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Preface

This book addresses the fundamental bases of statistical inferences. We shall

presume throughout that readers have a good working knowledge of Python®

language and of the basic elements of digital signal processing.

The most recent version is Python® 3.x, but many people are still working with

Python® 2.x versions. All codes provided in this book work with both these versions.

The official home page of the Python® Programming Language is

https://www.python.org/. Spyder® is a useful open-source integrated development

environment (IDE) for programming in the Python® language. Briefly, we suggest to

use the Anaconda Python distribution, which includes both Python® and Spyder®.

The Anaconda Python distribution is located at https://www.continuum.io/

downloads/.

The large part of the examples given in this book mainly use the modules numPy,

which provides powerful numerical arrays objects, Scipy with high-level data

processing routines, such as optimization, regression, interpolation and Matplotlib
for plotting curves, histograms, Box and Whiskers plots, etc. See a list of useful

functions p. xiii.

A brief outline of the contents of the book is given below.

Useful maths

In the first chapter, a short review of probability theory is presented, focusing on

conditional probability, projection theorem and random variable transformation. A

number of statistical elements will also be presented, including the great number law

and the limit-central theorem.



Statistical inferences

The second chapter is devoted to statistical inference. Statistical inference

consists of deducing some features of interest from a set of observations to a certain

confidence level of reliability. This refers to a variety of techniques. In this chapter,

we mainly focus on hypothesis testing, regression analysis, parameter estimation and

determination of confidence intervals. Key notions include the Cramer–Rao bound,

the Neyman–Pearson theorem, likelihood ratio tests, the least squares method for

linear models, the method of moments and the maximum likelihood approach. The

least squares method is a standard approach in regression analysis, and it is discussed

in detail.

Inferences on HMM

In many problems, the variables of interest are only partially observed. Hidden

Markov models (HMM) are well suited to accommodate this kind of problem. Their

applications cover a wide range of fields, such as speech processing, handwriting

recognition, the DNA analysis and monitoring and control. There are several issues

with HMM inference. The key algorithms are the well-known Kalman filter, the

Baum–Welch algorithm and the Viterbi algorithm to list only the most famous ones.

Monte-Carlo methods

Monte-Carlo methods refer to a broad class of algorithms that serve to perform

quantities of interest. Typically, the quantities are integrals, i.e. the expectations of a

given function. The key idea is using random sequences instead of deterministic

sequences to achieve this result. The main issues are first the choice of the most

appropriate random mechanism and, second, how to generate such a mechanism. In

Chapter 4, the acceptance–rejection method, the Metropolis–Hastings algorithm, the

Gibbs sampler, the importance sampling method, etc., are presented.

Maurice CHARBIT

October 2016



∅ empty set

A(x) =

{
1 whenx ∈ A
0 otherwise

(a,b] = {x : a < x ≤ b}
δ(t)

{
Dirac distribution when t ∈ R

Kronecker symbol when t ∈ Z

Re(z) real part of z

Im(z) imaginary part of z

i or j =
√−1

IN identity matrix of size N
A∗ complex conjugate of A

AT transpose of A

AH transpose-conjugate of A

A−1 inverse matrix of A

A# pseudo-inverse matrix of A

r.v./rv random variable

P probability measure

Pθ probability measure indexed by θ
E {X} expectation of X

Bθ X expectation of X under Pθ

Xc = X − E {X} zero-mean random variable

var (X) = E
{|Xc|2

}
variance of X

cov (X,Y ) = E {XcY
∗
c } covariance of (X,Y)

cov (X) = cov (X,X) = var (X) variance of X

Notation



E {X|Y } conditional expectation of X given Y

a
d−→ b a converges in distribution to b

a
P−→ b a converges in probability to b

a
a.s.−→ b a converges almost surely to b

d.o.f. degree of freedom

ARMA AutoRegressive Moving Average

AUC Area Under the ROC curve

c.d.f. Cumulative Density Function

CRB Cramer Rao Bound

EM Expectation Maximization

GLRT Generalized Likelihood Ratio Test

GEM Generalized Expectation Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model

i.i.d./iid independent and identically distributed

LDA Linear Discriminant Analysis

MC Monte-Carlo

MLE Maximum Likelihood Estimator

MME Moment Method Estimator

MSE Mean Square Error

OLS Ordinary Least Squares

PCA Principal Component Analysis

p.d.f. Probability Density Function

ROC Receiver Operational Characteristic

SNR Signal to Noise Ratio

WLS Weighted Least Squares



To get function documentation, use .__doc__, e.g. print(range.__doc__), or

help, e.g. help(zeros) or help(’def’), or ?, e.g. range.count?

– def: introduces a function definition

– if, else, elif: an if statement consists of a Boolean expression followed by

one or more statements

– for: executes a sequence of statements multiple times

– while: repeats a statement or group of statements while a given condition is true

– 1j or complex: returns complex value, e.g. a=1.3+1j*0.2 or

a=complex(1.3,0.2)

Methods:

– type A=array([0,4,12,3]), then type A. and tab, it follows a lot of methods,

e.g. the argument of the maximum using A.argmax. For help type, e.g. A.dot?.

Functions:

– int: converts a number or string to an integer

– len: returns the number of items in a container

– range: returns an object that produces a sequence of integers

– type: returns the object type

A Few Functions of Python



From numpy:

– abs: returns the absolute value of the argument

– arange: returns evenly spaced values within a given interval

– argwhere: finds the indices of array elements that are non-zero, grouped by

element

– array: creates an array

– cos, sin, tan: respectively calculate the cosine, the sine and the tangent

– cosh: calculates the hyperbolic cosine

– cumsum: calculates the cumulative sum of array elements

– diff: calculates the n-th discrete difference along a given axis

– dot: product of two arrays

– exp, log: respectively calculate the exponential, the logarithm

– fft: calculates the fft

– isinf: tests element-wise for positive or negative infinity

– isnan: tests element-wise for nan

– linspace: returns evenly spaced numbers over a specified interval

– loadtxt: loads data from a text file

– matrix: returns a matrix from an array-like object, or from a string of data

– max: returns the maximum of an array or maximum along an axis

– mean, std: respectively return the arithmetic mean and the standard deviation

– min: returns the minimum of an array or maximum along an axis

– nanmean, nanstd: respectively return the arithmetic mean and the standard

deviation along a given axis while ignoring NaNs

– nansum: sum of array elements over a given axis, while ignoring NaNs

– ones: returns a new array of given shape and type, filled with ones

– pi: 3.141592653589793

– setdiff1d: returns the sorted, unique values of one array that are not in the

other

– size: returns the number of elements along a given axis



– sort: returns a sorted copy of an array

– sqrt: computes the positive square-root of an array

– sum: sum of array elements over a given axis

– zeros: returns a new array of given shape and type, filled with zeroes

From numpy.linalg:

– eig: computes the eigenvalues and right eigenvectors of a square array

– pinv: computes the (Moore–Penrose) pseudo-inverse of a matrix

– inv: computes the (multiplicative) inverse of a matrix

– svd: computes Singular Value Decomposition

From numpy.random:

– rand: draws random samples from a uniform distribution over (0, 1)

– randn: draws random samples from the “standard normal” distribution

– randint: draws random integers from ‘low’ (inclusive) to ‘high’ (exclusive)

From scipy:

(for the random distributions, use the methods .pdf, .cdf, .isf, .ppf, etc.)

– norm: Gaussian random distribution

– gamma: gamma random distribution

– f: Fisher random distribution

– t: Student’s random distribution

– chi2: chi-squared random distribution

From scipy.linalg:

– sqrtm: computes matrix square root

From matplotlib.pyplot:

– box, boxplot, clf, figure, hist, legend, plot, show, subplot

– title, txt, xlabel, xlim, xticks, ylabel, ylim, yticks



Datasets:

– statsmodels.api.datasets.co2, statsmodels.api.datasets.nile,
statsmodels.api.datasets.star98, statsmodels.api.datasets.heart

– sklearn.datasets.load_boston, sklearn.datasets.load_diabetes

– scipy.misc.ascent

From sympy:

– Symbol, Matrix, diff, Inverse, trace, simplify



1

Useful Maths

1.1. Basic concepts on probability

Without describing in detail the formalism of the probability theory, we simply

remind the reader of useful concepts. However, we advise the reader to consult some

of the many books with authority on the subject [BIL 12].

