Analysis of Microwave Networks

Introduction:

* A microwave network is formed when several
microwave devices are connected together by
transmission lines for transmission of microwave
signals

1- Port microwave network:

* One port network: A general microwave one port
network is defined by a device for which power

can enter and leave from only one transmission
line or a waveguide
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 We assume that the one port network is defined
by a surface S which is perfectly conducting
except for an opening at the terminal connection
from where the input signal comes to the
microwave device also known as port (see Fig.

(a))
* In Fig. (b), an example of 1-port network
microwave device is shown

* |tis basically an open ended microstrip line with
port 1 as input port
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* Fig. (a) General representation of 1-port
network microwave device (b) An example of
1-port microwave device

Open ended

T microstrip line

Transmission line or waveguide
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* Impedance & admittance matrix representations
of 2-port and N-port microwave networks:

 Two port networks are usually used to represent
a microwave device

* A general 2-port microwave device is depicted in
Fig. (a) and Fig. (b) and Fig. (c) are respectively
the impedance and admittance matrix
representation of this 2-port microwave network.
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* Fig. (a) A 2-port microwave device and its (b)
Z-matrix and (c) Y-matrix representations

v
TV1 Doion VZI Tv1 2] VZT Tv1 Y] VZT
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* For this case, we can simply write the relation
between the port currents and voltages as

follows: V=271 + 7,1,

1151

1[;r — mew T Zzsz

* |[n matrix form, port voltages are expressed in

terms of port currents as follows:
i ‘N

V 11 %1
v, Zo1 % |1, foratwo port device
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where Z; is defined as T
J i =0k=

mittance matrix

Similarly for the ac

Z |1I

for an N-port device

for any N-port microwave device

representations for an N port microwave

device is:
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where Y4 is defined as e

J I 'FII._1=EI..";=;

Transmission Matrix Representation:

* |n transmission matrix representations also called

as [ABCD] matrix, we try to get the voltages &
currents of 15t port in terms of 2"d port voltages &

currents of the networks
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* Fig. (a) A two-port microwave device and its
(b) transmission matrix representation
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* Note that the current direction convention of
,, is opposite to that of the previous two port
networks to get a positive values of B & D
parameters of the transmission matrix

* The relation between port 1 and port 2
voltages and current are as follows:
Vl = AV2 + BIZ V, L/
I,=CV,+ DI, v Ym0

~|=

IZ=O
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 ABCD matrix representations of some
common two-port microwave components(a)

| ) |

2
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] I f

(a) (b) (c)
Fig. (a) Series impedance (b) Shunt impedance

(c) Lossless transmission line
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e Series impedance

Vo= 1,Z +V, =V, + 1,7
I, =1,=0x7V, + I

A B
o b

2
1 Z
0 1

|}

A B
C D

* Shunt impedance

1 0
Yy 1

e
—
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e Lossless transmission lines
Noting that & = 27( / A

1V =1¢" =V, cos+ 7V, sinf =1, cos§ + L, Z, sind
[ =Lc" =1 cs8+4 gL, sinf =L cos 0+ 51, sinf
A B cos 12, sin 6'1

™

—- R —
¢ D

7Y, sinf  cosf
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* For lossy case, we can simply write

cosh~v(  Z,sinh~(

‘4 B) |
C D|

Y,sinh~+(  cosh+(
* Series connection of two port networks:

* |n practice, many networks consist of a series
connection of two or more two port networks
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We will assume that the overall two port
ABCD matrix of two or more two port
networks can be found by simply multiplying
the two port networks of the individual two
port networks

V, A, BV,

I, C, D, ||, for microwave device 1
v,] (4, B,\[V,
1, ¢, D,||1, for microwave device 2
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* Fig. Series connection of two 2-port

microwave devices

Microwave
Device 1

I\)_

Q —» O

Microwave
Device 2
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* Hence
7, ‘A, B,\(A4, B,\[V,
IIZ[(‘ D, |lc, D,||I,
4 BV
B {(' DI,

* |tis very convenient way of representing
microwave networks
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Scattering matrix representations:

Practical problems exist when trying to measure
voltages and currents at microwave frequencies

Direct measurements can’t be done since all are
EM waves at high frequencies

It is an abstract idea

A more appropriate representation is scattering
matrix representation since we can directly
measure reflected, transmitted and incident
waves
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e Scattering matrix relates the incident,
transmitted & reflected waves at the ports

e Scattering matrix can be directly measured
with a Network Analyzer

* Once the parameters are known they can be
converted to any other matrix parameters for
the analysis of the microwave network
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Two Port Network:

e |f denote the amplitude of incident voltage
wave at port 1 and the amplitude of reflected
voltage wave from port 1, then scattering
parameters are expressed as:

Vi = Sllvl+ + 512V2+
V, = S21V1+ + Szzszr
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* where v, and v} are respectively the

amplitudes of incident & reflected voltage
wave at the port 2

* In matrix form,

v

a
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* Fig. Incident and reflected voltage waves in a
2-port network

‘/1+ V2+
_> <_
O O
Microwave
Device
O— ——O
<+ —>
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For N- Port network:

Irl_ 51 1 51-} 51:-5 | .
Vy R . Son |1V
Vo S+ S S 1

vV’

J

where  s,is defined as %L/

It means that it is the ratio of amplitude of voltage
wave reflected at the port i when a voltage wave of
amplitude Y is incident at the port j
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Reciprocal Microwave Network:
* Reciprocal Network:

* |f the port1 & 2 are interchanged for a two
port network and the performance of the
microwave device is still the same then we call
that network as reciprocal network

* [Z] matrix for a reciprocal network is
symmetric
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Correspondingly,  since
Z]=[VT" .Y matrix is also symmetric i.e.
Z]=[2] and [Y]=[Y] for a reciprocal

network

EC441 Microwave Engineering 25
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What is the property of [S] matrix for reciprocal
networks?

