
Chapter

WAVEGUIDES

If a man writes a better book, preaches a better sermon, or makes a better mouse-
trap than his neighbor, the world will make a beaten path to his door.

—RALPH WALDO EMERSON

12.1 INTRODUCTION

As mentioned in the preceding chapter, a transmission line can be used to guide EM
energy from one point (generator) to another (load). A waveguide is another means of
achieving the same goal. However, a waveguide differs from a transmission line in some
respects, although we may regard the latter as a special case of the former. In the first
place, a transmission line can support only a transverse electromagnetic (TEM) wave,
whereas a waveguide can support many possible field configurations. Second, at mi-
crowave frequencies (roughly 3-300 GHz), transmission lines become inefficient due to
skin effect and dielectric losses; waveguides are used at that range of frequencies to obtain
larger bandwidth and lower signal attenuation. Moreover, a transmission line may operate
from dc ( / = 0) to a very high frequency; a waveguide can operate only above a certain
frequency called the cutoff frequency and therefore acts as a high-pass filter. Thus, wave-
guides cannot transmit dc, and they become excessively large at frequencies below mi-
crowave frequencies.

Although a waveguide may assume any arbitrary but uniform cross section, common
waveguides are either rectangular or circular. Typical waveguides1 are shown in Figure
12.1. Analysis of circular waveguides is involved and requires familiarity with Bessel
functions, which are beyond our scope.2 We will consider only rectangular waveguides. By
assuming lossless waveguides (ac — °°, a ~ 0), we shall apply Maxwell's equations with
the appropriate boundary conditions to obtain different modes of wave propagation and the
corresponding E and H fields. _ ;
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For other t\pes of waveguides, see J. A. Seeger, Microwave Theory, Components and Devices. En-
glewood Cliffs, NJ: Prentice-Hall, 1986, pp. 128-133.
2Analysis of circular waveguides can be found in advanced EM or EM-related texts, e.g., S. Y. Liao.
Microwave Devices and Circuits, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 119-141.
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Figure 12.1 Typical waveguides.
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12.2 RECTANGULAR WAVEGUIDES

Consider the rectangular waveguide shown in Figure 12.2. We shall assume that the wave-
guide is filled with a source-free (pv = 0, J = 0) lossless dielectric material (a — 0) and
its walls are perfectly conducting (ac — °°). From eqs. (10.17) and (10.19), we recall that
for a lossless medium, Maxwell's equations in phasor form become

kzEs = 0

= 0

(12.1)

(12.2)

Figure 12.2 A rectangular waveguide
with perfectly conducting walls, filled
with a lossless material.

/
( « , jX, <T = 0 )
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where

k = OJVUB (12.3)

and the time factor eJ01t is assumed. If we let

- (Exs, Eys, Ezs) and - (Hxs, Hys, Hzs)

each of eqs. (12.1) and (12.2) is comprised of three scalar Helmholtz equations. In other
words, to obtain E and H fields, we have to solve six scalar equations. For the z-compo-
nent, for example, eq. (12.1) becomes

d2Ezs

dx2 dy2 dz
(12.4)

which is a partial differential equation. From Example 6.5, we know that eq. (12.4) can be
solved by separation of variables (product solution). So we let

Ezs(x, y, z) = X(x) Y(y) Z(z) (12.5)

where X(x), Y(y), and Z(z) are functions of*, y, and z, respectively. Substituting eq. (12.5)
into eq. (12.4) and dividing by XYZ gives

x" r z" 2
— + — + — = -k2

X Y Z
(12.6)

Since the variables are independent, each term in eq. (12.6) must be constant, so the equa-
tion can be written as

-k\ - k) + y2 = -k2 (12.7)

where -k2, -k2, and y2 are separation constants. Thus, eq. (12.6) is separated as

X" + k2
xX = 0 (12.8a)

r + k2
yY = 0 (12.8b)

Z" - T
2Z = 0 (12.8c)

By following the same argument as in Example 6.5, we obtain the solution to eq. (12.8) as

X(x) = c, cos k^x + c2 sin kyX

Y(y) = c3 cos kyy + c4 sin kyy

Z(z) = c5e
yz + c6e'7Z

Substituting eq. (12.9) into eq. (12.5) gives

Ezs(x, y, z) = (ci cos kxx + c2 sin k^Xci, cos kyy
+ c4 sin kyy) (c5e

yz + c6e~yz)

(12.9a)

(12.9b)

(12.9c)

(12.10)
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As usual, if we assume that the wave propagates along the waveguide in the +z-direction,
the multiplicative constant c5 = 0 because the wave has to be finite at infinity [i.e.,
Ezs(x, y, z = °°) = 0]. Hence eq. (12.10) is reduced to

Ezs(x, y, z) = (A; cos k^x + A2 sin cos kyy + A4 sin kyy)e (12.11)

where Aj = CiC6, A2 = c2c6, and so on. By taking similar steps, we get the solution of the
z-component of eq. (12.2) as

Hzs(x, y, z) = (Bi cos kpc + B2 sin ^ cos kyy + B4 sin kyy)e (12.12)

Instead of solving for other field component Exs, Eys, Hxs, and Hys in eqs. (12.1) and (12.2)
in the same manner, we simply use Maxwell's equations to determine them from Ezs and
HTS. From

and

V X E, = -y

V X H, = jtoeEs

we obtain

dE,<

dy

dHzs

dy

dExs

dz

dHxs

dz

dEys

dx

dHy,

dz

dHv,

dz

dx

dHz,

dx

9EX,

dy

dHx,

= jueExs

= J03flHys

dx dy

(12.13a)

(12.13b)

(12.13c)

(12.13d)

(12.13e)

(12.13f)

We will now express Exs, Eys, Hxs, and Hys in terms of Ezs and Hzs. For Exs, for example,
we combine eqs. (12.13b) and (12.13c) and obtain

dHz, 1 fd2Exs d2Ez.

dy 7C0/X \ dz oxdi
(12.14)

From eqs. (12.11) and (12.12), it is clear that all field components vary with z according to
e~yz, that is,

p~lz F
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Hence

and eq. (12.14) becomes

dEzs d Exx ,
— = ~yEzs, —j- = 7 EX:

dZ dz

dHa 1 { 2 dE^
jweExs = —— + - — I 7 Exs + 7——

dy joifi \ dx

or

1 , 2 , 2 ^ r 7 dEzs dHzs

—.— (7 + " V ) Exs = ~. — + ——
jii ju>n dx dy

Thus, if we let h2 = y2 + w2/xe = y2 + k2,

E 1 —- '__
7 dEzs jun dHzs

hl dx dy

Similar manipulations of eq. (12.13) yield expressions for Eys, Hxs, and Hys in terms of Ev

and Hzs. Thus,

(12.15a)

(12.15b)

(12.15c)

(12.15d)

Exs

EyS

M

Hys

h2 dx

7 dEzs

h2 dy

_ jue dEzs _

h2 dy

_ ja>e dEzs

jan dHz,

h2 dy

ju/x dHzs

h2 dx

7 dHzs

h2 dx

~~h2^T

where

h2 = y2 + k2 = k2
x + k] (12.16)

Thus we can use eq. (12.15) in conjunction with eqs. (12.11) and (12.12) to obtain Exs, Eys,
Hxs, and Hys.

From eqs. (12.11), (12.12), and (12.15), we notice that there are different types of field
patterns or configurations. Each of these distinct field patterns is called a mode. Four dif-
ferent mode categories can exist, namely:

1. Ea = 0 = Hzs (TEM mode): This is the transverse electromagnetic (TEM) mode,
in which both the E and H fields are transverse to the direction of wave propaga-
tion. From eq. (12.15), all field components vanish for Ezs = 0 = Hzs. Conse-
quently, we conclude that a rectangular waveguide cannot support TEM mode.
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Figure 12.3 Components of EM fields in a rectangular waveguide:
(a) TE mode Ez = 0, (b) TM mode, Hz = 0.

2. Ezs = 0, Hzs # 0 (TE modes): For this case, the remaining components (Exs and
Eys) of the electric field are transverse to the direction of propagation az. Under this
condition, fields are said to be in transverse electric (TE) modes. See Figure
12.3(a).