In probability theory, we consider a sample space Ω, which is the set of all

possible outcomes ω, and a collection F of its subsets with a structure of σ-algebra,

the elements of which are called the events.

DEFINITION 1.1 (Random variable).– A real random variable X is a (measurable)

application from the Ω to R:

X : ω ∈ Ω �→ x ∈ R [1.1]

DEFINITION 1.2 (Discrete random variable).– A random variable X is said to be

discrete if it takes its values in a subset of R, at the most countable. If

{a0, . . . , an, . . .}, where n ∈ N, denotes this set of values, the probability

distribution of X is characterized by the sequence:

pX(n) = P {X = an} [1.2]

representing the probability that X is equal to the element an. These values are such

that 0 ≤ pX(n) ≤ 1 and
∑

n≥0 pX(n) = 1.

This leads us to the probability for the random variable X to belong to the interval

]a, b]. It is given by:

P {X ∈ ]a, b]} =
∑

n≥0 pX(n) (an ∈ ]a, b]) [1.3]
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The cumulative distribution function (cdf ) of the random variable X is defined, for

x ∈ R, by:

FX(x) = P {X ≤ x} =
∑

{n:an≤x} pX(n) [1.4]

=
∑

n≥0 pX(n) (an ∈]−∞, x])

It is a monotonic increasing function, with FX(−∞) = 0 and FX(+∞) = 1. Its

graph is a staircase function, with jumps located at an with amplitude pX(n).

DEFINITION 1.3 (q-quantiles).– The k-th q-quantiles, associated with a given

cumulative function F (x), are written as:

ck = min{x : F (x) ≥ k/q} [1.5]

where k goes from 1 to q − 1. Therefore, the number of q-quantiles is q − 1.

The q-quantiles are the limits of the partition of the probability range into q
intervals of equal probability 1/q. For example, the 2-quantile is the median.

More specifically, we have:

DEFINITION 1.4 (Median).– The median of the random variable X is the value M
such that the cumulative function satisfies FX(M) = 1/2.

The following program performs the q-quantiles of the Gaussian distribution1.

Each area under the probability density equals 1/q.

# -*- coding: utf-8 -*-

"""

Created on Fri Aug 12 09:11:27 2016

****** gaussianquantiles

@author: maurice

"""

from numpy import linspace, arange

from scipy.stats import norm

from matplotlib import pyplot as plt

x = linspace(-3,3,100); y = norm.pdf(x); plt.clf(); plt.plot(x,y)

q = 5; Qqi = arange(1,q)/q; quantiles = norm.ppf(Qqi)

plt.hold(’on’)

for iq in range(q-1):

1 In Python® scipy.stats.norm.isf(1-a) = scipy.stats.norm.ppf(a)
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print(’%i-th of the %i-quantiles is %4.3e’%(iq+1,q,quantiles

[iq]))

plt.plot([quantiles[iq],quantiles[iq]],[0.0,norm.pdf(quantiles

[iq])],’:’)

plt.hold(’off’);plt.title(’eachareaisequalto%4.2f’%(1.0/q));

plt.show();

DEFINITION 1.5 (Two discrete random variables).– Let {X,Y } be two discrete

random variables, with respective sets of values {a0, . . . , an, . . .} and

{b0, . . . , bk, . . .}. The joint probability distribution is characterized by the sequence

of positive values:

pXY (n, k) = P {X = an, Y = bk} [1.6]

with 0 ≤ pXY (n, k) ≤ 1 and
∑

n≥0

∑
k≥0 pXY (n, k) = 1.

This definition can easily be extended to the case of a finite number of random

variables.

PROPERTY 1.1 (Marginal probability distribution).– Let {X,Y } be two discrete

random variables with their joint probability distribution pXY (n, k). The respective

marginal probability distributions of X and Y are written as:⎧⎨⎩P {X = an} =
∑+∞

k=0 pXY (n, k)

P {Y = bk} =
∑+∞

n=0 pXY (n, k)
[1.7]

DEFINITION 1.6 (Continuous random variable).– A random variable is said to be

continuous2 if its values belong to R and if, for any real numbers a and b, the

probability that X belongs to the interval ]a, b] is given by:

P {X ∈]a, b]} =

∫ b

a

pX(x)dx =

∫ ∞

−∞
pX(x) (x ∈]a, b])dx [1.8]

where pX(x) is a function that must be positive or equal to zero such that∫ +∞
−∞ pX(x)dx = 1. pX(x) is called the probability density function (pdf) of X .

For any x ∈ R, the cumulative distribution function (cdf ) of the random variable

X is defined by:

FX(x) = P {X ≤ x} =

∫ x

−∞
pX(u)du [1.9]

2 The exact expression says that the probability distribution of X is absolutely continuous with
respect to the Lebesgue measure.
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It is a monotonic increasing function with FX(−∞) = 0 and FX(+∞) = 1.

Notice that pX(x) also represents the derivative of FX(x) with respect to x.

DEFINITION 1.7 (Two continuous random variables).– Let {X,Y } be two random

variables with possible values in R
2. Their probability distribution is said to be

continuous if, for any domain Δ of R2, the probability that the pair (X,Y ) belongs

to Δ is given by:

P {(X,Y ) ∈ Δ} =

∫ ∫
Δ

pXY (x, y)dxdy [1.10]

where the function pXY (x, y) ≥ 0, and such that:∫ ∫
R2

pXY (x, y)dxdy = 1

pXY (x, y) is called the joint probability density function of the pair {X,Y }.

PROPERTY 1.2 (Marginal probability distributions).– Let {X,Y } be two continuous

random variables with the joint probability distribution pXY (x, y). The respective

marginal probability density functions of X and Y can be written as:{
pX(x) =

∫ +∞
−∞ pXY (x, y)dy

pY (y) =
∫ +∞
−∞ pXY (x, y)dx

[1.11]

It is also possible to have a mixed situation, where one of the two variables is

discrete and the other is continuous. This leads to the following:

DEFINITION 1.8 (Mixed random variables).– Let X be a discrete random variable

with possible values {a0, . . . , an, . . .} and Y a continuous random variable with

possible values in R. For any value an, and for any real number pair (a, b), the

probability:

P {X = an, Y ∈ ]a, b]} =

∫ b

a

pXY (n, y)dy [1.12]

where the function pXY (n, y), with n ∈ {0, . . . , k, . . .} and y ∈ R, is ≥ 0 and verifies∑
n≥0

∫
R
pXY (n, y)dy = 1.

DEFINITION 1.9 (Two independent random variables).– Two random variables X and

Y are said to be independent if and only if their joint probability distribution is the

product of the marginal probability distributions. This can be expressed as:
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– for two discrete random variables: pXY (n, k) = pX(n) pY (k)

– for two continuous random variables: pXY (x, y) = pX(x) pY (y)

– for two mixed random variables: pXY (n, y) = pX(n) pY (y)

where the marginal probability distributions are obtained using formulae [1.7] and

[1.11].

It is worth noting that, knowing pXY (x, y), we can tell whether or not X and Y
are independent. To do this, we need to calculate the marginal probability

distributions and check that pXY (x, y) = pX(x)pY (y). If that is the case, then X
and Y are independent.

The generalization to more than two random variables is given by the following

definition.

DEFINITION 1.10 (Independent random variables).– The random variables {X0, . . . ,

Xn−1} are jointly independent, if and only if their joint probability distribution is the

product of their marginal probability distributions. This can be expressed as

pX0X1...Xn−1(x0, x1, . . . , xn−1) = pX0(x0)pX1(x1) . . . pXn−1(xn−1) [1.13]

where the marginal probability distributions are obtained as integrals with respect to

(n− 1) variables, calculated from pX0X1...Xn−1(x0, x1, . . . , xn−1).