* To do this, let us find the relation between [Z]
and [S] matrix

e Let us assume that all the ports have same
characteristic impedance, i.e.,
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e For an nt" port of the microwave network,

T'r: — 1[‘-r:_ T -[Fr._ — ll |'
L, =1 -1,
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* In matrix form,

V=[]
— (211
= [Z]([I*]-[17])
=215 (7*]-177))

1 I 1 .
= | W1+ 7-12)|v 1= | 2]- W]
L [S]= e = 21+ 2,0 ) (2)- Z,U)
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which gives the scattering matrix in terms of Z
matrix

Similarly, - o
[ZH{’] +(Zy) [S] — [Z] — (%) [E]

= [Z]([S]-[U]) = = (Z,)[S]— (Z,)[U]
= [Z2]=(Z,)([S]+ WD([]-[s])

which gives Z matrix in terms of scattering
parameters

By adding 1 & 2, we get
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1
Vn+ = EQ/n + ZOIn)

 And by subtracting 1 & 2, we have

* In matrix form,
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vol= SV 1+ 2, 1)) )= (V- Ze17))

= ~(Z1U ]+ 7, 1)) - —(Z]I]- Z, 1))

- ~([Z1+ 2, [T D] = 2121~ 2, [V D]
]
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* Since all the matrix components in the RHS of
the previous equation is symmetric, hence the
scattering matrix is also symmetric

Reciprocal and lossless network:

e |f a network is lossless, no real power can be
delivered to the network.

* Proof: |
Pgy = ERe(B/][Ij)
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" hi iz oz

] Ly Ly v Ly
V= Vs ].[1] = fﬁf::éf:: ; S

2

where : L . . |
] | Ly Ly v Ly

= ~Re(|1] (2] 1]

1 ' R L
:ERE{IIZ'I'IL + 1,21y, + L2y, 4 e }
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; N N -
— ;RE{ZZIHZT”I“ ‘>
m=1 n=1 .
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* Since [/,] areindependent, we could set all

port elements equal to zero except at the nt
port current

* Hence

Re{l,Z,.1,”}=0=|I, Re{Z,, }= 0

Il’l

mn

=N RP{Z} = 0 Hence. L is purely imaginary
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* Now let us set all the port elements equal to
zero except at the mth and nt" ports

* |n that case,

Re{lz I "+17Z I+

m mn n n nm m

Il’l

* For a reciprocal network,
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.....

...............

.....
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 Hence, the impedance matrix is purely
imaginary for a lossless network

e Similarly, the admittance matrix is also purely
Imaginary

 What is the characteristic of [S] matrix for a
lossless network?
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* where the first term is the incident power and
the second term is the reflected power

* Note:
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RS Lt L LT purely imaginary.

Proof:
-
V,*
o] = Vel Ve = v
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T'_ =V T;_ 1:\—|[Tr— :T;_
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— VTV VT + VoV
VIV - VYT - — VSV,

=V V) HY T G e H VT SV

All the terms are purely imaginary
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b VTV and VIV are purely real
VIV =T e T T e
e L L S | Y

which 1s a real number

Similarly,
VIV =W T

which 1s a real number
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For a lossless network,
Pgy = 0

S R HU E e e B |
v el = e syl T S sSs =0

— Vo s][s] [V ] where 95 is the Kroneckar delta function

[S] 18 a unitary matrix

EC441 Microwave Engineering 43
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Network matrices transformations

* (a) Relationship between transfer or
transmission and impedance matrix

* From the definition of ABCD matrix,

V. =AV, + BI, and [, =CV, + DI,

_ 4‘ I, — DI,
-

+ BI,
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* Note that |, direction is opposite for [Z] &
[ABCD] matrix representations

e Similarly,
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For a symmetrical network,
=2y =A=D
For a reciprocal network,
AD—-BC 1

= —=AD - BC =1

Loy = L, ..
) B C C

(b) Relationship between scattering and
impedance matrix

* It will be derived in the next section,
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L =1

5| =(2]-al)(2)+ 2]

o S. S, ) Z, — 7, Zy \(Z, + 2, Z, |

s, S, Z,, Zw—Z|| 2, Z,y + 2,
Z, —Z, Z, | Z,, + Z, Z,

N [ Z, Z, — 7| | Z,  Z,+7Z

det (

-2

det (IQZ] + Z, lU]) — [Zfz + Z) (21 + Z[}) — Zyyly = Lp

. _S] 1 (Zn T ZD,}(ZH - Zﬂ) - ZifZ:N QZDZ'I'E
o ZD - QZDZ'I:E (29-2 o ZD)(ZH T Z@) o ZHZ:E'J
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Similarly the inverse relation ;Z‘ in terms of | S| is given by

|- s -
_z Sy +1 S1o 1 — 95, S, ]1
Sa1 Sy, + 1| =55, 1 —S,,
4 S +1 S |1 — S St
TS| Sy Sp || Sy 1- S’J
- Z (S, +1)(1— Sy ) + 5,9, 28,
— S‘—D 29, (1—5,,)(Sy + 1)+ Slzgm]

EC%&]’]BI‘Q “gD — (J- o “g] 1 )(I\;Lcrovavé n‘fg'@egriréi “g'[Q“gQ'| 48
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Equivalent circuit extraction

* A reciprocal two-port network can be

represented by either a T- or 1t- network as
shown in Fig.

* |n this figure, port 1 is assumed to be at z=0
and port 2 at z=h
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* Fig. (a) m-network (b) T-network

Ya:j B a

° Za:an Zb:ij —

z=0" (a)

z=h" z=0" z=h"



Analysis of Microwave Networks

 The elements of a two-port network can be
calculated from transmission matrix by a
simple transformation as below:

1
7 =2 - g _Z - 7 =
“ b ¢ T C
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e The transmission matrix can be obtained from
scattering matrix as follows:

A= (1+ Sll)(l_ S22) + $12521 B = ZO (1 + Sll)(l + 522) — S12S21
2S21 2521
co U= =s9) =s1p591 ) A=51)(+599) + 51589

2ZOS21 2S21



RF ENGINEERING - BASIC CONCEPTS
F. Caspers, P. McIntosh, T. Kroyer

ABSTRACT

The concept of describing RF circuits in terms of waves is discussed and the S matrix and related
matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualise
how waves propagate in an RF network. The properties of the most relevant passive RF devices
(hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S
parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as
the microstrip line have become very important. A brief discussion on the Smith Chart concludes
this paper.