3. Ezs + 0, Hzs = 0 (TM modes): In this case, the H field is transverse to the direction
of wave propagation. Thus we have transverse magnetic (TM) modes. See Figure
12.3(b).

4. Ezs + 0, Hzs + 0 (HE modes): This is the case when neither E nor H field is trans-
verse to the direction of wave propagation. They are sometimes referred to as
hybrid modes.

We should note the relationship between k in eq. (12.3) and j3 of eq. (10.43a). The
phase constant /3 in eq. (10.43a) was derived for TEM mode. For the TEM mode, h = 0, so
from eq. (12.16), y2 = -k2 -» y = a + j/3 = jk; that is, /3 = k. For other modes, j3 + k.
In the subsequent sections, we shall examine the TM and TE modes of propagation sepa-
rately.

2.3 TRANSVERSE MAGNETIC (TM) MODES

For this case, the magnetic field has its components transverse (or normal) to the direction
of wave propagation. This implies that we set Hz = 0 and determine Ex, Ey, Ez, Hx, and Hv

using eqs. (12.11) and (12.15) and the boundary conditions. We shall solve for Ez and later
determine other field components from Ez. At the walls of the waveguide, the tangential
components of the E field must be continuous; that is,

= 0 at y = 0

y = b£,, = 0 at

Ezs = 0 at x = 0

£„ = 0 at x = a

(12.17a)

(12.17b)

(12.17c)

(12.17d)
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Equations (12.17a) and (12.17c) require that A, = 0 = A3 in eq. (12.11), so eq. (12.11)
becomes

Ea = Eo sin kj sin kyy e~yz (12.18)

where Eo = A2A4. Also eqs. (12.17b) and (12.17d) when applied to eq. (12.18) require that

s i n ^ = 0, sinkyb = O (12.19)

This implies that

kxa = rrnr, m = 1 , 2 , 3 , . . . (12.20a)

kyb = nir, n = 1 , 2 , 3 , . . . (12.20b)

or

_ n7r

Ky —

b
(12.21)

The negative integers are not chosen for m and n in eq. (12.20a) for the reason given in
Example 6.5. Substituting eq. (12.21) into eq. (12.18) gives

E7. = Eo sin
. fnnrx\ . fniry\ '
in cm — \ o <c '

V a I sin
b ) '

(12.22)

We obtain other field components from eqs. (12.22) and (12.15) bearing in mind that
H7< = 0. Thus

(12.23a)

(12.23b)

(12.23c)

y fnw\ IT • fmirx\ (n*y\ -yz
— ' — l F

o sin I I cos I I e T

jus

Hys = - v (-j-) Eo cos sin (12.23d)

where

nir (12.24)

which is obtained from eqs. (12.16) and (12.21). Notice from eqs. (12.22) and (12.23) that
each set of integers m and n gives a different field pattern or mode, referred to as TMmn
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mode, in the waveguide. Integer m equals the number of half-cycle variations in the x-
direction, and integer n is the number of half-cycle variations in the v-direction. We also
notice from eqs. (12.22) and (12.23) that if (m, n) is (0, 0), (0, n), or (m, 0), all field com-
ponents vanish. Thus neither m nor n can be zero. Consequently, TMH is the lowest-order
mode of all the TMmn modes.

By substituting eq. (12.21) into eq. (12.16), we obtain the propagation constant

7 =
mir
a

nir

b
(12.25)

where k = u V ^ e as in eq. (12.3). We recall that, in general, y = a + j(3. In the case of
eq. (12.25), we have three possibilities depending on k (or w), m, and n:

CASE A (cutoff):

If

1c = w jus =
[b

7 = 0 or a = 0 = /3

The value of w that causes this is called the cutoff angular frequency o)c; that is,

1 / U T T I 2 Tmr"12

I « J U (12.26)

CASE B (evanescent):

If

TOTTT]2 Tnir

y = a,

In this case, we have no wave propagation at all. These nonpropagating or attenuating
modes are said to be evanescent.

CASE C (propagation):

If

^2 = oA mir

y =;/?, a = 0
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that is, from eq. (12.25) the phase constant (3 becomes

0 = - -L a nir (12.27)

This is the only case when propagation takes place because all field components will have
the factor e'yz = e~jl3z.

Thus for each mode, characterized by a set of integers m and n, there is a correspond-
ing cutoff frequency fc

The cutoff frequency is the operating frequencs below which allcnuaiion occurs
and above which propagation lakes place.

The waveguide therefore operates as a high-pass filter. The cutoff frequency is obtained
fromeq. (12.26) as

1

2-irVue
nnr
a

or

fc u
/ / N

// mu \)+ / N
/ nu\

(12.28)

where u' = = phase velocity of uniform plane wave in the lossless dielectric
fie

medium (a = 0, fi, e) filling the waveguide. The cutoff wave length \. is given by

or

X = (12.29)

Note from eqs. (12.28) and (12.29) that TMn has the lowest cutoff frequency (or the
longest cutoff wavelength) of all the TM modes. The phase constant /3 in eq. (12.27) can be
written in terms of fc as

= wV/xs^/ l - | -
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or

(12.30)

i

where j3' = oilu' = uVfie = phase constant of uniform plane wave in the dielectric
medium. It should be noted that y for evanescent mode can be expressed in terms of fc,
namely,

(12.30a)

The phase velocity up and the wavelength in the guide are, respectively, given by

w 2TT u \
(12.31)

The intrinsic wave impedance of the mode is obtained from eq. (12.23) as (y = jfi)

Ex Ey
I T M -

Hy Hx

we

or

»?TM = V (12.32)

where 17' = V/x/e = intrinsic impedance of uniform plane wave in the medium. Note the
difference between u', (3', and -q', and u, /3, and 77. The quantities with prime are wave
characteristics of the dielectric medium unbounded by the waveguide as discussed in
Chapter 10 (i.e., for TEM mode). For example, u' would be the velocity of the wave if
the waveguide were removed and the entire space were filled with the dielectric. The
quantities without prime are the wave characteristics of the medium bounded by the wave-
guide.

As mentioned before, the integers m and n indicate the number of half-cycle variations
in the x-y cross section of the guide. Thus for a fixed time, the field configuration of Figure
12.4 results for TM2, mode, for example.
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end view

n= 1

E field

H field

Figure 12.4 Field configuration for TM2] mode.

side view

12.4 TRANSVERSE ELECTRIC (TE) MODES

In the TE modes, the electric field is transverse (or normal) to the direction of wave propa-
gation. We set Ez = 0 and determine other field components Ex, Ey, Hx, Hy, and Hz from
eqs. (12.12) and (12.15) and the boundary conditions just as we did for the TM modes. The
boundary conditions are obtained from the fact that the tangential components of the elec-
tric field must be continuous at the walls of the waveguide; that is,

Exs =

Exs '-

Eys =

Eys =

= 0

= 0

= 0

= 0

From eqs. (12.15) and (12.33), the boundary

dHzs

dy

dHzs

= 0

= 0

at

at

at

at

y = 0

y = b

x = 0

x — a

conditions can be written as

at

at

y-0

y = b

(12.33a)

(12.33b)

(12.33c)

(12.33d)

(12.34a)

(12.34b)
dy

dHzs

dx

dHzs

dx

= 0

= 0

at

at

x = 0

x = a

Imposing these boundary conditions on eq. (12.12) yields

(m%x\ fmry\
Hzs = Ho cos cos e yz

\ a ) \ b J

(12.34c)

(12.34d)

(12.35)
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where Ho = BXBT,. Other field components are easily obtained from eqs. (12.35) and
(12.15) as

) e

mrx

(12.36a)

(12.36b)

(12.36c)

(12.36d)

where m = 0, 1, 2, 3 , . . .; and n = 0, 1, 2, 3 , . . .; /J and 7 remain as defined for the TM
modes. Again, m and n denote the number of half-cycle variations in the x-y cross section
of the guide. For TE32 mode, for example, the field configuration is in Figure 12.5. The
cutoff frequency fc, the cutoff wavelength Xc, the phase constant /3, the phase velocity up,
and the wavelength X for TE modes are the same as for TM modes [see eqs. (12.28) to
(12.31)].

