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FIGURE 3.5 Field lines for the (a) TEM, (b) TM1, and (c) TE1 modes of a parallel plate wave-
guide. There is no variation across the width of the waveguide.

3.3 RECTANGULAR WAVEGUIDE

Rectangular waveguides were one of the earliest types of transmission lines used to transport
microwave signals, and they are still used for many applications. A large variety of components
such as couplers, detectors, isolators, attenuators, and slotted lines are commercially available
for various standard waveguide bands from 1 to 220 GHz. Figure 3.6 shows some of the
standard rectangular waveguide components that are available. Because of the trend toward
miniaturization and integration, most modern microwave circuitry is fabricated using planar
transmission lines such as microstrips and stripline rather than waveguides. There is, however,
still a need for waveguides in many cases, including high-power systems, millimeter wave
applications, satellite systems, and some precision test applications.

The hollow rectangular waveguide can propagate TM and TE modes but not TEM
waves since only one conductor is present. We will see that the TM and TE modes of a
rectangular waveguide have cutoff frequencies below which propagation is not possible,
similar to the TM and TE modes of the parallel plate guide.

TE Modes

The geometry of a rectangular waveguide is shown in Figure 3.7, where it is assumed
that the guide is filled with a material of permittivity ε and permeability µ. It is standard
convention to have the longest side of the waveguide along the x-axis, so that a > b.

TE waveguide modes are characterized by fields with Ez = 0, while Hz must satisfy
the reduced wave equation of (3.21):

(
∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
hz(x, y) = 0, (3.73)

with Hz(x, y, z) = hz(x, y)e− jβz ; here kc = √
k2 − β2 is the cutoff wave number. The

partial differential equation (3.73) can be solved by the method of separation of variables
by letting

hz(x, y) = X (x)Y (y) (3.74)
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FIGURE 3.6 Photograph of Ka-band (WR-28) rectangular waveguide components. Clockwise
from top: a variable attenuator, an E-H (magic) tee junction, a directional coupler,
an adaptor to ridge waveguide, an E-plane swept bend, an adjustable short, and a
sliding matched load.

and substituting into (3.73) to obtain

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ k2

c = 0. (3.75)

Then, by the usual separation-of-variables argument (see Section 1.5), each of the terms in
(3.75) must be equal to a constant, so we define separation constants kx and ky such that

d2 X

dx2
+ k2

x X = 0, (3.76a)

d2Y

dy2
+ k2

yY = 0, (3.76b)
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FIGURE 3.7 Geometry of a rectangular waveguide.
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and

k2
x + k2

y = k2
c . (3.77)

The general solution for hz can then be written as

hz(x, y) = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y). (3.78)

To evaluate the constants in (3.78) we must apply the boundary conditions on the
electric field components tangential to the waveguide walls. That is,

ex (x, y) = 0, at y = 0, b, (3.79a)

ey(x, y) = 0, at x = 0, a. (3.79b)

We therefore cannot use hz of (3.78) directly but must first use (3.19c) and (3.19d) to find
ex and ey from hz :

ex = − jωµ

k2
c

ky(A cos kx x + B sin kx x)(−C sin ky y + D cos ky y), (3.80a)

ey = jωµ

k2
c

kx (−A sin kx x + B cos kx x)(C cos ky y + D sin ky y). (3.80b)

Then from (3.79a) and (3.80a) we see that D = 0, and ky = nπ /b for n = 0, 1, 2. . . .
From (3.79b) and (3.80b) we have that B = 0 and kx = mπ/a for m = 0, 1, 2. . . . The
final solution for Hz is then

Hz(x, y, z) = Amn cos
mπx

a
cos

nπy

b
e− jβz, (3.81)

where Amn is an arbitrary amplitude constant composed of the remaining constants A
and C of (3.78).