1. INTRODUCTION

For the design of RF and microwave circuits a practical tool is required. The linear dimensions of
the elements that are in use may be of the order of one wavelength or even larger. In this case the
equivalent circuits which are commonly applied for lower frequencies lead to difficulties in the
definition of voltages and currents. A description in terms of waves becomes more meaningful.
These waves are scattered (reflected, transmitted) in RF networks. Having introduced certain
definitions of the relation between voltages, currents and waves we discuss the S and T matrices
such for the description of 2-port networks. Nowadays the calculation of complex microwave
networks is usually carried out by means of computer codes. These apply matrix descriptions and
conversions extensively. Another way to analyze microwave networks is by taking advantage of
the signal flow graph (SFG). The SFG is a graphical representation of a system linear equations
and permits one to visualise how, for example, an incident wave propagates through the network.
However, for a systematic analysis of large networks the SFG is not very convenient; computer
codes implementing the matrix formulation are generally used these days. In a subsequent section
the properties of typical microwave n-ports (n = 1, 2, 3, 4) are discussed. The n-ports include
power dividers, directional couplers, circulators and 180° hybrids. Historically many microwave
elements have been built first in waveguide technology. Today waveguide technology is rather
restricted to high-power applications or for extremely high frequencies. Other less bulky types of
transmission lines have been developed such as striplines and micro striplines. They permit the
realisation of microwave integrated circuits (MICs) or, if implemented on a semiconductor
substrate, the monolithic microwave integrated circuits (MMICs). This paper concludes with a
description of the Smith Chart, a graphical method of evaluating the complex reflection coefficient
for a given load. Several examples including the coupling of single-cell resonators are mentioned.

2. S PARAMETERS

The abbreviation S has been derived from the word scattering. For high frequencies, it is
convenient to describe a given network in terms of waves rather than voltages or currents. This
permits an easier definition of reference planes. For practical reasons, the description in terms of
in- and outgoing waves has been introduced. Now, a 4-pole network becomes a 2-port and a 2n-
pole becomes an n-port. In the case of an odd pole number (e.g. 3-pole), a common reference point
may be chosen, attributing one pole equally to two ports. Then a 3-pole is converted into a (3+1)
pole corresponding to a 2-port. As a general conversion rule for an odd pole number one more
pole is added.
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Fig. 1 Example for a 2-port network: A series impedance Z.

Let us start by considering a simple 2-port network consisting of a single impedance Z connected
in series (Fig. 1). The generator and load impedances are Zg and Z,, respectively. If Z=0and Z; =
Zg (for real Zc) we have a matched load, i.e. maximum available power goes into the load and U; = U
= Uo/2. Please note that all the voltages and currents are peak values. The lines connecting the different
elements are supposed to have zero electrical length. Connections with a finite electrical length are
drawn as double lines or as heavy lines. Now we would like to relate Uo, U; and U>with a and b.

Definition of “power waves”

The waves going towards the n-port are a = (a1, a, ..., an), the waves travelling away from the n-port
are b = (b1, by, ..., bn). By definition currents going into the n-port are counted positively and
currents flowing out of the n-port negatively. The wave a; is going into the n-port at port 1 is
derived from the voltage wave going into a matched load.

In order to make the definitions consistent with the conservation of energy, the voltage is
normalized to .Z,. Zo is in general an arbitrary reference impedance, but usually the

characteristic impedance of a line (e.g. Zo = 50 Q) is used and very often Zg = Zp = Zo. In the
following we assume Z, to be real. The definitions of the waves a, and b, are

Uy  incident voltage wave ( port 1) 3 Ulmc

" A 1z

Ulr off _ reflected voltage wave ( port l)

Note that a and b have the dimension \/power [1].

2.1)

The power travelling towards port 1, P,ic, is simply the available power from the source, while
the power coming out of port 1, P;¢, is given by the reflected voltage wave.



inc 1 2 ‘U{nc I{nc
A" =Z|ay|" = = Z
2 27, 2
(2.2)
o/
uret |
Pre_ﬂ :1|bl|2 _1 Z
2 2Zy 2

Please note the factor 2 in the denominator, which comes from the definition of the voltages and
currents as peak values (“European definition”). In the “US definition” effective values are used
and the factor 2 is not present, so for power calculations it is important to check how the voltages
are defined. For most applications, this difference does not play a role since ratios of waves are
used.

In the case of a mismatched load Z;. there will be some power reflected towards the 2-port from Z
; 1
P = E|az|2 (23)

There is also the outgoing wave of port 2 which may be considered as the superimposition of a
wave that has gone through the 2-port from the generator and a reflected part from the

mismatched load. We have defined a, =U, / (ZJZO ) =U"™ /Zo with the incident voltage wave

Uine, In analogy to that we can also quote @, = 1"“Z, with the incident current wave i, We obtain

the general definition of the waves g; travelling into and b; travelling out of an n-port:

g = U,+1,7Z,
L 2)z,
y Ui=1iZ (2.4)

"2z,
Solving these two equations, U; and I; can be obtained for a given a; and b; as

U; =Zg (a; +b;) =UM™ + U
urd!

For a harmonic excitation u(t) = Re{lUe/!} the power going into port i is given by



P =£Re{Ul-I~ |
2
1 * * % %
F;' :ERe{(aiai _bibi )+(al- bi —aibi )} (26)

P = %(al-a;k —blb*)

The term (a;"b; - aib;") is a purely imaginary number and vanishes when the real part is taken.

The S matrix

The relation between a; and b; (i = 1...n) can be written as a system of n linear equations (a; being the
independent variable, b; the dependent variable)

by = Spa; +Spa,

2.7
by = Sya, +Spa, (27)

or, in matrix formulation

b=Sa (2.8)

The physical meaning of Si1 is the input reflection coefficient with the output of the network
terminated by a matched load (a2 = 0). Sz is the forward transmission (from port 1 to port 2), S
the reverse transmission (from port 2 to port 1) and S2» the output reflection coefficient.

When measuring the S parameter of an n-port, all n ports must be terminated by a matched load
(not necessarily equal value for all ports), including the port connected to the generator (matched
generator).

Using Eqgs. 2.4 and 2.7 we find the reflection coefficient of a single impedance Z, connected to a
generator of source impedance Z, (Fig. 1, case Zg = Zo and Z = 0)

U-NhZy 2y -7y (Z./Z)-1
U1+]1ZO ZL +ZO P (ZL /Zo)+1

S11=—= (2.9)

al a, =0
which is the familiar formula for the reflection coefficient p (often also denoted I').

