Microwave Filter Design Examples ## 1. Microstrip Filters J.-S. Hong and M. J. Lancaster, *Microstrip Filters for RF/Microwave Applications* FIGURE 5.3 (a) Layout of a 3-pole microstrip lowpass filter using open-circuited stubs on a substrate with a relative dielectric constant of 10.8 and a thickness of 1.27 mm. (b) Full-wave EM simulated performance of the filter. FIGURE 5.12 (a) Layout of a five-pole microstrip bandpass filter designed on a substrate with a relative dielectric constant of 10.2 and a thickness of 0.635 mm. (b) Frequency responses of the filter obtained by full-wave EM simulations. FIGURE 5.14 (a) Layout of a five-pole, hairpin-line microstrip bandpass filter on a 1.27-mm-thick substrate with a relative dielectric constant of 6.15. (b) Full-wave simulated performance of the filter. FIGURE 5.21 (a) Layout of the designed microstrip combline bandpass filter on a 1.27 mm thick substrate with a relative dielectric constant of 10.8. (b) Full-wave EM simulated performance of the filter. FIGURE 5.27 (a) Layout of the designed microstrip bandpass filter with quarter-wavelength short-circuited stubs on a 0.635 mm thick substrate with a relative dielectric constant of 10.2. (b) Full-wave EM simulated performance of the filter. FIGURE 6.4 (a) A microstrip optimum highpass filter on a substrate with a relative dielectric constant of 2.2 and a thickness of 1.57 mm. (b) EM simulated performance of the microstrip optimum highpass filter. **FIGURE 6.13** (a) Layout of a wide-band microstrip bandstop filter on a substrate with a relative dielectric constant of 6.15 and a thickness of 1.27 mm. (b) Full-wave EM simulated frequency responses of the filter.