The transverse field components of the TEmn mode can be found using (3.19) and
(3.81):

Ex = jωµnπ

k2
c b

Amn cos
mπx

a
sin

nπy

b
e− jβz, (3.82a)

Ey = − jωµmπ

k2
c a

Amn sin
mπx

a
cos

nπy

b
e− jβz, (3.82b)

Hx = jβmπ

k2
c a

Amn sin
mπx

a
cos

nπy

b
e− jβz, (3.82c)

Hy = jβnπ

k2
c b

Amn cos
mπx

a
sin

nπy

b
e− jβz . (3.82d)

The propagation constant is

β =
√

k2 − k2
c =

√
k2 −

(mπ

a

)2 −
(nπ

b

)2
, (3.83)

which is seen to be real, corresponding to a propagating mode, when

k > kc =
√(mπ

a

)2 +
(nπ

b

)2
.
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Each mode (each combination of m and n) has a cutoff frequency fcmn given by

fcmn = kc

2π
√

µε
= 1

2π
√

µε

√(mπ

a

)2 +
(nπ

b

)2
. (3.84)

The mode with the lowest cutoff frequency is called the dominant mode; because we have
assumed a > b, the lowest cutoff frequency occurs for the TE10(m = 1, n = 0) mode:

fc10 = 1

2a
√

µε
. (3.85)

Thus the TE10 mode is the dominant TE mode and, as we will see, the overall dominant
mode of the rectangular waveguide. Observe that the field expressions for Ē and H̄ in
(3.82) are all zero if both m = n = 0; there is no TE00 mode.

At a given operating frequency f only those modes having f > fc will propagate;
modes with f < fc will lead to an imaginary β (or real α), meaning that all field compo-
nents will decay exponentially away from the source of excitation. Such modes are referred
to as cutoff modes, or evanescent modes. If more than one mode is propagating, the wave-
guide is said to be overmoded.

From (3.22) the wave impedance that relates the transverse electric and magnetic fields
is

ZTE = Ex

Hy
= −Ey

Hx
= kη

β
, (3.86)

where η = √
µ/ε is the intrinsic impedance of the material filling the waveguide. Note

that ZTE is real whenβ is real (a propagating mode) but is imaginary when β is imaginary
(a cutoff mode).

The guide wavelength is defined as the distance between two equal-phase planes along
the waveguide and is equal to

λg = 2π

β
>

2π

k
= λ, (3.87)

which is thus greater than λ, the wavelength of a plane wave in the medium filling the
guide. The phase velocity is

vp = ω

β
>

ω

k
= 1/

√
µε, (3.88)

which is greater than 1/
√

µε, the speed of light (plane wave) in the medium.
In the vast majority of waveguide applications the operating frequency and guide

dimensions are chosen so that only the dominant TE10 mode will propagate. Because of
the practical importance of the TE10 mode, we will list the field components and derive the
attenuation due to conductor loss for this case.

Specializing (3.81) and (3.82) to the m = 1, n = 0 case gives the following results
for the TE10 mode fields:

Hz = A10 cos
πx

a
e− jβz, (3.89a)

Ey = − jωµa

π
A10 sin

πx

a
e− jβz, (3.89b)

Hx = jβa

π
A10 sin

πx

a
e− jβz, (3.89c)

Ex = Ez = Hy = 0. (3.89d)
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The cutoff wave number and propagation constant for the TE10 mode are, respectively,

kc = π/a, (3.90)

β = √
k2 − (π/a)2. (3.91)

The power flow down the guide for the TE10 mode can be calculated as

P10 = 1

2
Re

∫ a

x=0

∫ b

y=0
Ē × H̄∗ · ẑ dy dx

= 1

2
Re

∫ a

x=0

∫ b

y=0
Ey H∗

x dy dx

= ωµa2

2π2
Re(β)|A10|2

∫ a

x=0

∫ b

y=0
sin2 πx

a
dy dx

= ωµa3|A10|2b

4π2
Re(β). (3.92)

Note that this result gives nonzero real power only when β is real, corresponding to a
propagating mode.

Attenuation in a rectangular waveguide may occur due to dielectric loss or conductor
loss. Dielectric loss can be treated by making ε complex and using the general result given
in (3.29). Conductor loss is best treated using the perturbation method. The power lost per
unit length due to finite wall conductivity is, from (1.131),

P� = Rs

2

∫
C

| J̄s |2d�, (3.93)

where Rs is the wall surface resistance, and the integration contour C encloses the inside
perimeter of the guide walls. There are surface currents on all four walls, but from sym-
metry the currents on the top and bottom walls are identical, as are the currents on the left
and right side walls. So we can compute the power lost in the walls at x = 0 and y = 0
and double their sum to obtain the total power loss. The surface current on the x = 0 (left)
wall is