Let us now determine the S parameters of the impedance Z in Fig. 1, assuming again Zc = Z. = Zo.
From the definition of S;; we have



S =t =
" e U +1Z,
Zy+Z Z U
Uy =U, ; ' 2=U0—Ov 1= - ==, (2.10)
27, +7 27, +7 27, +7
_ Z
27,427
and in a similar fashion we get
b, U,-1,Z 2Z
Sy=-2="2—20=—2 (2.11)

a, U+1Zy, 2Z,+Z

Due to the symmetry of the element S,, = S», and S1, = S»;. Please note that for this case we obtain
S11 + Sz1 = 1. The full S matrix of the element is then

Z Zy+7Z
| 2Zy,+Z 2Z,+Z
S= Zy+7 Z (2.12)

22, +7Z 2Z,+Z

The transfer matrix
The S matrix introduced in the previous section is a very convenient way to describe an n-port in
terms of waves. It is very well adapted to measurements. However, it is not well suited to for

characterizing the response of a number of cascaded 2-ports. A very straightforward manner for
the problem is possible with the T matrix (transfer matrix), which directly relates the waves on the

input and on the output [2]
( 1} [ 21 22j( 2] ( )

The conversion formulae between S and T matrix are given in Appendix I. While the S matrix
exists for any 2-port, in certain cases, e.g. no transmission between port 1 and port 2, the T matrix
is not defined. The T matrix Tm of m cascaded 2-ports is given by (as in [2, 3]):

Ty=T,T,..T, (2.14)

Note that in the literature different definitions of the T matrix can be found and the individual
matrix elements depend on the definition used.

3. SIGNAL FLOW GRAPH (SFG)

The SFG is a graphical representation of a system of linear equations having the general form:

y=Mx+M'y (3.1)

5



where M and M’ are square matrices with n rows and columns, x represents the n independent
variables (sources) and y the n dependent variables. The elements of M and M’ appear as
transmission coefficients of the signal path. When there are no direct signal loops, as is generally
the case in practise, the previous equation simplifies to y = Mx, which is equivalent to the usual S
parameter definition

b=Sa (3.2)

The SFG can be drawn as a directed graph. Each wave g; and b; is represented by a node, each
arrow stands for an S parameter (Fig. 5).

For general problems the SFG can be solved for applying Mason’s rule (see Appendix II). For not
too complicated circuits, a more intuitive way is to simplify step-by-step the SFG by applying the
following three rules (Fig. 4):

1. Add the signal of parallel branches
2. Multiply the signals of cascaded branches

3. Resolve loops

X X
TP oot
y y
1l 1l 1l
o 5o oY 3o O 1XY)s ~
1. parallel 2. cascaded 3. loops

branches signal paths

Fig. 4: The three rules for simplifying signal flow charts.

Care has to be taken applying the third rule, since loops can be transformed to forward and
backward oriented branches. No signal paths should be interrupted when resolving loops.

Examples

We are looking for the input reflection coefficient bi/a: of a two-port with a non-matched load p.
and a matched generator (source ps = 0), see Fig. 5.
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Fig. 5: A 2-port with a non-matched load

The loop at port 2 involving S» and pr can be resolved, given a branch from bs to a» with the signal
pL *(1-pL*S2). Applying the cascading rule and the parallel branch rule then yields

p
h_ S11+821 #512 (3.3)
an —O22PL

As a more complicated example one may add a mismatch to the source (ps = dashed line in Fig. 5)
and ask for b1/ bs.

As before, first the loop consisting of S» and pr can be resolved. Then the signal path via b, and a»
is added to S11, yielding a loop with ps. Finally one obtains

Sy +5,,8 _
i ( 11 21912P1 1—pLS22j 6

1
1-1 Sy +8u8,p Jps
( t 1-p.8y

b

et
bs

The same results would have been found applying Mason’s rule on this problem.

As we have seen in this rather easy configuration, the SFG is a convenient tool for the analysis of
simple circuits [8, 12]. For more complex networks there is a considerable risk that a signal path
may be overlooked and the analysis soon becomes complicated. When applied to S-matrices, the
solution may sometimes be read directly from the diagram. The SFG is also a useful way to gain
insight into other networks, such as feedback systems. But with the availability of powerful
computer codes using the matrix formulations, the need to use the SFG has been reduced.

Element S matrix SFG
a a o——
—_—
< I: f b=pa yn
b bo———

a) Passive one-port

- b
bqri :| : b=bq+ra d b
b r s

b) Active one-port
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a. a S S
iy — S = 11 12 s s
- —_— Sa1 S " 2
b b, b.d ba,
S
12
c) Passive two-port
a1 jpl bz
_i j
ai. Z! a, |0 e W €
- — e_Jﬁl O b10—4—032
b b e
i 2
d) Lossless line (length ¢) matched
3 S11 Sz S

1T S=|81 S2»

1': :]2 Sz Sz Sas

e) Passive 3-port

Siu S o S

So1 Sop 0 Sy,
S=|..

Snl SnZ e Snn

f) Passive n-port

Fig. 6: SFG and S matrices of different multiports (reproduced from [12] with the permission of the
publisher)

4. PROPERTIES OF THE S MATRIX OF AN N-PORT

A generalized n-port has n2 scattering coefficients. While the S;; may be all independent, in general
due to symmetries etc the number of independent coefficients is much smaller.

e An n-port is reciprocal when S;; = S;; for all i and j. Most passive components are reciprocal
(resistors, capacitors, transformers, . . . , except for structures involving ferrites, plasmas etc,
active components such as amplifiers are generally non-reciprocal.

e A two-port is symmetric, when it is reciprocal (51 = S12) and when the input and output
reflection coefficients are equal (S22 = S11).

e An N-port is passive and lossless if its S matrix is unitary, i.e. StS =1, where xt = (x*)T is the
conjugate transpose of x. For a two-port this means

(s*)Tsz[Sfl Sﬁlj(sn Slel O] @)
SlZ S22 SZl S22 O 1



which yields three conditions

|S11|2 + |Sz1|2 =1

Sl +[S20]" =1 2
S11S1p + 521525 =0 4.3)
Splitting up the last equation in the modulus and argument yields
[SulSral =[S Sz| and
(4.4)

—argS;, +argS;, =—-argS, +argS,, +7

where arg(x) is the argument (angle) of the complex variable x. Combining Eq. 4.2 with the first of
Eq. 4.4 then gives

|S1] = [S22|.  [St2| =[S21]

|S11| = \/1—|512|2

(4.5)

Thus any lossless 2-port can be characterized by one modulus and three angles.