For TE modes, (m, ri) may be (0, 1) or (1, 0) but not (0, 0). Both m and n cannot be
zero at the same time because this will force the field components in eq. (12.36) to vanish.
This implies that the lowest mode can be TE10 or TE01 depending on the values of a and b,
the dimensions of the guide. It is standard practice to have a > b so that I/a2 < 1/b2 in

u' u'
eq. (12.28). Thus TEi0 is the lowest mode because /CTE = — < /C.TK = —. This mode is

TE'° la Th°' 2b

top view

E field

//field

Figure 12.5 Field configuration for TE32 mode.
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called the dominant mode of the waveguide and is of practical importance. The cutoff fre-
quency for the TEH) mode is obtained from eq. (12.28) as (m = 1, n — 0)

Jc to 2a
(12.37)

and the cutoff wavelength for TE]0 mode is obtained from eq. (12.29) as

Xt,0 = 2a (12.38)

Note that from eq. (12.28) the cutoff frequency for TMn is

u'[a2 + b2]1'2

2ab

which is greater than the cutoff frequency for TE10. Hence, TMU cannot be regarded as the
dominant mode.

The dominant mode is the mode with the lowest cutoff frequency (or longest cutoff
wavelength).

Also note that any EM wave with frequency / < fCw (or X > XC]0) will not be propagated in
the guide.

The intrinsic impedance for the TE mode is not the same as for TM modes. From
eq. (12.36), it is evident that (y = jf3)

Ex Ey (J)fl
r'TE = jry

 = ~iTx
 = T

Ifi 1

or

VTE I

V

12

J

(12.39)

Note from eqs. (12.32) and (12.39) that r)TE and i?TM are purely resistive and they vary with
frequency as shown in Figure 12.6. Also note that

I?TE (12.40)

Important equations for TM and TE modes are listed in Table 12.1 for convenience and
quick reference.
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Figure 12.6 Variation of wave imped-
ance with frequency for TE and TM
modes.

TABLE 12.1 Important Equations for TM and TE Modes

TM Modes TE Modes

jP frmc\ fimrx\ . (n%y\ pn (rm\ fmirx\ . (rny\
—r I Eo cos sin e 7 £„ = —— I — Ho cos I sin I e '~

h \ a J \ a J \ b J h \ b J \ a ) \ b J
Exs =

—- \ — )Eo sin | cos -—- ) e 7Z

a J \ b
\ / niry

i I cos -—- | e
\ a J \ b

Eo sin I sin I — I e 1Z

\ a J \ b )
jus

Ezs = 0

Hys = —y
h \ a ) \ a ) V b

n*y i e-,,

. = 0

V =

j nnrx \ / rnry
Hzs = Ho cos cos —-x a V b

V =

where ^ = — + ^ . « ' =
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Fromeqs. (12.22), (12.23), (12.35), and (12.36), we obtain the field patterns for the TM
and TE modes. For the dominant TE]0 mode, m = landn = 0, so eq. (12.35) becomes

Hzs = Ho cos ( — | e -JPz

In the time domain,

Hz = Re (Hzse
M)

or

Hz = Ho cosf —

Similarly, from eq. (12.36),

= sin (

Hx = Ho sin ( —
\a

- fiz)

(12.41)

(12.42)

(12.43a)

(12.43b)

(12.43c)

Figure 12.7 Variation of the field components with x for TE]0 mode.

(b)
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Figure 12.8 Field lines for TE10

mode.

+ — Direction of
propagation

top view

If
Mi

'O

\ I
^-•--x 1 - * - - N \ \

(c)

E field

//field

Direction of
propagation

The variation of the E and H fields with x in an x-y plane, say plane cos(wf - |8z) = 1 for
Hz, and plane sin(of — j8z) = 1 for Ey and Hx, is shown in Figure 12.7 for the TE10 mode.
The corresponding field lines are shown in Figure 12.8.

EXAMPLE 12.1
A rectangular waveguide with dimensions a = 2.5 cm, b = 1 cm is to operate below
15.1 GHz. How many TE and TM modes can the waveguide transmit if the guide is filled
with a medium characterized by a = 0, e = 4 so, /*,. = 1 ? Calculate the cutoff frequencies
of the modes.

Solution:

The cutoff frequency is given by

m2

where a = 2.5b or alb = 2.5, and

u =
lie 'V-^r
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Hence,

c

\~a
3 X 108

4(2.5 X 10"
Vm2 + 6.25M2

or

fCmn = 3Vm 2 GHz (12.1.1)

We are looking for fCnm < 15.1 GHz. A systematic way of doing this is to fix m or n
and increase the other until fCnm is greater than 15.1 GHz. From eq. (12.1.1), it is evident
that fixing m and increasing n will quickly give us an fCnm that is greater than 15.1 GHz.

ForTE01 mode (m = 0, n = 1), fCm = 3(2.5) = 7.5 GHz

TE02 mode (m = 0,n = 2),/Co2 = 3(5) = 15 GHz

TE03 mode,/Cm = 3(7.5) = 22.5 GHz

Thus for fCmn < 15.1 GHz, the maximum n = 2. We now fix n and increase m until fCmn is
greater than 15.1 GHz.

For TE10 mode (m = 1, n = 0), /C|o = 3 GHz

TE2o mode,/C20 = 6 GHz

TE30 mode,/C3o = 9 GHz

TE40mode,/C40 = 12 GHz

TE50 mode,/Cjo = 1 5 GHz (the same as for TE02)

TE60mode,/C60 = 18 GHz.

that is, for/Cn < 15.1 GHz, the maximum m = 5. Now that we know the maximum m and
n, we try other possible combinations in between these maximum values.

F o r T E n , T M n (degenerate modes), fCu = 3\/T25 = 8.078 GHz

TE21, TM2I,/C2i = 3V10.25 = 9.6 GHz

TE3],TM31,/C31 = 3Vl5 .25 = 11.72 GHz

TE41, TM41,/C4] = 3V22.25 = 14.14 GHz

TE12, TM12,/Ci, = 3V26 = 15.3 GHz

Those modes whose cutoff frequencies are less or equal to 15.1 GHz will be
transmitted—that is, 11 TE modes and 4 TM modes (all of the above modes except TE i2,
TM12, TE60, and TE03). The cutoff frequencies for the 15 modes are illustrated in the line
diagram of Figure 12.9.
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TE4

TE,, TE30

9'

T E 3 TE41TE50,TE0

12 15
• /c(GHz)

TMU TM21 TM31 TM41

Figure 12.9 Cutoff frequencies of rectangular waveguide with
a = 2.5b; for Example 12.1.

PRACTICE EXERCISE 12.1

Consider the waveguide of Example 12.1. Calculate the phase constant, phase veloc-
ity and wave impedance for TEi0 and TMu modes at the operating frequency of
15 GHz.

Answer: For TE10, (3 = 615.6rad/m, u = 1.531 X 108m/s, rjJE = 192.4 0. For
TMn,i3 = 529.4 rad/m, K = 1.78 X 108m/s,rjTM = 158.8 0.

EXAMPLE 12.2
Write the general instantaneous field expressions for the TM and TE modes. Deduce those
for TEOi and TM12 modes.