For example, the marginal probability distribution of X0 has the following

expression:

pX0(x0) =

∫
. . .

∫
︸ ︷︷ ︸

Rn−1

pX0X1...Xn−1(x0, x1, . . . , xn−1)dx1 . . . dxn−1

In practice, the following result is a simple method for determining whether or not

random variables are independent:

PROPERTY 1.3.– If pX0X1...Xn−1(x0, x1, . . . , xn−1) is a product of n positive

functions of the type f0(x0), f1(x1), . . . , fn−1(xn−1), then the variables are

independent.

It should be noted that, if n random variables are independent of one another, it

does not necessarily mean that they are jointly independent.
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DEFINITION 1.11 (Mathematical expectation).– Let X be a random variable and f(x)
a function. The mathematical expectation of f(X) is the deterministic value denoted

by E {f(X)} and defined as follows:

– for a discrete r.v. by: E {f(X)} =
∑

n≥0 f(an)pX(n),

– for a continuous r.v. by: E {f(X)} =
∫
R
f(x)pX(x)dx,

That can be extended to any number of random variables, e.g. for two random

variables {X,Y } and a function f(x, y), the definition is:

– for 2 discrete r.v., by: E {f(X,Y )} =
∑

n≥0

∑
k≥0 f(an, bk)pXY (n, k)

– for 2 continuous r.v. by: E {f(X,Y )} =
∫
R

∫
R
f(x, y)pXY (x, y)dxdy.

provided that all expressions exist.

From [1.3] and [1.8], the probability for X to belong to (a, b) may be seen as the

expectation of the indicator function (X ∈ (a, b)).

PROPERTY 1.4.– If {X0, X1, . . . , Xn−1} are jointly independent, then for any

integrable functions f0, f1, . . . , fn−1:

E

{
n−1∏
k=0

fk(Xk)

}
=

n−1∏
k=0

E {fk(Xk)} [1.14]

DEFINITION 1.12 (Characteristic function).– The characteristic function of the

probability distribution of the random variables {X0, X1, . . . , Xn−1} is the function

of (u0, . . . , un−1) ∈ R
n defined by:

φX0...Xn−1(u0, . . . , un−1) = E
{
eju0X0+···+jun−1Xn−1

}
= E

{
n−1∏
k=0

ejukXk

}
[1.15]

As
∣∣ejuX ∣∣ = 1, the characteristic function exists and is continuous even if the

moments E
{
Xk

}
do not exist. For example, the Cauchy probability distribution, the

probability density function of which is pX(x) = 1/π(1 + x2), has no moment and

has the characteristic function e−|u|. Notice that |φX1...Xn(u1, . . . , un)|
≤ φX(0, . . . , 0) = 1.

THEOREM 1.1 (Fundamental).– The random variables {X0, X1, . . . , Xn−1} are

independent if and only if, for any point (u0, u1, . . . , un−1) of Rn:

φX0...Xn−1(u0, . . . , un−1) =
n−1∏
k=0

φXk
(uk)
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Notice that the characteristic function φXk
(uk) of the marginal probability

distribution of Xk can be directly calculated using [1.15]. We have

φXk
(uk) = E

{
ejukXk

}
= φX0...Xn−1(0, . . . , 0, uk, 0, . . . , 0).

DEFINITION 1.13 (Mean, variance).– The mean of the random variable X is defined

as the first-order moment, i.e. E {X}. If the mean is equal to zero, the random variable

is said to be centered. The variance of the random variable X is the quantity defined

by:

var (X) = E
{
(X − E {X})2} = E

{
X2

}− (E {X})2 [1.16]

The variance is always positive, and its square root is called the standard deviation.

As an exercise, we are going to show that, for any constants a and b:

E {aX + b} = aE {X}+ b [1.17]

var (aX + b) = a2 var (X) [1.18]

PROOF.– Expression [1.17] is a direct consequence of the integral’s linearity. From

Y = aX + b and expression [1.17], we get var (Y ) = E
{
(Y − E {Y })2} =

E
{
a2(X − E {X})2} = a2 var (X). �

A generalization of these two results to random vectors (their components are

random variables) will be given by property [1.7].

DEFINITION 1.14 (Covariance, correlation).– Let {X,Y } be two random variables.

The covariance of X and Y is the quantity defined by:

cov (X,Y ) = E {(X − E {X})(Y − E {Y })} [1.19]

= E {XY } − E {X}E {Y }

The correlation coefficient is the quantity defined by:

ρ(X,Y ) =
cov (X,Y )√

var (X)
√

var (Y )
[1.20]

By applying the Schwartz inequality, we get |ρ(X,Y )| ≤ 1.

X and Y are said to be uncorrelated if cov (X,Y ) = 0, i.e. if

E {XY } = E {X}E {Y }, therefore ρ(X,Y ) = 0.



8 Digital Signal Processing with Python Programming

DEFINITION 1.15 (Mean vector and covariance matrix).– Let {X0, X1, . . . , Xn−1}
be n random variables with the respective means E {Xi}. The mean vector is the n
dimension vector with the means E {Xi} as its components. The covariance matrix

C is the n × n matrix with the entry Cij = cov (Xi, Xj) for 0 ≤ i ≤ n − 1 and

0 ≤ j ≤ n− 1.

Using the matrix notation X =
[
X0 . . . Xn−1

]T
, the mean vector can be

expressed as:

E {X} =
[
E {X0} . . . E {Xn−1}

]T
the covariance matrix can be expressed as:

C = E
{
(X − E {X})(X − E {X})T}

= E
{
XXT

}− E {X}E{
XT

}
[1.21]

and the correlation matrix can be expressed as:

R = DCD [1.22]

with

D =

⎡⎢⎢⎢⎢⎢⎣
C

−1/2
00 0 . . . 0
...

. . .
. . .

...
...

. . .
. . . 0

0 . . . 0 C
−1/2
n−1,n−1

⎤⎥⎥⎥⎥⎥⎦ [1.23]

R is obtained by dividing each element Cij of C by
√
CiiCjj , provided that Cii �=

0. Therefore, Rii = 1 and |Rij | ≤ 1.

Notice that the diagonal elements of a covariance matrix represent the respective

variances of the n random variables. They are therefore positive.

If random variables are uncorrelated, their covariance matrix is diagonal and
their correlation matrix is the identity matrix.

PROPERTY 1.5 (Positivity of the covariance matrix).– Any covariance matrix is

positive, meaning that for any vector a ∈ C
n, we have aHCa ≥ 0.
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PROPERTY 1.6 (Bilinearity of the covariance).– Let {X0, X1, . . . , Xm−1} and {Y0,

. . ., Yn−1} be random variables, and v0, . . ., vm−1, w0, . . ., wn−1 be arbitrary

constants. Hence:

cov

⎛⎝m−1∑
i=0

viXi,

n−1∑
j=0

wjYj

⎞⎠ =

m−1∑
i=0

n−1∑
j=0

viwjcov (Xi, Yj) [1.24]

PROOF.– Indeed, let V and W be the vectors of components vi and wj , respectively,

and A = V TX and B = WTY . By definition, cov (A,B) =
E {(A− E {A})(B − E {B})}. Replacing A and B with their respective expressions

and using E {A} = V T
E {X} and E {B} = WT

E {Y }, we obtain, successively:

cov (A,B) = E
{
V T (X − E {X})(Y − E {Y })TW}

=
m−1∑
i=0

n−1∑
j=0

viwjcov (Xi, Yj)

thus demonstrating expression [1.24]. �

Using matrix notation, expression [1.24] is written in the following form:

cov
(
V TX,WTY

)
= V TCW [1.25]

where C designates the covariance matrix of X and Y .