In general the S parameters are complex and frequency dependent. Their phases change when the
reference plane is moved. Often the S parameters can be determined from considering symmetries
and, in case of lossless networks, energy conservation.

Examples of S-matrices

I-ports

Ideal short Sun=-1
Ideal termination S51=0
Active termination (reflection amplifier) |Sul >1

Ideal transmission line of length /

S 0 e
e’ 0

where y=a +jf is the complex propagation constant, « the line attenuation in [Neper/m]
and S = 2z/A4 with the wavelength A. For a lossless line | S, | = 1.

0 e—]lﬂlz
S= (e./!ﬂn 0 J

For a reciprocal phase shifter ¢, = @1, while for the gyrator ¢, = ¢, + 7. An ideal gyrator
is lossless (StS = 1), but it is not reciprocal. Gyrators are often implemented using active
electronic components, however in the microwave range passive gyrators can be realized
using magnetically saturated ferrite elements.

Ideal phase shifter



e Ideal, reciprocal attenuator

with the attenuation a in Neper. The attenuation in Decibel is given by A = -20*log10(521), 1
Np = 8.686 dB. An attenuator can be realized e.g. with three resistors in a T circuit. The
values of the required resistors are

R _7 k-1 O— O
| R, R,
ok Port 1 R, Port 2
K=ot
O O

where k is the voltage attenuation factor and Z, the reference impedance, e.g. 50 Q.

00
S=
10
The isolator allows transmission in one directly only, it is used e.g. to avoid reflections from
a load back to the generator.
0 0
G 0

e Ideal isolator

e Ideal amplifier

w
Il

with the gain G > 1.
3-ports

Several types of 3-ports are in use, e.g. power dividers, circulators, T junctions, etc. It can be shown
that a 3-port cannot be lossless, reciprocal and matched at all three ports at the same time. The
following three components have two of the above characteristics:

e Resistive power divider: It consists of a resistor network and is reciprocal, matched at all
ports but lossy. It can be realized with three resistors in a triangle configuration. When port
3 connected to ground, the resulting circuit is similar to a 2-port attenuator but not matched
any more at port 1 and port 2.

0 }/ Oo— O
2 72 Port1l Z,3 Z/3 Port 2
=% 0 7 Zo/3
Y by 0
Port 3

e The T splitter is reciprocal and lossless but not matched at all ports.
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Fig. 7: The two versions of the H,o waveguide T splitter: H-plane and E-plane splitter

Using the losslessness condition and symmetry considerations one finds, for appropriate reference
planes for H and E plane splitters

1 -1 2 1 1 V2
SH=% -1 1 2 SE=% 1 -2
V2o 20 V2 -2 0

The ideal circulator is lossless, matched at all ports, but not reciprocal. A signal entering the ideal
circulator at one port is transmitted exclusively to the next port in the sense of the arrow (Fig. 8).

2

Fig. 8: 3-port circulator and 2-port isolator. The circulator can be converted into isolator by putting
matched load to port 3.

Accordingly, the S matrix of the isolator has the following form:

= O O
o O -

When port 3 of the circulator is terminated with a matched load we get a two-port called isolator,
which lets power pass only from port 1 to port 2 (see section about 2-ports). A circulator, like the
gyrator and other passive non-reciprocal elements contains a volume of ferrite. This ferrite is
normally magnetized into saturation by an external magnetic field. The magnetic properties of a
saturated RF ferrite have to be characterized by a p-tensor. The real and imaginary part of each
complex element p are p’ and p”’. They are strongly dependent on the bias field. The p+ and p-
represent the permeability seen by a right- and left-hand circular polarized wave traversing the
ferrite (Fig. 9).

11
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Fig. 9 The real part p’ (left) and imaginary part p’ (right) of the complex permeability p. The right-
and left-hand circularly polarized waves in a microwave ferrite are p+ and p-. At the gyromagnetic
resonance the right-hand polarized has high losses, as can be seen from the peak in the right
image.

In Figs. 10 and 11 practical implementations of circulators are shown. The magnetically polarized
ferrite provides the required nonreciprocal properties. As a result, power is only transmitted from
port 1 to port 2, from port 2 to port 3 and from port 3 to port 1. A detailed discussion of the
different working principles of circulators can be found in the literature [2,13].

1
2
Ferrite
Fig.10 Waveguide circulator
ferrite disc
port 1 G i ground planes

Fig. 11 Stripline circulator

The Faraday rotation isolator uses the TE;, mode in a rectangular waveguide, which has a
vertically polarized H field in the waveguide on the left (Fig. 12). After a transition to a circular
waveguide, the polarization of the waveguide mode is rotated counter clockwise by 45° by a

12



ferrite. Then follows a transition to another rectangular waveguide which is rotated by 45° such
that the rotated forward wave can pass unhindered. However, a wave coming from the other side
will have its polarization rotated by 45° clockwise as seen from the right side. In the waveguide on
the left the backward wave arrives with a horizontal polarization. The horizontal attenuation foils
dampen this mode, while they hardly affect the forward wave. Therefore the Faraday isolator
allows transmission only from port 1 to port 2.

* attenuation foils

Fig. 12: Faraday rotation isolator

The frequency range of ferrite-based, non-reciprocal elements extends from about 50 MHz up to
optical wavelengths (Faraday rotator) [13]. Finally, it is shall be noted that all non-reciprocal
elements can be made from a combination of an ideal gyrator (non-reciprocal phase shifter) and
other passive, reciprocal elements, e.g. 4-port T-hybrids or magic tees.

The S matrix of a 4-port

As a first example let us consider a combination of E-plane and H-plane waveguide “T’s (Fig. 13).
This configuration is called a Magic “T” and has the S matrix:

00 1 1
00 1 -1
s= L
21 1 0 0
1 -10 0

13



Fig. 13: Hybrid “T’, Magic “T’, 180° hybrid. Ideally there is no crosstalk between port 3 and port 4
nor between port 1 and port 2.

As usual the coefficients of the S matrix can be found by using the unitary condition and
mechanical symmetries. Contrary to 3-ports a 4-port may be lossless, reciprocal and matched at all
ports simultaneously. With a suitable choice of the reference planes the very simple S matrix given
above results.