J̄s = n̂ × H̄ |x=0 = x̂ × ẑHz |x=0 = −ŷ Hz |x=0 = −ŷ A10e− jβz, (3.94a)

and the surface current on the y = 0 (bottom) wall is

J̄s = n̂ × H̄ |y=0 = ŷ × (x̂ Hx |y=0 + ẑHz |y=0)

= −ẑ
jβa

π
A10 sin

πx

a
e− jβz + x̂ A10 cos

πx

a
e− jβz . (3.94b)

Substituting (3.94) into (3.93) gives

P� = Rs

∫ b

y=0
|Jsy |2dy + Rs

∫ a

x=0

[
|Jsx |2 + |Jsz |2

]
dx

= Rs |A10|2
(

b + a

2
+ β2a3

2π2

)
. (3.95)
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The attenuation due to conductor loss for the TE10 mode is then

αc = P�

2P10
= 2π2 Rs(b + a/2 + β2a3/2π2)

ωµa3bβ

= Rs

a3bβkη
(2bπ2 + a3k2) Np/m. (3.96)

TM Modes

TM modes are characterized by fields with Hz = 0, while Ez must satisfy the reduced
wave equation (3.25):

(
∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
ez(x, y) = 0, (3.97)

with Ez(x, y, z) = ez(x, y)e− jβz and k2
c = k2 − β2. Equation (3.97) can be solved by the

separation-of-variables procedure that was used for TE modes. The general solution is

ez(x, y) = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y). (3.98)

The boundary conditions can be applied directly to ez :

ez(x, y) = 0, at x = 0, a, (3.99a)

ez(x, y) = 0, at y = 0, b. (3.99b)

We will see that satisfaction of these conditions on ez will lead to satisfaction of the bound-
ary conditions by ex and ey .

Applying (3.99a) to (3.98) shows that A = 0 and kx = mπ /a for m = 1, 2, 3. . . .
Similarly, applying (3.99b) to (3.98) shows that C = 0 and ky = nπ /b for n = 1, 2, 3. . . .
The solution for Ez then reduces to

Ez(x, y, z) = Bmn sin
mπx

a
sin

nπy

b
e− jβz, (3.100)

where Bmn is an arbitrary amplitude constant.
The transverse field components for the TMmn mode can be computed from (3.23) and

(3.100) as

Ex = − jβmπ

ak2
c

Bmn cos
mπx

a
sin

nπy

b
e− jβz, (3.101a)

Ey = − jβnπ

bk2
c

Bmn sin
mπx

a
cos

nπy

b
e− jβz, (3.101b)

Hx = jωεnπ

bk2
c

Bmn sin
mπx

a
cos

nπy

b
e− jβz, (3.101c)

Hy = − jωεmπ

ak2
c

Bmn cos
mπx

a
sin

nπy

b
e− jβz . (3.101d)

As for the TE modes, the propagation constant is

β =
√

k2 − k2
c =

√
k2 −

(mπ

a

)2 −
(nπ

b

)2
(3.102)
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FIGURE 3.8 Attenuation of various modes in a rectangular brass waveguide with a = 2.0 cm.

and is real for propagating modes and imaginary for cutoff modes. The cutoff frequencies
for the TMmn modes are also the same as those of the TEmn modes, as given in (3.84).
The guide wavelength and phase velocity for TM modes are also the same as those for TE
modes.

Observe that the field expressions for Ē and H̄ in (3.101) are identically zero if either
m or n is zero. Thus there is no TM00, TM01, or TM10 mode, and the lowest order TM
mode to propagate (lowest fc) is the TM11 mode, having a cutoff frequency of

fc11 = 1

2π
√

µε

√(π

a

)2 +
(π

b

)2
, (3.103)

which is seen to be larger than fc10 , the cutoff frequency of the TE10 mode.
The wave impedance relating the transverse electric and magnetic fields for TM modes

is, from (3.26),

ZTM = Ex

Hy
= −Ey

Hx
= βη

k
. (3.104)

Attenuation due to dielectric loss is computed in the same way as for TE modes, with
the same result. The calculation of attenuation due to conductor loss is left as a problem;
Figure 3.8 shows attenuation versus frequency for some TE and TM modes in a rectangular
waveguide. Table 3.2 summarizes results for TE and TM wave propagation in rectangular
waveguides, and Figure 3.9 shows the field lines for several of the lowest order TE and TM
modes.