Solution:

The instantaneous field expressions are obtained from the phasor forms by using

E = Re (Ese
J'*) and H = Re (Hse

jo")

Applying these to eqs. (12.22) and (12.23) while replacing y and jfi gives the following
field components for the TM modes:

sm*= iA ~r j E°cos

j3\nw~\ fmirx\ fmry\
= —A—-\EO sm cos —— si

\ a ) \ b J

(nvKx\ . fniry
in cm IE7 = En sin

= --£ [T\ Eo sm

" z )

cos
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H =y h2 En cos
I1 . (niry\ .

sin —— sm(a)t -
a J \ b J

(3z)

Hz = 0

Similarly, for the TE modes, eqs. (12.35) and (12.36) become

E= —
( mirx\ j mry\

, , Ho cos sin —— sin(uf
b \ \ a J \ b J -Pz)

w/x fmir] . (m-wx\ frnry\ .
= —r Ho sin cos si

h2 I a \ \ a J \ b J

7 = 0

Ho sin

/3 rn7r]
Hy = ~2 [~\ Ho cos

fniry\
cos —— sin(wr

b I
cos

\ a J \ b I

j sin (-y) sin(.t -2 [ \ Ho cos ^ j

jm-wx\ fniry\
H = Ho cos cos cos(co? - pz)

V a J \ b J

For the TE01 mode, we set m = 0, n = 1 to obtain

12

sin

hz= -

$b
Hy = - — //o sin

7T

iry\
Hz = Ho cos I — I cos(cof - /3z)

\b J

For the TM|2 mode, we set m = 1, n = 2 to obtain

cin — cir
(3 /TIA / X A . /27ry\ .

Ex = -j I - £o cos — sin — sin(cof - /3z)
a / \ b

cos I —— I sir

(TTX\ (2iry\
Ez = Eo sin — sin cos(o)fV a J \ b J
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Hr = — 'o sin I — ) cos ( ^^ ] sin(cof - /3z)

o>e fir\ I\x\ . (2wy\
Hy = —r — )EO cos — sin ~~— sm(ut -y h2 \aj \a J V b )

where

PRACTICE EXERCISE 12.2

An air-filled 5- by 2-cm waveguide has

Ezs = 20 sin 40irx sin 50?ry e"-"3" V/m

at 15 GHz.

(a) What mode is being propagated?

(b) Find |8.

(c) Determine EyIEx.

Answer: (a) TM2i, (b) 241.3 rad/m, (c) 1.25 tan 40wx cot 50-ry.

EXAMPLE 12.3
1 In a rectangular waveguide for which a = 1.5 cm, £ = 0.8 cm, a = 0, fi = JXO, and

e = 4eo,

Hx = 2 sin [ — ) cos sin (T X 10nt - 0z) A/m

Determine

(a) The mode of operation

(b) The cutoff frequency

(c) The phase constant /3

(d) The propagation constant y

(e) The intrinsic wave impedance 77.

Solution:

(a) It is evident from the given expression for Hx and the field expressions of the last
example that m = 1, n = 3; that is, the guide is operating at TMI3 or TE13. Suppose we
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choose TM13 mode (the possibility of having TE13 mode is left as an exercise in Practice
Exercise 12.3).

(b)

Hence

(c)

fcmn ~ 2 -

u =
fiB

fca

1
4 V [1.5 x icr 2] 2 [0.8 x icr2]r2 ]2

(V0.444 + 14.06) X 102 = 28.57 GHz

L/J
fc

100
co = 2TT/ = 7T X 10" or / = = 50 GHz

0 =
3 X 10s

(d) y =j0 = yl718.81/m

28.57

50
= 1718.81 rad/m

(e) , = V

= 154.7

£12

/
377 / _ I 28.5712

50

PRACTICE EXERCISE 12.3

Repeat Example 12.3 if TEn mode is assumed. Determine other field components
for this mode.

Answer: fc = 28.57 GHz, 0 = 1718.81 rad/m, ^ = ;/8, IJTE,, = 229.69 fi

£^ = 2584.1 cos ( — ) sin ( — ) sin(w/ - fa) V/m
\a J \ b J

Ev = -459.4 sin | — ) cos ( — J sin(cor - fa) V/m,
a J \ b J = 0

= 11.25 cos (—) sin( \ / ̂  \
TTJ: \ / 3;ry \
— I sin —— Ia) V b J

sin(a>f - |8z) A/m

= -7.96 cos — cos — - cos (at - fa) A/m
\ b J
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12.5 WAVE PROPAGATION IN THE GUIDE

Examination of eq. (12.23) or (12.36) shows that the field components all involve the
terms sine or cosine of (mi/a)i or (nirlb)y times e~yz. Since

sin 6» = — (eje - e~i6)
2/

cos 6 = - (eje + e jB)

(12.44a)

(12.44b)

a wave within the waveguide can be resolved into a combination of plane waves reflected
from the waveguide walls. For the TE]0 mode, for example,

(12.45)

c* = ~Hj*-J"

2x _

The first term of eq. (12.45) represents a wave traveling in the positive z-direction at an
angle

= tan (12.46)

with the z-axis. The second term of eq. (12.45) represents a wave traveling in the positive
z-direction at an angle —6. The field may be depicted as a sum of two plane TEM waves
propagating along zigzag paths between the guide walls at x = 0 and x = a as illustrated
in Figure 12.10(a). The decomposition of the TE!0 mode into two plane waves can be ex-
tended to any TE and TM mode. When n and m are both different from zero, four plane
waves result from the decomposition.

The wave component in the z-direction has a different wavelength from that of the
plane waves. This wavelength along the axis of the guide is called the waveguide wave-
length and is given by (see Problem 12.13)

X =
X'

(12.47)

where X' = u'/f.
As a consequence of the zigzag paths, we have three types of velocity: the medium ve-

locity u', the phase velocity up, and the group velocity ug. Figure 12.10(b) illustrates the re-
lationship between the three different velocities. The medium velocity u' = 1/V/xe is as
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Figure 12.10 (a) Decomposition of
TE10 mode into two plane waves;
(b) relationship between u', up, and

(a)

wave path

(ID

explained in the previous sections. The phase velocity up is the velocity at which loci of
constant phase are propagated down the guide and is given by eq. (12.31), that is,

«„ = 7T d2.48a)

or

Up cos e
(12.48b)

This shows that up > u' since cos 6 < 1. If u' = c, then up is greater than the speed of
light in vacuum. Does this violate Einstein's relativity theory that messages cannot travel
faster than the speed of light? Not really, because information (or energy) in a waveguide
generally does not travel at the phase velocity. Information travels at the group velocity,
which must be less than the speed of light. The group velocity ug is the velocity with which
the resultant repeated reflected waves are traveling down the guide and is given by

(12.49a)

or

uo = u' cos 6 = u' (12.49b)
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Although the concept of group velocity is fairly complex and is beyond the scope of this
chapter, a group velocity is essentially the velocity of propagation of the wave-packet en-
velope of a group of frequencies. It is the energy propagation velocity in the guide and is
always less than or equal to u'. From eqs. (12.48) and (12.49), it is evident that

upug = u'2 (12.50)

This relation is similar to eq. (12.40). Hence the variation of up and ug with frequency is
similar to that in Figure 12.6 for r;TE and rjTM.

EXAMPLE 12.4
A standard air-filled rectangular waveguide with dimensions a = 8.636 cm, b = 4.318 cm
is fed by a 4-GHz carrier from a coaxial cable. Determine if a TE10 mode will be propa-
gated. If so, calculate the phase velocity and the group velocity.

Solution:

For the TE10 mode, fc = u' 11a. Since the waveguide is air-filled, u' = c = 3 X 108.
Hence,

fc =
3 X 10*

= 1.737 GHz
2 X 8.636 X 10~2

As / = 4 GHz > fc, the TE10 mode will propagate.

u' 3 X 108

V l - (fjff V l - (1.737/4)2

= 3.33 X 108 m/s
16

g

9 X 10
j

3.33 X 108
= 2.702 X 108 m/s

PRACTICE EXERCISE 12.4

Repeat Example 12.4 for the TM n mode.

Answer: 12.5 X 108 m/s, 7.203 X 107 m/s.