PROPERTY 1.7 (Linear transformation of a random vector).– Let {X0, . . . , Xn−1} be

n random variables. We let X the random vector whose components are Xi, E {X}
its mean vector and CX its covariance matrix, and let {Y0, . . . , Yq−1} be q random

variables obtained by the linear transformation:⎡⎢⎣ Y0

...

Yq−1

⎤⎥⎦ = A

⎡⎢⎣ X0

...

Xn−1

⎤⎥⎦+ b

where A is a q × n matrix and b is a non-random vector with the adequate sizes. We

then have:

E {Y } = AE {X}+ b

CY = ACXAT

DEFINITION 1.16 (White sequence).– Let {X0, . . . , Xn−1} be a set of n random

variables. They are said to form a white sequence if var (Xi) = σ2 and if
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cov (Xi, Xj) = 0 for i �= j. Hence, their covariance matrix can be expressed as

follows:

C = σ2In

where In is the n× n identity matrix.

PROPERTY 1.8 (Independence ⇒ non-correlation).– Let {X0, . . . , Xn−1} be n
independent random variables, then they are uncorrelated. Usually, the converse

statement is false.

1.2. Conditional expectation

DEFINITION 1.17 (Conditional expectation).– Let X be a random variable and Y a

random vector taking values, respectively, in X ⊂ R and Y ⊂ R
q . Let pXY (x, y)

be their joint probability density. The conditional expectation of X , given Y , is a

(measurable) real valued function g(Y ), such that, for any other real valued function

h(Y ), we have:

E
{|X − g(Y )|2} ≤ E

{|X − h(Y )|2} [1.26]

g(Y ) is commonly denoted by E {X|Y }.

PROPERTY 1.9 (Conditional probability distribution).– We consider a random

variable X and a random vector Y taking values, respectively, in X ⊂ R and Y ⊂ R
q

with joint probability density pXY (x, y). Then, E {X|Y } = g(Y ) with:

g(y) =

∫
X
x pX|Y (x, y)dx

where

pX|Y (x, y) =
pXY (x, y)

pY (y)
and pY (y) =

∫
X

pXY (x, y)dx [1.27]

pX|Y (x, y) is called the conditional probability distribution of X given Y .

PROPERTY 1.10.– The conditional expectation verifies the following properties:

1) linearity: E {a1X1 + a2X2|Y } = a1E {X1|Y }+ a2E {X2|Y };

2) orthogonality: E {(X − E {X|Y })h(Y )} = 0 for any function h : Y �→ R;

3) E {h(Y )f(X)|Y } = h(Y )E {f(X)|Y }, for all functions f : X �→ R and

h : Y �→ R;
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4) E {E {f(X,Y )|Y }} = E {f(X,Y )} for any function f : X × Y �→ R;

specifically

E {E {X|Y }} = E {X}

5) refinement by conditioning: it can be shown (see page 14) that

cov (E {X|Y }) ≤ cov (X) [1.28]

That has a clear meaning: the variance is reduced by conditioning;

6) if X and Y are independent, then E {f(X)|Y } = E {f(X)}. Specifically,

E {X|Y } = E {X}. The reciprocal is not true;

7) E {X|Y } = X , if and only if X is a function of Y .

1.3. Projection theorem

DEFINITION 1.18 (Dot product).– Let H be a vector space constructed over C. The

dot product is an application

X,Y ∈ H ×H �→ (X,Y ) ∈ C

which verifies the following properties:

– (X,Y ) = (Y,X)∗;

– (αX + βY, Z) = α(X,Z) + β(Y, Z);

– (X,X) ≥ 0. The equality occurs if and only if X = 0.

A vector space is a Hilbert space if it is complete with respect to its dot product3.

The norm of X is defined by ‖X‖ =
√
(X,X) and the distance between two elements

is defined by d(X,Y ) = ‖X − Y ‖. Two elements X and Y are said to be orthogonal,

denoted X ⊥ Y , if and only if (X,Y ) = 0. The demonstration of the following

properties is trivial:

– Schwarz inequality:

|(X,Y )| ≤ ‖X‖ ‖Y ‖ [1.29]

the equality occurs if and only if there exists λ such that X = λY ;

3 A definition of the term “complete” in this context may be found in mathematical textbooks.

In the context of our presentation, this property plays a concealed role, e.g. in the existence of

the orthogonal projection in theorem 1.2.
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– triangular inequality:

| ‖X‖ − ‖Y ‖ | ≤ ‖X − Y ‖ ≤ ‖X‖+ ‖Y ‖ [1.30]

– parallelogram identity:

‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2 [1.31]

In a Hilbert space, the projection theorem enables us to associate any given element

from the space with its best quadratic approximation contained in a closed vector sub-

space:

THEOREM 1.2 (Projection theorem).– Let H be a Hilbert space defined over C and C
a closed sub-space of H. Any vector X of H may then be associated with a unique

element X0 of C, such that ∀Y ∈ C we have d(X,X0) ≤ d(X,Y ). Vector X0 verifies,

for any Y ∈ C, the relationship (X −X0) ⊥ Y .

The relationship (X −X0) ⊥ Y constitutes the orthogonality principle.

A geometric representation of the orthogonality principle is shown in Figure 1.1.

The element of C closest in distance to X is given by the orthogonal projection of X
onto C. It follows that

‖X −X0‖2 = (X,X −X0)− (X0, X −X0)

= ‖X‖2 − (X,X0) [1.32]

where the term (X0, X −X0) = 0 due to the orthogonality principle.

In what follows, the vector X0 will be noted as (X|C), or (X|Y0:n−1) when the

sub-space onto which projection occurs is spanned by the linear combinations of

vectors Y0, . . ., Yn−1.

The most simple application of theorem 1.2 provides that, for any vector X ∈ H
and any vector ε ∈ C:

(X|ε) = (X, ε)

(ε, ε)
ε [1.33]
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The projection theorem leads us to define an application associating element X
with element (X|C). This application is known as the orthogonal projection of X
onto C. The orthogonal projection verifies the following properties:

1) linearity: (λX1 + μX1|C) = λ(X1|C) + μ(X2|C);
2) contraction: ‖(X|C)‖ ≤ ‖X‖;

3) if C′ ⊂ C, then ((X|C)|C′) = (X|C′);

4) if C1 ⊥ C2, then (X|C1 ⊕ C2) = (X|C1) + (X|C2).

Figure 1.1. Orthogonality principle: the point X0 which is the closest to
X in C is such that X −X0 is orthogonal to C

The following result is fundamental:

(X|Y0:n) = (X|Y0:n−1) + (X|ε) = (X|Y0:n−1) +
(X, ε)

(ε, ε)
ε [1.34]

where ε = Yn − (Yn|Y0:n−1).

PROOF.– Indeed, as the sub-space spanned by Y0:n coincides with the sub-space

spanned by (Y0:,n−1, ε) and as ε is orthogonal to the sub-space generated by

(Y0:n−1), then property [4] applies. To complete the proof, we use [1.33]. �

Formula [1.34] is the basic formula used in the determination of many recursive

algorithms, such as Kalman filter or Levinson recursion.

THEOREM 1.3 (Square-integrable r.v.).– Let L2
P be the vector space of

square-integrable random variables, defined on the probability space (Ω,A, P ).
Using the scalar product (X,Y ) = E {XY }, L2

P has a Hilbert space structure.
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1.3.1. Conditional expectation

The conditional expectation E {X|Y } may be seen as the orthogonal projection of

X onto sub-space C of all measurable functions of Y . Similarly, E {X} may be seen as

the orthogonal projection of X onto the sub-space D of the constant random variables.

These vectors are shown in Figure 1.2. As D ⊂ C, using Pythagoras’s theorem, we

deduce that:

var (X) = ‖X − E {X} ‖2 = ‖X − E {X|Y } ‖2 + ‖E {X|Y } − E {X} ‖2︸ ︷︷ ︸
=var(E{X|Y })

demonstrating var (E {X|Y }) ≤ var (X). That can be extended to random vectors,

giving the inequality [1.28], i.e. cov (E {X|Y }) ≤ cov (X).