In practice, certain measures are required to make out the “T” a ‘magic’ one, such as small matching
stubs in the center of the “T". Today, T-hybrids are often produced not in waveguide technology,
but as coaxial lines and printed circuits. They are widely used for signal combination or splitting
in pickups and kickers for particle accelerators. In a simple vertical-loop pickup the signal outputs
of the upper and lower electrodes are connected to arm 1 and arm 2, and the sum (X¥) and
difference (A) signals are available from the H arm and E arm, respectively. This is shown in Fig.
13 assuming two generators connected to the collinear arms of the magic T. The signal from
generator 1 is split and fed with equal amplitudes into the E and H arm, which correspond to the A
and X ports. The signal from generator 2 propagates in the same way. Provided that both
generators have equal amplitude and phase, the signals cancel at the A port and the sum signal
shows up at the X port. The bandwidth of a waveguide magic “T" is around one octave or the
equivalent Hip-mode waveguide band. Broadband versions of 180° hybrids may have a frequency
range from a few MHz to some GHz.

Another important element is the directional coupler. A selection of possible waveguide couplers
is depicted in Fig. 14.

T
| @)
|
1

I
s

- — = =

VA AT
+
VA AV AN ANATAN i

Fig. 14: Waveguide directional couplers: (a) single-hole, (b,c) double-hole and (d,e) multiple-hole
types.

There is a common principle of operation for all directional couplers: we have two transmission
lines (waveguide, coaxial line, strip line, microstrip), and coupling is adjusted such that part of the
power linked to a travelling wave in line 1 excites travelling waves in line 2. The coupler is
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directional when the coupled energy mainly propagates in a single travelling wave, i.e. when there
is no equal propagation in the two directions.

The single-hole coupler (Fig. 14), also known as a Bethe-coupler, takes advantage of the electric
and magnetic polarizability of a small (d<<i) coupling hole. A propagating wave in the main line
excites electric and magnetic currents in the coupling hole. Each of these currents gives rise to
travelling waves in both directions. The electric coupling is independent of the angle o. between
the waveguides (also possible with two coaxial lines at an angle o). In order to get directionality,
at least two coupling mechanisms are necessary, i.e. two coupling holes or electric and magnetic
coupling. For the Bethe coupler the electric coupling does not depend on the angle a between the
waveguides, while the magnetic coupling is angle-dependent. It can be shown that for o = 30° the
electric and magnetic components cancel in one direction and add in the other and we have a
directional coupler. The physical mechanism for the other couplers shown in Fig. 14 is similar.
Each coupling hole excites waves in both directions but the superposition of the waves coming
from all coupling holes leads to a preference for a particular direction.

Example: the 2-hole, /4 coupler

For a wave incident at port 1 two waves are excited at the positions of the coupling holes in line 2
(top of Fig. 14b). For a backwards coupling towards port 4 these two wave have a phase shift of
180°, so they cancel. For the forward coupling the two waves add up in phase and all the power
coupled to line 2 leaves at port 3. Optimum directivity is only obtained in a narrow frequency
range where the distance of the coupling holes is roughly /4. For larger bandwidths, multiple
hole couplers are used. The holes need not be circular; they may be longitudinally or transversely
orientated slots, crosses, etc.

Besides waveguide couplers there exists a family of printed circuit couplers (stripline, microstrip)
and also lumped element couplers (like transformers). To characterize directional couplers, two
important figures are always required, the coupling and the directivity. For the elements shown in
Fig. 14, the coupling appears in the S matrix as the coefficient

S5l =185 1 =18l =]
with a. =-20 log |S13]in dB being the coupling attenuation.

The directivity is the ratio of the desired coupled wave to the undesired (i.e. wrong direction)
coupled wave, e.g.

o, =20 log |§31|

[Saa|

directivity [dB]

Practical numbers for the coupling are 3 dB, 6 dB, 10 dB, and 20 dB with directivities usually better
than 20 dB. Note that the ideal 3 dB coupler (like most directional couplers) often has a n/2 phase
shift between the main line and the coupled line (90° hybrid). The following relations hold for an
ideal directional coupler with properly chosen reference planes

S11= 82 = 83 = Su =0
Sn = S12 = Su3 = S (4.6)
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S31 = S13 = Sa» = Su
Sy = 514 = S = Sx

0 N | N 0

1-| 13" 0 0 +[Ss]

+ 7S] 0 0 1-|Sy3)

0 + |83 JI-Iseff o

and for the 3 dB coupler (n/2-hybrid)

0 1 £, 0
111 0 0 =
Sy p =—— 4.8
3dB \/Ei'] 0 0 1 ( )
0 +j 1 0

As further examples of 4-ports, the 4-port circulator and the one-to-three power divider should be
mentioned.

For more general cases, one must keep in mind that a port is assigned to each waveguide or TEM-
mode considered. Since for waveguides the number of propagating modes increases with
frequency, a network acting as a 2-port at low frequencies will become a 2n-port at higher
frequencies (Fig. 15), with n increasing each time a new waveguide mode starts to propagate. Also
a TEM line beyond cutoff is a multiport. In certain cases modes below cutoff may be taken into
account, e.g. for calculation of the scattering properties of waveguide discontinuities, using the S
matrix approach.

There are different technologies for realizing microwave elements such as directional couplers and
T-hybrids. Examples are the stripline coupler shown in Fig. 16, the 90°, 3 dB coupler in Fig. 17 and
the printed circuit magic T in Fig. 18.

Hio Hyo / e
il / 11
: 5 port
L} " Ll }II
: B E A Hii | within given

H,, frequency
range

G

TEM (coaxial line)

X Y
Hqyp Hyg
Waveguide modes [ | LT T T 1]
TEM Hio Hi1,x Hzo ——= Increasing
f =0Hz Hi1,y frequency
Number of ports | 1 | 2 |4 ]5s5[6]7]8lo]
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Fig. 15: Example of a multiport comprising waveguide ports. At higher frequencies more
waveguide modes can propagate; the port number increases correspondingly.

0
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’:."

g0 2 = e 2

WL/ T == <l
s // //\3—_ 1.5 \\2.

15
0 0.5 1.0
fIfy —-

0

Fig. 16: Two-stage stripline directional coupler. curve 1: 3 dB coupler, curve 2: broadband 5 dB
coupler, curve 3:10 dB coupler (cascaded 3-dB and 10-dB coupler) [2].