12.6 POWER TRANSMISSION AND ATTENUATION

To determine power flow in the waveguide, we first find the average Poynting vector [from
eq. (10.68)],

(12.51)
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In this case, the Poynting vector is along the z-direction so that

1

_ \Ea-\
2 + \Eys\

2

2V

(12.52)

where rj = rjTE for TE modes or 77 = »/TM for TM modes. The total average power trans-
mitted across the cross section of the waveguide is

— \ at, . J C

(12.53)
- dy dx

=0 Jy=0

Of practical importance is the attenuation in a lossy waveguide. In our analysis thus
far, we have assumed lossless waveguides (a = 0, ac — °°) for which a = 0, 7 = j/3.
When the dielectric medium is lossy (a # 0) and the guide walls are not perfectly con-
ducting (ac =£ 00), there is a continuous loss of power as a wave propagates along the
guide. According to eqs. (10.69) and (10.70), the power flow in the guide is of the form

P = P e -2az (12.54)

In order that energy be conserved, the rate of decrease in Pave must equal the time average
power loss PL per unit length, that is,

P L = -
dPa.

dz

or

^ • * fl

In general,

= ac ad

(12.55)

(12.56)

where ac and ad are attenuation constants due to ohmic or conduction losses (ac # 00) and
dielectric losses (a ¥= 0), respectively.

To determine ad, recall that we started with eq. (12.1) assuming a lossless dielectric
medium (a = 0). For a lossy dielectric, we need to incorporate the fact that a =£ 0. All our
equations still hold except that 7 = jj3 needs to be modified. This is achieved by replacing
e in eq. (12.25) by the complex permittivity of eq. (10.40). Thus, we obtain

mir\ frnr\2
 2 (12.57)
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where

ec = e' - je" = s - j - (12.58)
CO

Substituting eq. (12.58) into eq. (12.57) and squaring both sides of the equation, we obtain

2 27 = ad 2 f t A = l - ^ ) +[~) -S
fiir

Equating real and imaginary parts,

\ a
+ \T) (12.59a)

2adf3d = co/xa or ad =

Assuming that ad <£. (3d, a
z
d - j3z

d = -/3J, so eq. (12.59a) gives

a )

(12.59b)

(12.60)

which is the same as (3 in eq. (12.30). Substituting eq. (12.60) into eq. (12.59b) gives

(12.61)

where rj' = V/x/e.
The determination of ac for TMmn and TEmn modes is time consuming and tedious. We

shall illustrate the procedure by finding ac for the TE10 mode. For this mode, only Ey, Hx,
and Hz exist. Substituting eq. (12.43a) into eq. (12.53) yields

a f b

- dxdy =
x=0 Jy= 2ir r)

dy sin — dx

'° ° a (12.62)

* ave

The total power loss per unit length in the walls is

y=o

\y=b + Pi \X=0

=O)
(12.63)
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since the same amount is dissipated in the walls y = 0 and y = b or x = 0 and x = a. For
the wall y = 0,

TJC j {\Hxs\
l+ \Hzs\

z)dx
a #2 2

7TJC
H2

nsin2 — Hz
o cos1 — dx\ (12.64)

£ 1 +
7T

where Rs is the real part of the intrinsic impedance t\c of the conducting wall. From eq.
(10.56),

1

ar8
(12.65)

where 5 is the skin depth. Rs is the skin resistance of the wall; it may be regarded as the re-
sistance of 1 m by 5 by 1 m of the conducting material. For the wall x = 0,

C I (\Hzs\
z)dy H2

ody

RJbHl
(12.66)

Substituting eqs. (12.64) and (12.66) into eq. (12.63) gives

(12.67)

Finally, substituting eqs. (12.62) and (12.67) into eq. (12.55),

?2 2

2ir r/

ar = (12.68a)

It is convenient to express ac. in terms of/ and fc. After some manipulations, we obtain for
the TE10 mode

2RS k
L/

(12.68b)
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By following the same procedure, the attenuation constant for the TEm« modes (n + 0) can
be obtained as

(12.69)
r

md for the TMmn

- 'fc

J.

2 (l 1I

modes as

" c TM

OH2

2/?,

2 m

(bid?
'fViblaf

, 2

+ n2

m2 +

m2 +

kV

n2 \

\f<}2)
[f\)

(12.70)

The total attenuation constant a is obtained by substituting eqs. (12.61) and (12.69) or
(12.70) into eq. (12.56).

12.7 WAVEGUIDE CURRENT AND MODE EXCITATION

For either TM or TE modes, the surface current density K on the walls of the waveguide
may be found using

K = an X H (12.71)

where an is the unit outward normal to the wall and H is the field intensity evaluated on the
wall. The current flow on the guide walls for TE10 mode propagation can be found using
eq. (12.71) with eqs. (12.42) and (12.43). The result is sketched in Figure 12.11.

The surface charge density ps on the walls is given by

ps = an • D = an • eE

where E is the electric field intensity evaluated on the guide wall.

(12.72)

Figure 12.11 Surface current on guide
walls for TE10 mode.
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?"\
J

(a) TE,n mode.

0 a 0

(b)TMM mode.

Figure 12.12 Excitation of modes in a rectangular waveguide.

A waveguide is usually fed or excited by a coaxial line or another waveguide. Most
often, a probe (central conductor of a coaxial line) is used to establish the field intensities
of the desired mode and achieve a maximum power transfer. The probe is located so as to
produce E and H fields that are roughly parallel to the lines of E and H fields of the desired
mode. To excite the TE10 mode, for example, we know from eq. (12.43a) that Ey has
maximum value at x = ail. Hence, the probe is located at x = a/2 to excite the TEIO mode
as shown in Figure 12.12(a), where the field lines are similar to those of Figure 12.8. Sim-
ilarly, the TMii mode is launched by placing the probe along the z-direction as in Figure

EXAMPLE 12.5
An air-filled rectangular waveguide of dimensions a = 4 cm, b = 2 cm transports energy
in the dominant mode at a rate of 2 mW. If the frequency of operation is 10 GHz, determine
the peak value of the electric field in the waveguide.

Solution:

The dominant mode for a > b is TE10 mode. The field expressions corresponding to this
mode (m = 1, n = 0) are in eq. (12.36) or (12.43), namely

Exs = 0, Eys = -jE0 sin ( — where £„ =
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Jc 2a 2(4 X 10~2)

V' 377

/ c

= 406.7

1 -
3.75

. / J V L io
From eq. (12.53), the average power transmitted is

P = r r \Mave L L 2^

Hence,

dy

4r,

2t, —
4(406.7) X 2 X 1Q"3

ab 8 X 10

En = 63.77 V/m

= 4067

PRACTICE EXERCISE 12.5

In Example 12.5, calculate the peak value Ho of the magnetic field in the guide if
a = 2 cm, b = 4 cm while other things remain the same.

Answer: 63.34 mA/m.

EXAMPLE 12.6
A copper-plated waveguide (ac = 5.8 X 107 S/m) operating at 4.8 GHz is supposed to
deliver a minimum power of 1.2 kW to an antenna. If the guide is filled with polystyrene
(a = 10"17 S/m, e = 2.55eo) and its dimensions are a = 4.2 cm, b = 2.6 cm, calculate
the power dissipated in a length 60 cm of the guide in the TE10 mode.

Solution:

Let

Pd = power loss or dissipated
Pa = power delivered to the antenna
Po = input power to the guide

so that P0 = Pd + Pa

Fromeq. (12.54),

D — D ,,~2<xz
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Hence,

Pa =
-2az

or

Now we need to determine a from

From eq. (12.61),

= Pa(e
laz - 1)

a = ad + ac

or,'

Since the loss tangent

10 -17

ue q 10~9

2x X 4.8 X 109 X X 2.5536TT

then

= 1.47 X 10"17 « : 1 (lossless dielectric medium)

= 236.1

= 1.879 X 108m/s
Br

2a 2 X 4.2 X 10'

10~17 X 236.1

2.234 GHz

/ _ [2.23412

L 4 .8 J
ad = 1.334 X 10~15Np/m

For the TE10 mode, eq. (12.68b) gives

ar =
V2

If

0.5 + - k
L/J
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where

Hence

/?. =
ac8

= 1.808 X 10~2Q

1 hrfiJ. hrX 4.8 X 109 X 4ir X 10- 7

5.8 X 107

2 X l i

a, =
2.6 X1O"2X 236

= 4.218 X 10"3Np/m

/
. 1 ^ 1 -

234

Note that ad <§C ac, showing that the loss due to the finite conductivity of the guide walls
is more important than the loss due to the dielectric medium. Thus

a = ad + ac = ac = 4.218 X 10"3 Np/m

and the power dissipated is

= 6.089 W
Pd = Pa{e^ _ i) = 1.2 x ioV x 4 - 2 1 8 x l o" x a 6 - 1)

PRACTICE EXERCISE 12.6

A brass waveguide (ac = 1.1 X 107 mhos/m) of dimensions a = 4.2 cm, b —
1.5 cm is filled with Teflon (er = 2.6, a = 10"15 mhos/m). The operating frequency
is 9 GHz. For the TE10 mode:

(a) Calculate <xd and ac.