Figure 1.2. The conditional expectation E {X|Y } is the orthogonal
projection of X onto the set C of measurable functions of Y . The

expectation E {X} is the orthogonal projection of X onto the set D of
constant functions. Clearly, D ⊂ C

1.4. Gaussianity

1.4.1. Gaussian random variable

DEFINITION 1.19.– A random variable X is said to be Gaussian, or normal, if all its

values belong to R and if its characteristic function (see expression [1.15]) has the

expression:

u ∈ R �→ φX(u) = exp

(
jmu− 1

2
σ2u2

)
[1.35]
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where m is a real value and σ is a positive value. We check that its mean is equal to m
and its variance to σ2.

If σ �= 0, it can be shown that the probability distribution has a probability density

function with the expression:

pX(x) =
1

σ
√
2π

exp

(
− (x−m)2

2σ2

)
[1.36]

1.4.2. Gaussian random vectors

DEFINITION 1.20 (Gaussian vector).– {X0, . . . , Xn−1} are said to be n jointly

Gaussian variables, or that the length n vector
[
X0 . . . Xn−1

]T
is Gaussian, if and

only if any linear combination of its components, that is to say Y = aHX for any

a =
[
a0 . . . an−1

]T ∈ C
n, is a Gaussian random variable.

THEOREM 1.4 (Distribution of a Gaussian vector).– It can be shown that the

probability distribution of a Gaussian vector, with length n, mean vector m and an

(n× n) covariance matrix C, has the characteristic function:

φX(u) = exp

(
jmTu− 1

2
uTCu

)
[1.37]

where u =
[
u0 . . . un−1

]T ∈ R
n. Let x =

[
x0 . . . xn−1

]T
. If det {C} �= 0, the

probability distribution’s density has the expression:

pX(x) =
1

(2π)n/2
√
det {C} exp

(
−1

2
(x−m)TC−1(x−m)

)
[1.38]

In the following text, the Gaussian distributions will be denoted by N (m,C).

THEOREM 1.5.– (Gaussian case: non-correlation ⇒ independence) If n jointly

Gaussian variables are uncorrelated, C is diagonal, then they are independent.

THEOREM 1.6 (Linear transformation of a Gaussian vector).– Let
[
X0 . . . Xn−1

]T
be a Gaussian vector with a mean vector mX and a covariance matrix CX . The random

vector Y = AX + b, where A and b are a matrix and a vector, respectively, with the

ad hoc length, is Gaussian and we have:

mY = AmX + b and CY = ACXAT [1.39]

In other words, the Gaussian nature of a vector is untouched by linear

transformations.



16 Digital Signal Processing with Python Programming

Equations [1.39] are a direct consequence of definition [1.20] and of property [1.7].

More specifically, if X is a random Gaussian vector N (m,C), then the random

variable Z = C−1/2(X −M) follows a Gaussian distribution N (0, I). Another way

of expressing this is to say that if Z has the distribution N (0, I), then X = M+C1/2Z
has the distribution N (m,C).

Note that, if C denotes a positive matrix, a square root of C is a matrix M , which

verifies:

C = MMH [1.40]

Hence, if M is a square root of C, then for any unitary matrix U , i.e. such that

UUH = I , matrix MU is also a square root of C. Matrix M is therefore defined to be

within a unitary matrix. One of the square roots is positive, and is obtained in Python®

using the function numpy.sqrtm.

The Gaussian distribution is defined using the first- and second-order moments,

i.e. the mean and the covariance. Consequently, all moments of an order greater than

2 are expressed as a function of the first two values. The following theorem covers the

specific case of a moment of order 4.

THEOREM 1.7 (Moment of order 4).– Let X1, X2, X3 and X4 be four real centered
Gaussian random variables. Hence,

E {X1X2X3X4} = E {X1X2}E {X3X4} [1.41]

+E {X1X3}E {X2X4}+ E {X1X4}E {X2X3}

Hence:

cov (X1X2, X3X4) [1.42]

= E {X1X2X3X4} − E {X1X2}E {X3X4}
= E {X1X3}E {X2X4}+ E {X1X4}E {X2X3}

1.4.3. Gaussian conditional distribution

Consider two jointly Gaussian random vectors X and Y , taking their values in R
p

and R
q , respectively. The respective means are noted μX ∈ R

p and μY ∈ R
q , and

C =

[
cov (X,X) cov (X,Y )
cov (Y,X) cov (Y, Y )

]
[1.43]
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is the joint covariance matrix, where cov (X,X) is a p×p positive matrix, cov (X,Y )
is a p× q matrix and cov (Y, Y ) is a q× q positive matrix. This leads to the following

results:

PROPERTY 1.11.– The conditional expectation of X given Y coincides with the

orthogonal projection of X onto the affine sub-space spanned by 1 and Y (this is

written B +AY ). Hence:

– the conditional expectation is expressed as:

E {X|Y } = μX + cov (X,Y ) [cov (Y, Y )]
−1

(Y − μY ) [1.44]

– the conditional covariance is expressed as:

cov (X|Y ) = cov (X,X)− cov (X,Y ) [cov (Y, Y )]
−1

cov (Y,X) [1.45]

– the conditional distribution of pX|Y (x, y) is Gaussian. Its mean is expressed as

[1.44] and its covariance is given by expression [1.45].

PROOF.– Let g(Y ) be the second member of [1.44], and let us demonstrate that g(Y )
is the conditional expectation of X , given Y . A straightforward calculation shows that

E
{
(X − g(Y ))Y T

}
= 0. Consequently, the random vectors Z = (X− g(Y )) and Y

are uncorrelated. As the vectors are jointly Gaussian, following property [1.10], they

are independent and hence E {Z|Y } = E {Z}. Using the second member of [1.44],

we obtain E {Z} = 0. On the other hand:

E {X − g(Y )|Y } = E {X|Y } − g(Y )

It follows that E {X|Y } = g(Y ). To demonstrate expression [1.45], take Xc =
X − μX and Xc

Y = E {X|Y } − μX . Hence, successively:

E
{
(Xc −Xc

Y )((X
c −Xc

Y )
T |Y }

= E
{
(Xc −Xc

Y )(X
c −Xc

Y )
T
}

= E
{
(Xc −Xc

Y )X
c,T

}
= cov (X,X)− cov (X,Y ) [cov (Y Y )]−1cov (Y,X)

where, in the first equality, we use the fact that (Xc − Xc
Y ) is independent of Y . In

conclusion, the conditional distribution of X , given Y , is written as:

pX|Y (x, y) = N (
μX + cov (X,Y ) [cov (Y Y )]−1(Y − μY ),

cov (X,X)− cov (X,Y ) [cov (Y Y )]−1cov (Y,X)
)

[1.46]

�
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Note that the distribution for random vector E {X|Y } should not be confused with

the conditional distribution pX|Y (x, y) of X , given Y . We shall restrict ourselves to

the scalar case, taking μX and μY as the respective means of X and Y , and

C =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
with −1 ≤ ρ ≤ 1 as the covariance matrix. The conditional distribution of X given

Y has a probability density pX|Y (x; y) = N (μX + ρσX(y − μY )/σY , σ
2
X(1− ρ2)).

On the other hand, the random variable distribution E {X|Y } has a probability

density of N (μX , ρ2σ2
X). Indeed, based on equation [1.44], E {E {X|Y }} = μX and

E
{
(E {X|Y } − μX)2

}
= ρ2σ2

Xσ2
Y /σ

2
Y = ρ2σ2

X .

1.5. Random variable transformation

1.5.1. General expression

In many cases, it is necessary to determine the distribution of Y = g(X) from

the distribution of X . In this section, we shall consider this question in the context of

continuous random vectors with finite dimension.