0
3 '"_""‘::'--. ’S
A4 dB —7 N3 3
I--—--—I 6 a/ ‘(’53?
1 == 3 0
| N
..__‘_-l RS g
3 \ /
2 == — 4 20 \/
Zi/V2 Z; dB
40
0.8 1.0 1.2
fg —=—
Fig. 17: 90° 3-dB coupler [2]
0
-..?4I . -1
3 /,,.a:—_ ::;"'*--..
dB[’s,,
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- @_ =2 ol N
%/v'\}v S21 \/
37 N4 20 \\ //

30
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Fig. 18: Magic T in a printed circuit version [2]
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0 Resonator in “detuned short” position
0 Marker format: Re{S11} + jIm{S11}
0 Search for the two points where |Im{Si1}| - max = f; and f>

e The external Qg can be calculated from f; and fi;. Condition: Z = 4j in detuned open
position, which is equivalent to Y = 4j in detuned short position.

0 Resonator in “detuned open” position
0 Marker format: Z
0 Search for the two points where Z = +j = f; and f,

There are three ranges of the coupling factor § defined by

Do
B=—- 6.6
Qext ( )
or, using Eq. 6.6
Y
or 1+ (6.6)
This allows us to define:
e Critical Coupling: B=1,QL=0Qo/2.

The locus of p touches the center of the SC. At resonance all the available generator power
is coupled to the resonance circuit. The phase swing is 180°.

e Undercritical Coupling: (0<fB<1).
The locus of p in the detuned short position is left of the center of the SC. The phase swing
is smaller than 180°.

e Opvercritical coupling: (1<B<m).
The center of the SC is inside the locus of p. The phase swing is larger than 180°.

When using a network analyzer with a Cartesian display for |p| one cannot decide whether the
coupling is over- or undercritical; the phase of the complex reflection factor p is required to make
the distinction.
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Appendix I

The T matrix (transfer matrix), which directly relates the waves on the input and on the output, is

As the transmission matrix (T matrix) simply links the in- and outgoing waves in a way different
from the S matrix, one may convert the matrix elements mutually

Sp2811 T _S11

n1=582- Sy 12 = 5oy
(AL2)
S 1
Ty =22, Iyp=-——
So1 So1

The T matrix Tm of m cascaded 2-ports is given by a matrix multiplication from the ‘left’ to the
right as in [2, 3]:

Ty =T.T,..T AL3
M 172 m

There is another definition that takes a1 and b1 as independent variables.

(bzlz(fn P ](alj (AL4)
az Ty T \b

and for this case

S22811 7 _S»

T1="S5x1- , D=
S12 S12
(AL5)
- S11 po_ 1
Toi==2> T =5—
12 12
Then, for the cascade, we obtain
Tu=T,Ta Ty (AL6)

i.e. a matrix multiplication from ‘right’ to “left’.

In the following, the definition using Eq. AL.1 will be applied.
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In practice, after having carried out the T matrix multiplication, one would like to return to S
parameters

v l1oTy
Su=—= Sip=Ih-————==
by, by,
(AL7)
1 15
Sp=7— Spp=-7=
by, I
For a reciprocal network (S; = ;i) the T-parameters have to meet the condition det T =1
N1To3 —ToTy =1 (AL8)

So far, we have been discussing the properties of the 2-port mainly in terms of incident and
reflected waves a and b. A description in voltages and currents is also useful in many cases.
Considering the current I; and I> as independent variables, the dependent variables U; and U> are
written as a Z matrix:

Uy =211 +Zyp15

or (U)=(2)-(1 (AL9)
Up =2y + 215 (U)=(2)-()

where Z11 and Z»; are the input and output impedance, respectively. When measuring Zi1, the all
other ports have to be open, in contrast to the S parameter measurement, where matched loads are
required.

In an analogous manner, a Y matrix (admittance matrix) can be defined as

I =11U; + U,

or(1)=(¥)-(U (AL10)
I3 = Yy1U1 + Y2oU» (=)

Similarly to the S matrix, the Z- and Y-matrices are not easy to apply for cascaded 4-poles (2-ports).
Thus, the so-called ABCD matrix (or A matrix) has been introduced as a suitable cascaded network
description in terms of voltages and currents (Fig. 1)

PR P A S Gl 4 i
n C D)\-1p) \Apn Ap)\-I

With the direction of I» chosen in Fig. 1 a minus sign appears for I» of a first 4-pole becomes I; in
the next one.

It can be shown that the ABCD matrix of two or more cascaded 4-poles becomes the matrix
product of the individual ABCD-matrices [3]
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(AL12)

ol e lle bl{e D)

In practice, the normalized ABCD matrix is usually applied. It has dimensionless elements only
and is obtained by dividing B by Z the reference impedance, and multiplying C with Z,. For
example, the impedance Z (Fig. 1) with Zg = Z = Zo would have the normalized ABCD matrix [3,

4]

o),

The elements of the S matrix are related as

1 7/Z,
o 1

A+B-C-D 2det A
Sm=——77"71—7 Si2=—"——7——=
A+B+C+D A+B+C+D
(AIL13)
2 -A+B-C+D
Sip=——"—"7"—, Sp=
A+B+C+D A+B+C+D

to the elements normalized of the ABCD matrix. Furthermore, the H matrix (hybrid) and G
(inverse hybrid) will be mentioned as they are very useful for certain 2-port interconnections [3].

Uy = Hyph + HypUy U I

or| t|=(H) |t (AL14)
I U,

Iy = Hy i + HpoUy

and

I =GUp + Gyplp
(AL15)

(ol

All these different matrix forms may appear rather confusing, but they are applied in particular, in
computer codes for RF and microwave network evaluation. As an example, in Fig. 2, the four
basic possibilities of interconnecting 2-ports (besides the cascade) are shown. In simple cases, one
may work with S-matrices directly, eliminating the unknown waves at the connecting points by
rearranging the S parameter equations.

Uy = GpoUp + Gy
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a) b)

L L
L

@) d)

Fig. 2 Basic interconnections of 2-ports [1].
a) Parallel-parallel connection; add Y matrix
b) Series-series connection; add Z matrix
c) Series-parallel connection; add H matrix
d) Parallel-series connection; add G matrix [3].

Figure 3 shows ABCD-, S- and T-matrices (reproduced with the permission of the publisher [3]).