(b) What is the loss in decibels in the guide if it is 40 cm long?

Answer: (a) 1.206 X 10~iJ Np/m, 1.744 X 10~zNp/m, (b) 0.0606 dB.

EXAMPLE 12.7
Sketch the field lines for the TMn mode. Derive the instantaneous expressions for the
surface current density of this mode.

Solution:

From Example 12.2, we obtain the fields forTMn mode (m = 1, n = 1) as

Ey = Ti i j;) Eo s i n ( ~ ) c o s ( y ) sin(cof - j3z)
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Ez = Eo sin I — I sin I — I cos(wr - /3z)x a J \ b J

we / TT \ I %x \ iry\
Hx = —-j I — £o sin I — I cos I —- sin(wf -

h \bj \a I \ b

we /vr\
y = ~tf \a) E°

(TXX

Va

//, = 0

For the electric field lines,

dy E., a firx\ (%y
— = - r = 7 tan — cot —
cfx £x b \a I \b

For the magnetic field lines,

dy Hy b /TTX\

dx Hx a \ a J
iry \

b J
Notice that (Ey/Ex)(Hy/Hx) = — 1, showing that electric and magnetic field lines are mutu-
ally orthogonal. This should also be observed in Figure 12.13 where the field lines are
sketched.

The surface current density on the walls of the waveguide is given by

K = an X H = a* X (Hx, Hy, 0)

At x = 0, an = ax, K = Hy(0, y, z, t) az, that is,

we fir

At x = a, an = -a x , K = -Hy(a, y, z, i) az

or

Tr we (ir

1? \a

Figure 12.13 Field lines for TMU mode; for
Example 12.7.

E field

H field
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At y = 0, an = ay, K = -Hx(x, 0, z, t) az

or

Aty = b,an = -ay, K = Hx(x, b, z, t) az

or

COS / 7T \ / TTX ,
K = — I — ) Eo sin — sm(atf - j3z) az

h \bj \ a

- I3z) az

PRACTICE EXERCISE 12.7

Sketch the field lines for the TE n mode.

Answer: See Figure 12.14. The strength of the field at any point is indicated by the
density of the lines; the field is strongest (or weakest) where the lines are
closest together (or farthest apart).

12.8 WAVEGUIDE RESONATORS

Resonators are primarily used for energy storage. At high frequencies (100 MHz and
above) the RLC circuit elements are inefficient when used as resonators because the di-
mensions of the circuits are comparable with the operating wavelength, and consequently,
unwanted radiation takes place. Therefore, at high frequencies the RLC resonant circuits

end view side view

U J
©i ©^

©| !©[

E field
//field

top view

Figure 12.14 For Practice Exercise 12.7; for TEn mode.
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are replaced by electromagnetic cavity resonators. Such resonator cavities are used in kly-
stron tubes, bandpass filters, and wave meters. The microwave oven essentially consists of
a power supply, a waveguide feed, and an oven cavity.

Consider the rectangular cavity (or closed conducting box) shown in Figure 12.15. We
notice that the cavity is simply a rectangular waveguide shorted at both ends. We therefore
expect to have standing wave and also TM and TE modes of wave propagation. Depending
on how the cavity is excited, the wave can propagate in the x-, y-, or z-direction. We will
choose the +z-direction as the "direction of wave propagation." In fact, there is no wave
propagation. Rather, there are standing waves. We recall from Section 10.8 that a standing
wave is a combination of two waves traveling in opposite directions.

A. TM Mode to z

For this case, Hz = 0 and we let

EJx, y, z) = X(x) Y(y) Z(z) (12.73)

be the production solution of eq. (12.1). We follow the same procedure taken in Section
12.2 and obtain

X(x) = C\ cos kjX + c2 sin kpc

Y(y) = c3 cos kyy + c4 sin kyy

Z(z) = c5 cos kzz + c6 sin kzz,

where

k2 = k2
x + k], + k] = u2ixe

The boundary conditions are:

£z = 0 at x = 0, a

Ez = 0 at >' = 0 ,6

Ey = 0,Ex = 0 at z = 0, c

(12.74a)

(12.74b)

(12.74c)

(12.75)

(12.76a)

(12.76b)

(12.76c)

Figure 12.15 Rectangular cavity.
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As shown in Section 12.3, the conditions in eqs. (12.7a, b) are satisfied when
cx = 0 = c3 and

nvK
a y b

(12.77)

where m = 1, 2, 3, . . ., n = 1, 2, 3, . . . .To invoke the conditions in eq. (12.76c), we
notice that eq. (12.14) (with Hzs = 0) yields

d2Exs d2Ezs

dz dz

Similarly, combining eqs. (12.13a) and (12.13d) (with Hzs = 0) results in

-ycoe ys -

From eqs. (12.78) and (12.79), it is evident that eq. (12.76c) is satisfied if

— - = 0 at z = 0, c
dz

This implies that c6 = 0 and sin kzc = 0 = sin pir. Hence,

(12.78)

(12.79)

(12.80)

(12.81)

where p = 0, 1, 2, 3 , . . . . Substituting eqs. (12.77) and (12.81) into eq. (12.74) yields

(12.82)

where Eo = c2c4c5. Other field components are obtained from eqs. (12.82) and (12.13).
The phase constant /3 is obtained from eqs. (12.75), (12.77), and (12.81) as

(12.83)

Since /32 = co2/i£, from eq. (12.83), we obtain the resonant frequency fr

2irfr = ur =
fie

or

u
fr ^

/r i/ w
[a\

2 r 12

" 1 I
r "

r (12.84)



578 • Waveguides

The corresponding resonant wavelength is

u'

" fr llm
VU rJ

2

In

L ^
f +1 UJ

9 (12.85)

From eq. (12.84), we notice that the lowest-order TM mode is TM110-

B. TE Mode to z

In this case, Ez = 0 and

Hzs = (bt cos sin 3 cos kyy + b4 sin kyy)
(^5 cos kzz + sin kzz)

The boundary conditions in eq. (12.76c) combined with eq. (12.13) yields

at z = 0, cHzs =

dx

dy

= 0 at x = 0, a

= 0 at = 0,b

(12.86)

(12.87a)

(12.87b)

(12.87c)

Imposing the conditions in eq. (12.87) on eq. (12.86) in the same manner as for TM mode
to z leads to

(12.88)

where m = 0, 1, 2, 3, . . ., n = 0, 1, 2, 3, . . ., and p = 1, 2, 3, . . . . Other field com-
ponents can be obtained from eqs. (12.13) and (12.88). The resonant frequency is the
same as that of eq. (12.84) except that m or n (but not both at the same time) can be
zero for TE modes. The reason why m and n cannot be zero at the same time is that the
field components will be zero if they are zero. The mode that has the lowest resonant
frequency for a given cavity size (a, b, c) is the dominant mode. If a > b < c, it implies
that I/a < \lb > lie and hence the dominant mode is TE101. Note that for a > b < c, the
resonant frequency of TMU0 mode is higher than that for TE101 mode; hence, TE101 is
dominant. When different modes have the same resonant frequency, we say that the
modes are degenerate; one mode will dominate others depending on how the cavity is
excited.

A practical resonant cavity has walls with finite conductivity ac and is, therefore,
capable of losing stored energy. The quality factor Q is a means of determining the loss.
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The qiialitx factor is also a measure of I he bandwidth ol' the cavity resonator.

