of performance,[
Int. J. Control, vol. 77, no. 7, pp. 639–653,
May 2004.

[40] D. G. Lainiotis and J. G. Desppande,
BParameter estimation using splines,[
Inf. Sci., vol. 7, pp. 291–315, 1974.

[41] D. Middleton, BMan-made noise in urban
environments and transportaion systems,[
IEEE Trans. Commun., vol. COM-21, no. 11,
pp. 1232–1241, Nov. 1973.

[42] L. Mo, X. Song, Y. Zhou, Z. Sun, and
Y. Bar-Shalom, BUnbiased converted
measurements in tracking,[ IEEE
Trans. Aerosp. Electron. Syst., vol. 34, no. 3,
pp. 1023–1027, Jul. 1998.

[43] J. C. Naylor and A. F. M. Smith, BApplications
of a method for the efficient computation of
posterior distributions,[ Appl. Stat., vol. 31,
no. 3, pp. 214–225, 1982.

[44] M. Norgaard, N. K. Poulsen, and O. Ravn,
BNew developments in state estimation of
nonlinear systems,[ Automatica, vol. 36,
pp. 1627–1638, 2000.

[45] B. Oksendal, Stochastic Differential Equations,
5th ed. Berlin, Germany: Springer, 1998.

[46] R. J. Phaneuf, BApproximate nonlinear
estimation,[ Ph.D dissertation, Mass. Inst.
Technol., Cambridge, 1968.

[47] W. H. Press, S. A. Teukolsky,
W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[48] B. Ristic, S. Arulampalam, and N. Gordon,
Beyond Kalman Filters: Particle Filters for
Applications. Norwood, MA: Artech House,
2004.

[49] D. Salmond, BMixture reduction algorithms
for target tracking in clutter,[ SPIE Signal and
Data Processing of Small Targets, vol. 1305,
pp. 434–445, Apr. 1990.

[50] T. S. Schei, BA finite difference method
for linearizing in nonlinear estimation
algorithms,[ Automatica, vol. 33, no. 11,
pp. 2051–2058, 1997.

[51] A. F. M. Smith, A. M. Skene, J. E. H. Shaw,
and J. C. Naylor, BProgress with numerical
and graphical methods for practical Bayesian

statistics,[ Statistician, vol. 36, pp. 75–82,
1982.

[52] H. W. Sorenson, BRecursive estimation for
nonlinear dyanmic systems,[ in Bayesian
Analysis of Time Series and Dynamic Models,
J. C. Spall, Ed. New York: Marcel Dekker
Inc., 1988, ch. 6.

[53] H. W. Sorenson and A. R. Stubberud,
BNonlinear filtering by approximation of
a posteriori density,[ Int. J. Control, vol. 8,
no. 1, pp. 33–51, 1968.

[54] K. Srinivasan, BState estimation by orthogonal
expansion of probability distribution,[ IEEE
Trans. Automat. Control, vol. AC-15, no. 1,
pp. 3–10, Feb. 1970.

[55] D. M. Titterington, D. M. Smith, and
U. E. Makov, Statistical Analysis of Finite
Mixture Distributions. Chichester, U.K.:
Wiley, 1985.

[56] R. van der Merwe. (2004). BSigma-point
filters for probabilistic inference in dynamic
state space models,[ Ph.D dissertation, OGI
School Sci. Eng., Beaverton, OR. [Online].
Available: http://www.cse.ogi.edu/rudmerwe/
pubs/index.htm.

[57] J. J. Verbeek, J. R. J. Nunnink, and N. Vlassis,
BAccelerated EM-based clustering of large
data sets,[ Data Mining Knowl. Discovery,
vol. 13, no. 3, pp. 291–307, 2006.

[58] A. H. Wang and R. L. Klein, BImplementation
of nonlinear estimation using monospline,[ in
Proc. 13th IEEE Conf. Decision and Control,
1976, pp. 1305–1307.