Let us consider the one-to-one mapping4:

y = g(y) ∈ R
d ⇔ x = h(y) ∈ R

d

and a random vector X with probability density pX(x). In this case, the probability

density of the random vector Y is given by:

pY (y) = pX(h(y))

∣∣∣∣det{∂x

∂y

}∣∣∣∣ [1.47]

where ∂x
∂y denotes the Jacobian of h defined by:

∂x

∂y
=

⎡⎢⎢⎢⎢⎢⎣
∂h0(y0, . . . , yd−1)

∂y0
. . .

∂hd−1(y0, . . . , ym−1)

∂y0
...

∂h0(y0, . . . , yd−1)

∂yd−1
. . .

∂hd−1(y0, . . . , yd−1)

∂yd−1

⎤⎥⎥⎥⎥⎥⎦

4 In cases where the transformation is not bijective, it is necessary to sum all of the solutions x,

such that y = g(x).
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Note that the Jacobian of a bijective function has one particularly useful property.

Taking a bijective function x ∈ R
d ↔ y ∈ R

d, we have:

∂x

∂y
× ∂y

∂x
= Id [1.48]

The expression [1.48] allows us to calculate the Jacobian using the expression

which is easiest to calculate, and, if necessary, to take the inverse.

1.5.2. Law of the sum of two random variables

As an example, let us consider two random variables X0 and X1 with a joint

probability density pX0X1
(x0, x1). We wish to determine the joint distribution of the

pair {Y0, Y1}, defined by the following transformation:{
Y0 = X0

Y1 = X0 +X1
⇔

{
X0 = Y0

X1 = Y1 − Y0

We can verify that the determinant of the Jacobian is equal to 1. Applying [1.47],

we obtain the following probability density for the pair {Y0, Y1}:

pY0Y1(y0, y1) = pX0X1(y0, y1 − y0)

From this, the probability density of Y1 = X0+X1 may be derived as the marginal

distribution of Y1. We obtain:

pY1(y1) =

∫
R

pX0X1(y0, y1 − y0)dy0

In cases where X0 and X1 are independent:

pX0X1(x0, x1) = pX0(x0)pX1(x1)

hence:

pY1(y1) =

∫
R

pX0(y0)pX1(y1 − y0)dy0

which is the expression of the convolution product (pX0 � pX1)(y1).
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EXERCISE 1.1 (Module and phase joint law of a 2D Gaussian r.v. (see p. 61)).–

Consider two independent, centered Gaussian random variables (X,Y ) of the same

variance σ2. We are concerned with the bijective variable transformation

(X,Y ) �→ (R,Θ) defined by{
r =

√
x2 + y2 r ∈ R

+

θ = arg(x+ jy) θ ∈ (0, 2π)
⇔

{
x = r cos(θ) X ∈ R

y = r sin(θ) Y ∈ R

Determine the joint distribution of (R,Θ) and the marginal distributions of R and

Θ.

1.5.3. δ-method

In cases where no closed-form expression for the distribution of Y = g(X) is

available or when the probability distribution of X is not fully specified, the so-called

delta-method provides approximate formulas for the mean and covariance of Y from

the mean and covariance of X .

Let us consider the function g : Rm �→ R
q and assume that g is differentiable at

point μX . We have:{
E {g(X)} ≈ g(E {X})
cov (g(X)) ≈ J(μX) cov (X) JT (μX)

[1.49]

PROOF.– We denote μX = E {X}. Using the first-order Taylor expansion of g in the

neighborhood of μX , we write:

Y = g(X) ≈ g(μX) + J(μX)(X − μX) [1.50]

where

J(μX) =
∂y

∂x

∣∣∣∣
x=μX

=

⎡⎢⎢⎢⎢⎢⎣
∂g0
∂x0

(μX) · · · ∂g0
∂xm−1

(μX)

...
...

∂gq−1

∂x0
(μX) · · · ∂gq−1

∂xm−1
(μX)

⎤⎥⎥⎥⎥⎥⎦
is the q × m Jacobian matrix of g performed at point μX . Therefore, taking the

expectation of [1.50], we get at first order

E {Y } ≈ g(μX) + J(μX)× E {X − μX} = g(μX) + 0
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then

Y − E {Y } ≈ J(μX)(X − μX)

Therefore, according to the definition [1.21] of cov (Y ), we have:

cov (g(X)) ≈ J(μX) cov (X) JT (μX)

It is worth noting that cov (g(X)) is a q×q matrix and cov (X) is a m×m matrix.

EXERCISE 1.2.– δ-method (see p. 61)

Consider two random variables {X0, X1}, Gaussian and independent, with means

of μ0 and μ1 respectively, and with the same variance σ2. Using the pair {X0, X1},

we consider the pair {R, θ} using the one-to-one mapping:

{X0, X1} = h(R, θ) :

{
X0 = R cos(θ) ∈ R

X1 = R sin(θ) ∈ R
⇔

{R, θ} = g(X0, X1) :

{
R = |X0 + jX1| =

√
X2

0 +X2
1 ∈ R

+

θ = arg(X0 + jX1) ∈ (0, 2π)

Use the δ-method to determine the covariance of the pair (R, θ). Use this result to

deduce the variance of R. This may be compared with the theoretical value given by:

var (R) = 2σ2 + (μ2
0 + μ2

1)−
πσ2

2
L2
1/2

(−(μ2
0 + μ2

1)

2σ2

)
where L1/2(x) = 1F1

(− 1
2 ; 1;x

)
is the hypergeometric function

(scipy.stats.hypergeom function in Python®). The later can be represented by

an integral:

1F1 (a; b;x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

exuua−1(1− u)b−a−1du

if Re(b) > Re(a) > 0, condition which is fulfilled here.

We see that, when (μ2
0 + μ2

1)/σ
2 tends toward infinity, var (R) tends toward σ2.

Additionally, when μ0 = μ1 = 0, we have var (R) = (4− π)σ2/2 ≈ 0.43σ2.
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1.6. Fundamental theorems of statistics

The law of large numbers and the central limit theorem form the basis of statistical

methods, and are essential to the validity of Monte-Carlo methods, which are briefly

presented in Chapter 4. The first theorem, often (erroneously) referred to as a law,

states that the empirical mean converges in law to the statistical mean; the second

theorem states that this convergence is “distributed in a Gaussian manner”.

THEOREM 1.8 (Law of large numbers).– Let Xn be a series of random vectors of

dimension d, independent and identically distributed, with a mean vector

m = E {X0} ∈ R
d and finite covariance. In this case,

1

N

N−1∑
n=0

Xn
a.s.−→N→+∞ E {X0} = m

and convergence is almost sure (a.s.).

One fundamental example is that of empirical frequency, which converges toward

the probability. Let Xn be a series of N random variables with values in a0, a1, . . .,
aJ−1 and let fj be the empirical frequency, defined as the ratio between the number

of values equal to aj and the total number N . In this case:

fj =
1

N

N−1∑
n=0

(Xn = aj)
a.s.−→ E { (Xà = aj)} = P {X0 = aj}

THEOREM 1.9 (Central limit theorem (CLT)).– Let Xn be a series of random vectors

of dimension d, independent and identically distributed, of mean vector m = E {X0}
and covariance matrix C = cov (X0). In this case:

√
N

(
1

N

N−1∑
n=0

Xn −m

)
d−→N→+∞ N (0, C)

with convergence in distribution.

Convergence in distribution is defined as follows:

DEFINITION 1.21 (Convergence in distribution).– A set of r.v. UN is said to converge

in distribution toward a r.v. U if, for any bounded continuous function f , when N
tends toward infinity, we have:

E {f(UN )} →N→∞ E {f(U)} [1.51]
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Theorem 1.9 is the basis for calculations of confidence intervals (see definition

2.7), and is used as follows: we approximate the probability distribution of the random

vector
√
N

(
N−1

∑N−1
n=0 Xn −m

)
, for which the expression is often impossible to

calculate, by the Gaussian distribution.