EXAMPLE 3.1 CHARACTERISTICS OF A RECTANGULAR WAVEGUIDE

Consider a length of Teflon-filled, copper K-band rectangular waveguide having
dimensions a = 1.07 cm and b = 0.43 cm. Find the cutoff frequencies of the first
five propagating modes. If the operating frequency is 15 GHz, find the attenuation
due to dielectric and conductor losses.
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TABLE 3.2 Summary of Results for Rectangular Waveguide

Quantity TEmn Mode TMmn Mode

k ω
√

µε ω
√

µε

kc
√

(mπ/a)2 + (nπ/b)2
√

(mπ/a)2 + (nπ/b)2

β

√
k2 − k2

c

√
k2 − k2

c

λc
2π

kc

2π

kc

λg
2π

β

2π

β

vp
ω

β

ω

β

αd
k2 tan δ

2β

k2 tan δ

2β

Ez 0 B sin
mπx

a
sin

nπy

b
e− jβz

Hz A cos
mπx

a
cos

nπy

b
e− jβz 0

Ex
jωµnπ

k2
c b

A cos
mπx

a
sin

nπy

b
e− jβz − jβmπ

k2
c a

B cos
mπx

a
sin

nπy

b
e− jβz

Ey
− jωµmπ

k2
c a

A sin
mπx

a
cos

nπy

b
e− jβz − jβnπ

k2
c b

B sin
mπx

a
cos

nπy

b
e− jβz

Hx
jβmπ

k2
c a

A sin
mπx

a
cos

nπy

b
e− jβz jωεnπ

k2
c b

B sin
mπx

a
cos

nπy

b
e− jβz

Hy
jβnπ

k2
c b

A cos
mπx

a
sin

nπy

b
e− jβz − jωεmπ

k2
c a

B cos
mπx

a
sin

nπy

b
e− jβz

Z ZTE = kη

β
ZTM = βη

k

Solution
From Appendix G, for Teflon, εr = 2.08 and tan δ = 0.0004. From (3.84) the
cutoff frequencies are given by

fcmn = c

2π
√

εr

√(mπ

a

)2 +
(nπ

b

)2
.

Computing fc for the first few values of m and n gives the following results:

Mode m n fc(GHz)

TE 1 0 9.72

TE 2 0 19.44

TE 0 1 24.19

TE, TM 1 1 26.07

TE, TM 2 1 31.03
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Thus the TE10, TE20, TE01, TE11, and TM11 modes will be the first five modes to
propagate.

At 15 GHz, k = 453.1 m−1, and the propagation constant for the TE10 mode
is

β =
√(

2π f
√

εr

c

)2

−
(π

a

)2 =
√

k2 −
(π

a

)2 = 345.1 m−1.

From (3.29), the attenuation due to dielectric loss is

αd = k2 tan δ

2β
= 0.119 Np/m = 1.03 dB/m.

The surface resistivity of the copper walls is (σ = 5.8 × 107 S/m)

Rs =
√

ωµ0

2σ
= 0.032 �,

and the attenuation due to conductor loss, from (3.96), is

αc = Rs

a3bβkη
(2bπ2 + a3k2) = 0.050 Np/m = 0.434 dB/m.

■

TEm0 Modes of a Partially Loaded Waveguide

The above results apply to an empty waveguide as well as one filled with a homogeneous
dielectric or magnetic material, but in some cases of practical interest (such as impedance
matching or phase-shifting sections) a waveguide is used with a partial dielectric filling.
In this case an additional set of boundary conditions are introduced at the material inter-
face, necessitating a new analysis. To illustrate the technique we will consider the TEm0
modes of a rectangular waveguide that is partially filled with a dielectric slab, as shown
in Figure 3.10. The analysis still follows the basic procedure outlined at the end of
Section 3.1.

Since the geometry is uniform in the y direction and n = 0, the TEm0 modes have no
y dependence. Then the wave equation of (3.21) for hz can be written separately for the
dielectric and air regions as

(
∂2

∂x2
+ k2

d

)
hz = 0, for 0 ≤ x ≤ t, (3.105a)

(
∂2

∂x2
+ k2

a

)
hz = 0, for t ≤ x ≤ a, (3.105b)

y

x

�r�0 �0

b

0
at

FIGURE 3.10 Geometry of a partially loaded rectangular waveguide.



c03TransmissionLinesandWaveguides Pozar July 29, 2011 20:41

120 Chapter 3: Transmission Lines and Waveguides

where kd and ka are the cutoff wave numbers for the dielectric and air regions, defined as
follows:

β =
√

εr k2
0 − k2

d , (3.106a)

β =
√

k2
0 − k2

a . (3.106b)

These relations incorporate the fact that the propagation constant, β, must be the same in
both regions to ensure phase matching (see Section 1.8) of the fields along the interface at
x = t. The solutions to (3.105) can be written as

hz =
{

A cos kd x + B sin kd x for 0 ≤ x ≤ t

C cos ka(a − x) + D sin ka(a − x) for t ≤ x ≤ a,
(3.107)

where the form of the solution for t < x < a was chosen to simplify the evaluation of
boundary conditions at x = a.

We need ŷ and ẑ electric and magnetic field components to apply the boundary condi-
tions at x = 0, t, and a. Ez = 0 for TE modes, and Hy = 0 since ∂/∂y = 0. Ey is found
from (3.19d) as

ey =

⎧⎪⎪⎨
⎪⎪⎩

jωµ0

kd
(−A sin kd x + B cos kd x) for 0 ≤ x ≤ t

jωµ0

ka
[C sin ka(a − x) − D cos ka(a − x)] for t ≤ x ≤ a.

(3.108)

To satisfy the boundary conditions that Ey = 0 at x = 0 and x = a requires that B =
D = 0. We next enforce continuity of tangential fields (Ey, Hz) at x = t . Equations (3.107)
and (3.108) then give the following:

−A

kd
sin kd t = C

ka
sin ka(a − t),

A cos kd t = C cos ka(a − t).

Because this is a homogeneous set of equations, the determinant must vanish in order to
have a nontrivial solution. Thus,

ka tan kd t + kd tan ka(a − t) = 0. (3.109)

Using (3.106) allows ka and kd to be expressed in terms of β, so (3.109) can be solved
numerically for β. There is an infinite number of solutions to (3.109), corresponding to the
propagation constants of the TEm0 modes.

This technique can be applied to many other waveguide geometries involving dielec-
tric or magnetic material inhomogeneities, such as the surface waveguide of Section 3.6 or
the ferrite-loaded waveguide of Section 9.3. In some cases, however, it will be impossible
to satisfy all the necessary boundary conditions with only TE- or TM-type modes, and a
hybrid combination of both types of modes may be required.

POINT OF INTEREST: Waveguide Flanges

There are two commonly used waveguide flanges: the cover flange and the choke flange. As
shown in the accompanying figure, two waveguides with cover-type flanges can be bolted to-
gether to form a contacting joint. To avoid reflections and resistive loss at this joint it is neces-
sary that the contacting surfaces be smooth, clean, and square because RF currents must flow
across this discontinuity. In high-power applications voltage breakdown may occur at an imper-
fect junction. Otherwise, the simplicity of the cover-to-cover connection makes it preferable for
general use. The SWR from such a joint is typically less than 1.03.
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An alternative waveguide connection uses a cover flange against a choke flange, as shown
in the figure. The choke flange is machined to form an effective radial transmission line in the
narrow gap between the two flanges; this line is approximately λg /4 in length between the guide
and the point of contact for the two flanges. Another λg /4 line is formed by a circular axial
groove in the choke flange. Then the short circuit at the right-hand end of this groove is trans-
formed into an open circuit at the contact point of the flanges. Any resistance in this contact is in
series with an infinite (or very high) impedance and thus has little effect. This high impedance
is transformed back into a short circuit (or very low impedance) at the edges of the waveguides
to provide an effective low-resistance path for current flow across the joint. Because there is
a negligible voltage drop across the ohmic contact between the flanges, voltage breakdown is
avoided. Thus, the cover-to-choke connection can be useful for high-power applications. The
SWR for this joint is typically less than 1.05 but is more frequency dependent than that of the
cover-to-cover joint.

ContactContact

Cover-to-cover
connection

Cover-to-choke
connection

�g/4

�g/4

Reference: C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill,
New York, 1948.

3.4 CIRCULAR WAVEGUIDE

A hollow, round metal pipe also supports TE and TM waveguide modes. Figure 3.11 shows
the geometry of such a circular waveguide, with inner radius a. Because cylindrical geom-
etry is involved, it is appropriate to employ cylindrical coordinates. As in the rectangular

y

x

z

a �
	

FIGURE 3.11 Geometry of a circular waveguide.
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