[59] A. H. Wang and R. L. Klein, BOptimal
quadrature formula nonlinear estimations,[
Inf. Sci., vol. 16, pp. 169–184, 1978.

[60] M. West and J. Harrison, Bayesian Forecasting
and Dynamical Models, 2nd ed. New York:
Springer-Verlag, 1989.

[61] J. L. Williams. (2003). BGaussian mixture
reduction for tracking multiple maneuvering
targets in clutter,[ M.S.E.E. thesis, Air Force
Inst. Technol., Wright-Patterson Air Force
Base, OH. [Online]. Available: http://ssg.mit.
edu/jlwil/.

[62] E. Wong and B. Hajek, Stochastic Processes in
Engineering Systems. New York: Springer-
Verlag, 1985.

[63] M. Zakai, BOn the optimal filtering
of diffusion processes,[ Wahrschein
likehkeitstheorrie verw gebiete, vol. 11,
pp. 230–243, 1969.

ABOUT THE AUT HORS

Ienkaran Arasaratnam was born in Jaffna,

Sri Lanka, in 1978. He received the B.Sc.Eng.

degree with first class honors in electronic and

telecomm engineering from the University of

Moratuwa, Sri Lanka, in 2003 and the M.A.Sc

degree with outstanding thesis research award in

electrical engineering from the McMaster Univer-

sity, Hamilton, ON, Canada, in 2006. He is

currently working toward the Ph.D. degree at the

same university.

His research interests include the development of efficient nonlinear

inference algorithms and their applications to auditory signal processing

and target tracking.

Simon Haykin (Fellow, IEEE) received the B.Sc.

(First-class Honours), Ph.D., and D.Sc. degrees in

electrical engineering from the University of

Birmingham, U.K.

Currently, he holds the title Distinguished

University Professor in the ECE Department at

McMaster University, Hamilton, ON, Canada. He is

the author of numerous books, including the most

widely used books: Communication Systems

(4th ed., Wiley), Adaptive Filter Theory (4th ed.,

Prentice-Hall), Neural Networks: A Comprehensive Foundation (2nd ed.,

Prentice-Hall) and the newly published book Adaptive Radar Signal

Processing (Wiley), as well as numerous refereed journal papers.

Prof. Haykin is a Fellow of the Royal Society of Canada, recipient of the

Honourary Degree of Doctor of Technical Sciences from ETH, Zurich,

Switzerland, and the Henry Booker Gold Medal from URSI, as well as

other prizes and awards.

Arasaratnam et al.: Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

976 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



Robert J. Elliott received the B.S. and M.S. de-

grees from Oxford University, U.K., and the Ph.D.

and D.Sc. degrees from Cambridge University.

He has held positions at Newcastle, Yale,

Oxford, Warwick, Hull, Alberta, and visiting posi-

tions in Toronto, Northwestern, Kentucky, Brown,

Paris, Denmark, Hong Kong, and Australia. Cur-

rently he is the RBC Financial Group Professor of

Finance at the University of Calgary, Calgary, AB,

Canada, where he is also an Adjunct Professor in

both the Department of Mathematics and the Department of Electrical

Engineering. He is also an Adjunct Professor in Electrical Engineering at

McMaster University, Hamilton, ON, Canada, and in Mathematics at the

University of Adelaide and the Australian National University. He also

consults for banks and energy companies. He has authored nine books

and over 350 papers. His book with P. E. Kopp, Mathematics of Financial

Markets, was published by Springer in 1999. The Hungarian edition was

published in 2000 and an expanded second Edition appeared in 2004.

Springer-Verlag published his book Binomial Methods in Finance, written

with J. van der Hoek, in 2006. He has also worked in signal processing,

and his book with L. Aggoun and J. Moore, Hidden Markov Models:

Estimation and Control, was published in 1995 by Springer Verlag and

reprinted in 1997. His book with L. Aggoun, Measure and Filtering was

published by Cambridge University Press in June 2004.

Arasaratnam et al. : Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 977