EXAMPLE 1.1 (Application of the CLT).– For illustrative purposes, consider the

Gaussian case where d = 1, taking m̂N = N−1
∑N−1

n=0 Xn. Show that:

P

{
m̂N − 1.96σ√

N
< m ≤ m̂N +

1.96σ√
N

}
≈ 0.95 [1.52]

HINTS: For any c > 0 and from theorem 1.9:

P

{√
N (m̂N −m) ∈ (−ε,+ε)

}
≈ 2

∫ ε

0

1

σ
√
2π

e−u2/2σ2

du

Letting ε = cσ, we can rewrite:

P

{
m̂N − cσ√

N
< m ≤ m̂N +

cσ√
N

}
≈ 2

∫ c

0

1√
2π

e−t2/2dt

Aiming for a probability equal to 0.95, the Gaussian table yields c = 1.96, hence

[1.52] (in Python® type scipy.stats.norm.isf(0.05/2.0)).

[1.52] means that there is 95% of chance that the true value of m belongs to the

interval (m̂N − 1.96σ/
√
N, m̂N + 1.96σ/

√
N). As expected, the smaller the value

of σ and/or the higher the value of N , the narrower the confidence interval.

In section 2.6, we will see the expression of the confidence interval when σ is

unknown. �

EXERCISE 1.3 (Asymptotic confidence interval from the CLT (see p. 62)).–

Consider a sequence of N independent random Bernoulli variables Xk, such that

P {Xk = 1} = p. To estimate the proportion p, we consider p̂ = 1
N

∑N−1
k=0 Xk.

1) Using the central limit theorem 1.9, determine the asymptotic distribution of p̂.

2) Use the previous result to derive the approximate expression of the probability

that p will lie within the interval between p̂− ε/
√
N and p̂+ ε/

√
N .

3) Use this result to deduce an interval which ensures that this probability will be

higher than 100α%, expressed as a function of N and α = 0.95.

4) Write a program which verifies this asymptotic behavior.
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The following theorem, known as the continuity theorem, allows us to extend the

central limit theorem to more complicated functions:

THEOREM 1.10 (Continuity).– Let UN be a series of random vectors of dimension d,

such that:

√
N(UN −m)

d−→N→+∞ N (0d, C)

and let g be a function R
d �→ R

q supposed to be twice continuously differentiable.

Thus,

√
N(g(UN )− g(m))

d−→N→+∞ N (0q,Γ)

where Γ = ∂g(m)C ∂T g(m) and where:

∂g(u) =

⎡⎢⎢⎢⎢⎢⎣
∂g0(u0, . . . , ud−1)

∂u0
· · · ∂g0(u0, . . . , ud−1)

∂ud−1
...

...
∂gq(u0, . . . , ud−1)

∂u0
· · · ∂gq(u0, . . . , ud−1)

∂ud−1

⎤⎥⎥⎥⎥⎥⎦

Applying theorem [1.10], consider the function associating vector UN with its �-th
component, which is written as:

UN �→ UN,� = ET
� UN

where E� is the vector of dimension d, all components of which are equal to 0, with

the exception of the �-th, equal to 1. Direct application of the theorem gives:

√
N(UN,� −m�)

d−→ N (0, C��)

where m� is the �-th component of m and C�� is the �-th diagonal element of C.

1.7. A few probability distributions

This section presents a non-exhaustive list of certain other important probability

distributions.

Binomial distribution: noted B(N, p) defined by:

P {X = n} =

{
Cn

Npn(1− p)N−n if n = 0, . . . , N
0 if not

[1.53]
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Poisson distribution: noted P(λ) defined for n ∈ N by:

P {X = n} =
λn

n!
e−λ [1.54]

Uniform distribution over (a, b): noted U(a, b) of density

pX(x; a, b) =
1

b− a
(x ∈ (a, b)) [1.55]

where a < b. The mean is equal to (b+ a)/2 and the variance is equal to (b− a)2/12.

Exponential distribution: noted E(θ), of density

pX(x; θ) = θ−1e−x/θ (x ≥ 0) [1.56]

with θ > 0. The mean is equal to θ and the variance to θ2. We can easily demonstrate

that E(θ) = θE(1).

Cauchy distribution: noted C(x0, a), of density

pX(x;x0, a) =
1

πa
(
1 +

(
x−x0

a

)2) [1.57]

with x0 ∈ R and a > 0. The Cauchy distribution has no finite moments.

Rayleigh distribution: of density

pX(x;σ2) =
x

σ2
e−x2/2σ2

(x ≥ 0) [1.58]

with σ > 0. The mean is equal to σ
√

π/2 and the variance to σ2(4 − π)/2, see

exercise 1.1.

Gamma distribution: noted G(k, θ), of density

pX(x; (k, θ)) =
1

Γ(k)θk
e−x/θxk−1 (x > 0) [1.59]

where θ ∈ R
+ and k ∈ R

+. The mean is equal to kθ and the variance to kθ2. Note

that E(θ) = G(1, θ).

ki square distribution with k d.o.f.: the r.v. Y =
∑k−1

i=0 X2
i , where Xi are k

Gaussian, independent, centered r.v.s of variance 1 follows a χ2 (pronounced “ki

square”) distribution with k degrees of freedom (d.o.f.). The mean is equal to k and

the variance to 2k.
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Fisher distribution with (k0, k1) d.o.f.: noted F (k0, k1). Let X and Y be two

real, centered Gaussian vectors of respective dimensions k0 and k1, with respective

covariance matrices Ik0 and Ik1 , and independent of each other, then the r.v.

Fk0,k1 =
k−1
0 XTX

k−1
1 Y TY

[1.60]

follows a Fisher distribution with (k0, k1) d.o.f.

Student distribution with k d.o.f.: noted Tk. Let X be a real, centered Gaussian

vector, with a covariance matrix Ik, and Y a real, centered Gaussian vector, of variance

1 and independent of X . The r.v.

Tk =
Y√

k−1
∑k−1

i=0 X2
i

[1.61]

follows a Student distribution with k d.o.f.

We can show that if Z follows a Student distribution with k degrees of freedom,

then Z2 follows a Fisher distribution with (1, k) degrees of freedom.

EXAMPLE 1.2 (A few distributions).– The following program displays the shapes of

a few distributions and the histograms of the Python® random generators, performed

on many samples:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 09:22:45 2016

****** afewdistributions

@author: maurice

"""

from numpy import exp

from scipy.stats import norm, gamma, f, t, chi2

from numpy.random import gamma as rndgamma, f as rndf, randn,

exponential

from numpy.random import chisquare as rndchi2, standard_t as rndt

from matplotlib import pyplot as plt

N = 10000; xG=randn(N); bE=0.2; xE=exponential(scale=bE,size=N)

thetag = 2; kg=3; xgamma = rndgamma(shape=kg,scale=thetag,size=N)

dofF = (30,40); xF = rndf(dofF[0],dofF[1],size=N)

doft = 10; xt = rndt(df=doft, size=N)

dofchi2 = 20; xchi2 = rndchi2(df=dofchi2, size=N)

#===== display
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bins = 50; plt.clf()

plt.subplot(321); histG = plt.hist(xG,normed=’True’, bins=bins)

plt.plot(histG[1], norm.pdf(-histG[1],0,1),’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’standard Gaussian’, fontsize=8)

plt.subplot(322); histE = plt.hist(xE,normed=’True’, bins=bins)

plt.plot(histE[1], exp(-histE[1]/bE)/bE,’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’Exponential with parameter %4.2f’%bE, fontsize=8)

plt.subplot(323);histgamma=plt.hist(xgamma,normed=’True’,bins=bins)

plt.plot(histgamma[1],gamma.pdf(histgamma[1],kg,scale=thetag),’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’Gamma k=%i, theta=%4.2f’%(kg,thetag), fontsize=8)

plt.subplot(324); histF = plt.hist(xF,normed=’True’, bins=bins)

plt.plot(histF[1], f.pdf(histF[1],dofF[0],dofF[1]),’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’Fisher with (%i,%i) d.o.f’%dofF, fontsize=8)

plt.subplot(325); histt = plt.hist(xt,normed=’True’, bins=bins)

plt.plot(histt[1], t.pdf(histt[1],doft),’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’Student with %i d.o.f’%doft, fontsize=8)

plt.subplot(326);histchi2=plt.hist(xchi2,normed=’True’,bins=bins)

plt.plot(histchi2[1], chi2.pdf(histchi2[1],dofchi2),’.-r’)

plt.yticks([]); plt.xticks(fontsize=8)

plt.title(’$\chi^2$ with %i d.o.f’%dofchi2, fontsize=8)



2

Statistical Inferences

2.1. First step: visualizing data

In data analysis, a picture is often better than a thousand words. When we start

analyzing data, the first step is not to run a complex statistical tool, but should be

to visualize the data in a graph. This will allow us to understand the basic nature of

the data. To meet this requirement, the following techniques are generally considered:

scatter plot, histogram, boxplot and Q-Q plot.