It may be defined as

Time average energy stored
Energy loss per cycle of oscillation
W W

(12.89)

where T = 1// = the period of oscillation, PL is the time average power loss in the cavity,
and W is the total time average energy stored in electric and magnetic fields in the cavity.
Q is usually very high for a cavity resonator compared with that for an RLC resonant
circuit. By following a procedure similar to that used in deriving ac in Section 12.6, it can
be shown that the quality factor for the dominant TE]01 is given by3

GTE 1 0 1 =
5[2b(a3

(a2

+ c

+
3)

c2)abc

+ acia fc!)]
(12.90)

where 5 = is the skin depth of the cavity walls.

EXAMPLE 12.8
An air-filled resonant cavity with dimensions a = 5 cm, b = 4 cm, and c = 10 cm is
made of copper (oc = 5.8 X 107 mhos/m). Find

(a) The five lowest order modes

(b) The quality factor for TE1Oi mode

Solution:

(a) The resonant frequency is given by

m

where

u' = = c

3For the proof, see S. V. Marshall and G. G. Skitek, Electromagnetic Concepts and Applications, 3rd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 440-442.
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Hence

3 X l(f m
5 X 10" 4 X 10- 2 10 X 10 - 2

= 15V0.04m2 + 0.0625«2 + 0.01/?2 GHz

Since c > a > b or 1/c < I/a < 1/&, the lowest order mode is TE101. Notice that
TMioi and TE1Oo do not exist because m = 1,2, 3, . . ., n = 1,2, 3, . . ., and
p = 0, 1, 2, 3, . . . for the TM modes, and m = 0, 1, 2, . . ., n = 0, 1, 2, . . ., and
p = 1,2,3,. . . for the TE modes. The resonant frequency for the TE1Oi mode is

frm = 15V0.04 + 0 + 0.01 = 3.335 GHz

The next higher mode is TE011 (TM011 does not exist), with

fron = 15V0 + 0.0625 + 0.01 = 4.04 GHz

The next mode is TE102 (TM!02 does not exist), with

frim = 15V0.04 + 0 + 0.04 = 4.243 GHz

The next mode is TM110 (TE110 does not exist), with

fruo = 15V0.04 + 0.0625 + 0 = 4.8 GHz

The next two modes are TE i n and TM n ] (degenerate modes), with

frni = 15V0.04 + 0.0625 + 0.01 = 5.031 GHz

The next mode is TM103 with

frm = 15V0.04 + 0 + 0.09 = 5.408 GHz

Thus the five lowest order modes in ascending order are

TE101 (3.35 GHz)

TEon (4.04 GHz)
TE102 (4.243 GHz)
TMU 0 (4.8 GHz)
T E i , , o r T M i n (5.031 GHz)

(b) The quality factor for TE]01 is given by

2TEI01 -
(a2 c2) abc

S[2b(a c3) ac(a2 c2)]

(25 + 100) 200 X 10~2

5[8(125 + 1000) + 50(25 + 100)]

616 61

VV(3.35 X 109) 4TT X 10"7 (5.8 X 107)

61
= 14,358
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PRACTICE EXERCISE 12.8

If the resonant cavity of Example 12.8 is filled with a lossless material (/xr = 1,
er - 3), find the resonant frequency fr and the quality factor for TE101 mode.

Answer: 1.936 GHz, 1.093 X 104

SUMMARY 1. Waveguides are structures used in guiding EM waves at high frequencies. Assuming a
lossless rectangular waveguide (ac — o°, a — 0), we apply Maxwell's equations in ana-
lyzing EM wave propagation through the guide. The resulting partial differential equa-
tion is solved using the method of separation of variables. On applying the boundary
conditions on the walls of the guide, the basic formulas for the guide are obtained for
different modes of operation.

2. Two modes of propagation (or field patterns) are the TMmn and TEmn where m and n are
positive integers. For TM modes, m = 1, 2, 3, . . ., and n = 1, 2, 3, . . . and for TE
modes, m = 0, 1, 2, . . ., and n = 0, 1, 2, . . .,n = m¥z0.

3. Each mode of propagation has associated propagation constant and cutoff frequency.
The propagation constant y = a + jfl does not only depend on the constitutive pa-
rameters (e, /x, a) of the medium as in the case of plane waves in an unbounded space,
it also depends on the cross-sectional dimensions (a, b) of the guide. The cutoff fre-
quency is the frequency at which y changes from being purely real (attenuation) to
purely imaginary (propagation). The dominant mode of operation is the lowest mode
possible. It is the mode with the lowest cutoff frequency. If a > b, the dominant mode
is TE10.

4. The basic equations for calculating the cutoff frequency fc, phase constant 13, and phase
velocity u are summarized in Table 12.1. Formulas for calculating the attenuation con-
stants due to lossy dielectric medium and imperfectly conducting walls are also pro-
vided.

5. The group velocity (or velocity of energy flow) ug is related to the phase velocity up of
the wave propagation by

upug = u'2

where u' = 1/v/xs is the medium velocity—i.e., the velocity of the wave in the di-
electric medium unbounded by the guide. Although up is greater than u', up does not
exceed u'.

6. The mode of operation for a given waveguide is dictated by the method of exci-
tation.

7. A waveguide resonant cavity is used for energy storage at high frequencies. It is nothing
but a waveguide shorted at both ends. Hence its analysis is similar to that of a wave-
guide. The resonant frequency for both the TE and TM modes to z is given by

m
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For TM modes, m = 1, 2, 3, . . ., n = 1, 2, 3, . . ., and p = 0, 1, 2, 3, . . ., and for
TE modes, m = 0,1,2,3,. . ., n = 0, 1, 2, 3 , . . ., and p = 1, 2, 3 , . . .,m = n ^ 0.
If a > b < c, the dominant mode (one with the lowest resonant frequency) is TE1Oi-

8. The quality factor, a measure of the energy loss in the cavity, is given by

2 = "-?

12.1 At microwave frequencies, we prefer waveguides to transmission lines for transporting
EM energy because of all the following except that

(a) Losses in transmission lines are prohibitively large.

(b) Waveguides have larger bandwidths and lower signal attenuation.

(c) Transmission lines are larger in size than waveguides.

(d) Transmission lines support only TEM mode.

12.2 An evanscent mode occurs when

(a) A wave is attenuated rather than propagated.

(b) The propagation constant is purely imaginary.

(c) m = 0 = n so that all field components vanish.

(d) The wave frequency is the same as the cutoff frequency.

12.3 The dominant mode for rectangular waveguides is

(a) TE,,

(b) TM n

(c) TE1Oi

(d) TE10

12.4 The TM10 mode can exist in a rectangular waveguide.

(a) True

(b) False

12.5 For TE30 mode, which of the following field components exist?

(a) Ex

(b) Ey

(c) Ez

(d) Hx

(e) Hv
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12.6 If in a rectangular waveguide for which a = 2b, the cutoff frequency for TE02 mode is
12 GHz, the cutoff frequency for TMH mode is

(a) 3 GHz
(b) 3 \ /5GHz
(c) 12 GHz

(d) 6 \A GHz
(e) None of the above

12.7 If a tunnel is 4 by 7 m in cross section, a car in the tunnel will not receive an AM radio
signal (e.g.,/= 10 MHz).

(a) True

(b) False

12.8 When the electric field is at its maximum value, the magnetic energy of a cavity is

(a) At its maximum value
(b) At V 2 of its maximum value

(c) At —-p of its maximum value
V 2

(d) At 1/2 of its maximum value

(e) Zero

12.9 Which of these modes does not exist in a rectangular resonant cavity?

(a) TE110

(b) TEQH

(c) TM110

(d) TMm

12.10 How many degenerate dominant modes exist in a rectangular resonant cavity for which
a = b = c?

(a) 0
(b) 2

(c) 3

(d) 5
(e) oo

Answers: 12.1c, 12.2a, 12.3d, 12.4b, 12.5b,d, 12.6b, 12.7a, 12.8e, 12.9a, 12.10c.