Element ABCD matrix S matrix

1. Atr ission li

section Ch Zsh (22-2§)sn 277,

j— E————— E— i

z, z. Mz Sh D

:ﬂ:ﬂ:o — Ch s 2 — 2 —
—— 7 277, (z Z§)sh

where Sh = sinhy/, Ch = coshy/ and Ds =2ZZg Ch + (Z2 + Z¢?) Sh

2. A series impedance 1 7 74 ZZ _ Z]_ 2 Z]_Zz .
=7 e 1 —

z, z D Dt
:n:uzz 0 1 ° 2 Z]_ZZ Z+ Z]_ - 22

where Ds=Z+Z1+Zyand Di= 2,/Z;Z,
3. A shunt admittance
_ ‘ 1 0 Yi-Y,-Y J2Y,Y, 1

Yl i ) Y? Y 1 DS Dt

Y NOAZ Y,-Y,-Y

where Ds=Y + Y1+ Yoand D= 2\ Y;Y,
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Ch-

72 72
0 Ch+

T matrix

7272

277,

7%2+73
277,

Sh

Sh

Z,-2,+2

Z,+2,-2

Y, -Y,-Y

Yi+Yy+Y



4. A shunt-connected
open-ended stub

5. A shunt-connected
short-circuited stub

6. An ideal transformer

Z, - gg Z, -
n:1

7. n-network

9. A transmission line
junction

10. An a-db attenuator

10 -1 Dg -1 L% Zop
1 27 2Z
D Z, . Z,
— 1+j—=T
-1 J 27 T J 27
1 0 1 D. +1 . Z . Z
st 1+ j—% =
- 1 27T 27T
J; 1 DS _j ZO 1_J ZO
Ds +1 1 27T 27T
where T = tanp/ and Ds = -1 + 2jZ/ (ZoT)
n 0 n? -1 2n n?+1 n?-1
1 £
2
n-+1 2n
0 /n 2n 1-n? n? -1 n%+1
s 1 YZ-PY,-D  2Y,Ys ~Y§+QYo-D  Y’-PY,-D
Y3 Y3 1 1
D s 2YoY3| )
Y3 Y3 2YOY3 Y02 + PYO D _YO — PYO +D YO + QYO +D
where Ds=Y2+QYo+D,D=Y1Y2+YoYs+Y3Y, Q=Y1+ Y2+ 2Y; andP=Y:-Y»
1+4 b ~Z28+PZy+D  2ZyZ, ~78+QZy-D -Z%+PZy+D
Z3 I3 1 1
o 22025
] Ds ) 72 4PZy-D  Z2+QZy+D
Z3 23 2ZOZ3 — ZO — PZO +D
where Ds = Z2 + QZ() +D,D =717, + 7575+ 7374, Q =Z1+7Zy+27Z3and P=71-7»
1 0 Z,-7 22,7, 1 4 +2; Z3-4
1 il
D_S Dt Zo—2 Zi+Z
0 1 2242, Zy-2, 24 1re2
where Ds =71+ Zpand Dy = 2,/Z;7Z,
A+B [A—BJ 0 B -A 0
Zy
2 2
A-B A+B B 0 0 A
2Z, 2

where A =100 and B=1/A

Fig. 3 (continued) ABCD-, S- and T-matrices for the elements shown.
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Appendix II

The SFG is a graphical representation of a system of linear equations having the general form:
y=Mx+M'y (AIL1)

where M and M’ are square matrices with n rows and columns, x represents the n independent
variables (sources) and y the n dependent variables. The elements of M and M’ appear as
transmission coefficients of the signal path. When there are no direct signal loops, as is generally
the case in practise, the previous equation simplifies to y = Mx, which is equivalent to the usual S
parameter definition

b=Sa (AIL2)

The purpose of the SFG is to visualize physical relations and to provide a solution algorithm of Eq.
AllL2 by applying a few rather simple rules:

1. The SFG has a number of points (nodes) each representing a single wave a; or b;.

2. Nodes are connected by branches (arrows), each representing one S parameter and indicating
direction.

3. A node may be the beginning or the end of a
branch (arrow).

All other nodes are dependent signal nodes.
4. Nodes showing no branches pointing towards

them are source nodes. 5. Each node
signal represents the sum of the signals carried by

all branches entering it.
6. The transmission coefficients of parallel signal paths are to be added.
7. The transmission coefficients of cascaded signal paths are to be multiplied.

8. An SFG is feedback-loop free if a numbering of all nodes can be found such that every branch
points from a node of lower number towards one of higher number.

9. A first-order loop is the product of branch transmissions, starting from a node and going along
the arrows back to that node without touching the same node more than once. A second-order
loop is the product of two non-touching first-order loops, and an n#-order loop is the product
of any n non-touching first-order loops.

10. An elementary loop with the transmission coefficient S beginning and ending at a node N may
be replaced by a branch (1-S)! between two nodes N; and N>, going from N; to Na. Nj has all
signals (branches) previously entering N, and N is linked to all signals previously leaving
from N.
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In order to determined the ratio T of a dependent to an independent variable the so-called ‘non-
touching loop rule’, also known as Mason’s rule, may be applied [11]

R [l—ZL(l)(l) +x1(2)Y —} + Py [1—ZL(1)(2) }

= I S L)+ 2L(2)-SL(3) -

(AIL3)

where:

> Pj are the different signal paths between the source and the dependent variable.

> ZL(1)® represents the sum of all first-order loops not touching path 1, and XL(2)® is the
sum of all second-order loop not touching path 1.

» Analogously XL(1)® is the sum of all first-order loops in path 2.

> The expressions XL(1), 2L(2) etc. in the denominator are the sums of all first-, second-, etc.
order loops in the network considered.

Examples

We are looking for the input reflection coefficient of a e-port with a non-matched load pr. and a
matched generator (source) (ps = 0) to start with. pr, ps are often written as I'r, I's.

SZ'I b2

S,, PL
< O
512 a2

Fig.1 2-port with non-matched load

By reading directly from the SFG (Fig. 1) we obtain

h_ S1+Sx
@ 1-S82p1

S12 (AIL4)

or by formally applying Mason’s rule in Eq. AIL3

b _ S11(1= 52001 ) + Sa1p1 512
@ 1-S3p.

(AIL5)

As a more complicated example one may add a mismatch to the source (ps = dashed line in Fig. 1)
and ask for b1/ bs

b 11 (1= Sp2p5 )+ S2105512 (AIL6)

by 1—=(S11ps +Sa2pL + 8120152105 ) + $11P2252201
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