PROBLEMS I ^** ^ ^ n o w m a t a rectangular waveguide does not support TM10 and TM01 modes.
(b) Explain the difference between TEmn and TMmn modes.
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12.2 A 2-cm by 3-cm waveguide is filled with a dielectric material with er = 4. If the wave-
guide operates at 20 GHz with TMU mode, find: (a) cutoff frequency, (b) the phase con-
stant, (c) the phase velocity.

12.3 A 1-cm X 2-cm waveguide is filled with deionized water with er = 81. If the operating
frequency is 4.5 GHz, determine: (a) all possible propagating modes and their cutoff fre-
quencies, (b) the intrinsic impedance of the highest mode, (c) the group velocity of the
lowest mode.

12.4 Design a rectangular waveguide with an aspect ratio of 3 to 1 for use in the k band
(18-26.5 GHz). Assume that the guide is air filled.

12.5 A tunnel is modeled as an air-filled metallic rectangular waveguide with dimensions
a = 8 m and b = 16 m. Determine whether the tunnel will pass: (a) a 1.5-MHz AM
broadcast signal, (b) a 120-MHz FM broadcast signal.

12.6 In an air-filled rectangular waveguide, the cutoff frequency of a TE10 mode is 5 GHz,
whereas that of TEOi mode is 12 GHz. Calculate

(a) The dimensions of the guide

(b) The cutoff frequencies of the next three higher TE modes

(c) The cutoff frequency for TEn mode if the guide is filled with a lossless material

having er = 2.25 and (ir=\.

12.7 An air-filled hollow rectangular waveguide is 150 m long and is capped at the end with
a metal plate. If a short pulse of frequency 7.2 GHz is introduced into the input end of the
guide, how long does it take the pulse to return to the input end? Assume that the cutoff
frequency of the guide is 6.5 GHz.

12.8 Calculate the dimensions of an air-filled rectangular waveguide for which the cutoff fre-
quencies for TM n and TE03 modes are both equal to 12 GHz. At 8 GHz, determine
whether the dominant mode will propagate or evanesce in the waveguide.

12.9 An air-filled rectangular waveguide has cross-sectional dimensions a = 6 cm and
b = 3 cm. Given that

E, = 5 sin (—) sin (-*A cos (1012f - 0z) V/m
V a ) V b )

calculate the intrinsic impedance of this mode and the average power flow in the
guide.

12.10 In an air-filled rectangular waveguide, a TE mode operating at 6 GHz has

Ey = 5 sm(2irx/a) cos(wy/b) sm(a>t — 12z) V/m

Determine: (a) the mode of operation, (b) the cutoff frequency, (c) the intrinsic imped-
ance, (d) Hx.
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12.11 In an air-filled rectangular waveguide with a = 2.286 cm and b = 1.016 cm, the
y-component of the TE mode is given by

Ey = sin(27rx/a) sin(107r X 1010r - j3z) V/m

find: (a) the operating mode, (b) the propagation constant 7, (c) the intrinsic impedance

V-

12.12 For the TM,, mode, derive a formula for the average power transmitted down the guide.

12.13 (a) Show that for a rectangular waveguide.

" ' x =
X'

1 -

(b) For an air-filled waveguide with a = 2b = 2.5 cm operating at 20 GHz, calculate
up and X for TE n and TE2i modes.

12.14 A 1-cm X 3-cm rectangular air-filled waveguide operates in the TE|2 mode at a fre-
quency that is 20% higher than the cutoff frequency. Determine: (a) the operating fre-
quency, (b) the phase and group velocities.

12.15 A microwave transmitter is connected by an air-filled waveguide of cross section
2.5 cm X 1 cm to an antenna. For transmission at 11 GHz, find the ratio of (a) the phase
velocity to the medium velocity, and (b) the group velocity to the medium velocity.

12.16 A rectangular waveguide is filled with polyethylene (s = 2.25eo) and operates at 24
GHz. If the cutoff frequency of a certain TE mode is 16 GHz, find the group velocity and
intrinsic impedance of the mode.

12.17 A rectangular waveguide with cross sections shown in Figure 12.16 has dielectric dis-
continuity. Calculate the standing wave ratio if the guide operates at 8 GHz in the domi-
nant mode.

*12.18 Analysis of circular waveguide requires solution of the scalar Helmholtz equation in
cylindrical coordinates, namely

V2EZS + k2Ezs = 0

2.5 cm

5 cm

Figure 12.16 For Problem 12.17.

fio, so fio, 2.25so
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or

1 d f dEzs\ 1 d2Ea d2Ezs 2

p dp V dp / p 30 3z

By assuming the product solution

Ezs(p, </>, z) = R(p) $(<t>) Z(z)

show that the separated equations are:

Z" - k\ Z = 0

$" + *i $ = o

where

" + pR' + (A:2 p2 - kl) R = 0

t2 = /t2 + *2

12.19 For TE01 mode,

£xs = Y Ho sin(iry/b)e 7 \ Eys =

Find and Pa

12.20 A 1-cm X 2-cm waveguide is made of copper (ac = 5.8 X 107 S/m) and filled with a
dielectric material for which e = 2.6eo, \i = po, ad = 1CT4 S/m. If the guide operates
at 9 GHz, evaluate ac and ad for (a) TE10, and (b) TMU.

12.21 A 4-cm-square waveguide is filled with a dielectric with complex permittivity ec =
16eo(l — 7IO"4) and is excited with the TM2i mode. If the waveguide operates at 10%
above the cutoff frequency, calculate attenuation ad. How far can the wave travel down
the guide before its magnitude is reduced by 20%?

12.22 If the walls of the square waveguide in the previous problem are made of brass (ac =
1.5 X 10 S/m), find ac and the distance over which the wave is attenuated by 30%.

12.23 A rectangular waveguide with a = 2b = 4.8 cm is filled with teflon with er = 2 . 1 1 and
loss tangent of 3 X 10~4. Assume that the walls of the waveguide are coated with gold
(<7C = 4.1 X 107 S/m) and that a TE10 wave at 4 GHz propagates down the waveguide,
find: (a) ad, (b) ctc.

*12.24 A rectangular brass (ac = 1.37 X 107 S/m) waveguide with dimensions a = 2.25 cm
and b = 1.5 cm operates in the dominant mode at frequency 5 GHz. If the waveguide is
filled with teflon (p,r = 1, er = 2.11, a — 0), determine: (a) the cutoff frequency for the
dominant mode, (b) the attenuation constant due to the loss in the guide walls.

*12.25 For a square waveguide, show that attenuation ac. is minimum for TE1() mode when
/ = 2 . 9 6 2 / c .
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12.26 The attenuation constant of a TM mode is given by

At what frequency will a be maximum?

*12.27 Show that for TE mode to z in a rectangular cavity,

jwix.(mir\ . fmirx\ Iniry\ . /pirz
Eys = — - A )HO sin cos —— sin

h• \ a J \ a ) \ b J \ c

Find Hxs.

* 12.28 For a rectangular cavity, show that

( pirz
c o s

for TM mode to z. Determine Eys.

12.29 In a rectangular resonant cavity, which mode is dominant when

(a) a < b < c

(b) a > b > c

(c) a = c> b

12.30 For an air-filled rectangular cavity with dimensions a = 3 cm, b = 2 cm, c = 4 cm,
determine the resonant frequencies for the following modes: TE o n , TE101, TMno, and
TM1U. List the resonant frequencies in ascending order.

12.31 A rectangular cavity resonator has dimensions a = 3 cm, b = 6 cm, and c = 9 cm. If it
is filled with polyethylene (e = 2.5e0), find the resonant frequencies of the first five
lowest-order modes.

12.32 An air-filled cubical cavity operates at a resonant frequency of 2 GHz when excited at
the TE1Oi mode. Determine the dimensions of the cavity.

12.33 An air-filled cubical cavity of size 3.2 cm is made of brass (<jc = 1.37 X 107 S/m). Cal-
culate: (a) the resonant frequency of the TE101 mode, (b) the quality factor at that mode.

12.34 Design an air-filled cubical cavity to have its dominant resonant frequency at 3 GHz.

12.35 An air-filled cubical cavity of size 10 cm has

E = 200 sin 30TTX sin 30iry cos 6 X l09r a, V/m

Find H.