2.1.1. Scatter plot

The scatter plot is a plot in which Cartesian coordinates are used to display values

of pairs of variables. A scatter plot can suggest various kinds of correlations and

trends between two variables. Typically, the scatter plot is commonly used to

determine whether the relationship between variables is linear or not. The following

program displays the scatter plot of 6 variables of the exogenous variables of the

dataset statsmodels.api.datasets.star98:

# -*- coding: utf-8 -*-

"""

Created on Sun Jul 3 07:53:57 2016

****** scatterplotexample

@author: maurice

"""

import statsmodels.api as sm

from matplotlib import pyplot as plt

data = sm.datasets.star98.load()

P = 6; C=int((P-1)*P/2);

DP = 13; X0 = data.exog[:,DP:DP+P]
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plt.figure(1); plt.clf(); cp=0;

for i1 in range(P):

for i2 in range(i1+1,P):

cp=cp+1;

plt.subplot(4,4,cp);

plt.plot(X0[:,i1],X0[:,i2],’.’)

plt.xticks([]); plt.yticks([])

plt.title(’(%i,%i)’%(i1,i2), fontsize=10)

plt.subplot(4,4,16)

for ip in range(P):

nametext=(’%i: %s’%(ip,data.names[DP+ip]))

plt.text(0,0.9-ip/P,nametext,fontsize=10)

plt.xticks([]); plt.yticks([])

plt.box(’off’)

plt.show()

Scatter plots are shown in Figure 2.1. We see that the couples (0, 5), on the one

hand, and (3, 4), on the other hand, present a linear trend. Moreover, the couple (3, 4)
seems to present a variance that increases with index number. Also, the scatter plot

of the couple (1, 2) suggests a possible linear trend. Therefore, it is useful to define

quantitatively to assess the level of confidence when we decide that the trend is linear.

Sometimes a nonlinear trend can appear which can be easily transformed into a

linear trend using a simple transformation such as the log function.

We can also observe periodic trends that are often related to annual or daily

periodicities. Such a trend is said to be seasonal. For example, Figure 2.2 shows the

annual trend and may also be a parabolic trend (see exercise 2.11).

2.1.2. Histogram/boxplot

A histogram is a graphical representation of the distribution of numerical values.

The abscissa corresponds to the range of values and the ordinate to the numbers of

values in a set of consecutive disjoint intervals. In section 2.6.7, more details will be

provided on the relationship between the histogram and the probability distribution.

A boxplot determines the sequence of consecutive disjoint intervals, each

containing a given percentage of values, for example the four intervals containing

25% of the values.
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Figure 2.1. Scatter plots of all the pairs of six variables. The couples
(0, 5) and (3, 4) present a clear linear trend

Figure 2.2. Atmospheric CO2 concentration from continuous air samples at Mauna
Loa Observatory, Hawaii. The recorded data are weekly averages of parts per million
by volume (ppmv), observed from March 1958 to December 2001. On the RHS, a zoom
on 104 weeks shows a clear annual trend. Some data are missing

Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Tue Aug 23 08:08:15 2016
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****** histograminbrief

@author: maurice

"""

from matplotlib import pyplot as plt

import sklearn.datasets as sk

diabetes = sk.load_diabetes(); data = diabetes[’data’]; ip = 2;

fighist = plt.figure(num=1,figsize=(6,4)); plt.clf();

plt.subplot(211); plt.hist(data[:,ip], bins=10);

plt.subplot(212); plt.boxplot(data[:,ip],vert=0); plt.show()

The top graph of Figure 2.3 shows the histogram with 10 equal intervals

(nbins=10 in the program) distributed between the minimal and maximal values.

The observed shape does not suggest a Gaussian distribution. The bottom graph

shows the boxplot. The central box consists of 50% of the values and the vertical line

indicates the empirical median which is the value M , such that 50% of the set of

values is under M . (see definition 2.11).

Figure 2.3. Top: the histogram consists of 10 bins of equal size. The ordinates
correspond to the number of values in different disjoint intervals. Bottom: the boxplot
consists of a central box containing 50% of the values. The vertical line indicates the
empirical median. The plus symbols indicate outliers.

2.1.3. Q-Q plot

A Q-Q plot is a graphical method for testing a theoretical distribution with

observations. It is used to plot the theoretical quantiles (see expression [2.5]) as a

function of the empirical quantiles, hence its name. For a given distribution P, the
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quantile associated with the percent value p is the value x, such that

P {X ≤ x} = 1 − p. It is the inverse function of the cumulative function. For more

details on the quantile estimate, see exercise 2.35. Here, we only need to interpret the

results.

In Python®, the function scipy.stats.probplot returns, for a given

distribution specified by the argument dist, (i) the theoretical quantiles as a function

of the empirical quantiles, sorted in increasing order, and (ii) the closest straight line

characterized by its slope and its origin ordinate (also called the intercept) and the

root square of the coefficient of determination denoted by R2, see section 2.6.3.10.

The closer the R2 to 1, the closer the Q-Q plot to the straight line and the better the fit

with the tested distribution.

Figure 2.4. Q-Q plot of the math grades of 303 students. The
theoretical quantile values are derived from a Gaussian distribution.
The graph indicates that the data can be considered as Gaussian

The file statsmodels.api.datasets.star98 consists of the math scores of

303 students. The following program applies a Q-Q plot to these data. The results,

shown in Figure 2.4, indicate that the distribution is likely to be Gaussian.

# -*- coding: utf-8 -*-

"""

Created on Sun Jul 3 10:49:09 2016

****** qqplotexample

@author: maurice

"""

import statsmodels.api as sm

from numpy import size

from scipy.stats import probplot
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from matplotlib import pyplot as plt

data = sm.datasets.star98.load()

i0 = 14; X0 = data.exog[:,i0]; N = size(X0,0)

resultspp = probplot(X0, dist="norm")

sortX0 = resultspp[0][1]; qq = resultspp[0][0]

slope = resultspp[1][0]; intercept = resultspp[1][1]

R2 = resultspp[1][2]**2; plt.figure(2); plt.clf()

plt.plot(sortX0,qq,’ob’); plt.hold(’on’)

plt.plot(intercept+(slope*qq[0],slope*qq[N-1]),(qq[0],qq[N-1]),’r’)

plt.hold(’off’); plt.grid(’on’);

plt.title(’Coeff. of determination = %4.4e’%R2);plt.show()

2.2. Reduction of dataset dimensionality

The dimension of the data is the number of variables that are measured on each

observation. One of the main issues is that, in many cases, not all the variables are of

interest for understanding the underlying phenomena. Therefore, it is still useful in

many applications to reduce the dimension of the original dataset prior to any

modeling of the data.

In this section, we only consider one approach, namely principal components

analysis (PCA), to reduce the dimensionality of a complex dataset of observations.

PCA consists of projecting onto a space of a small dimension while preserving as

much as possible the useful variability.

We also present the linear discriminant analysis (LDA) that is closely related to the

PCA but attempts to model the difference between different classes of data. The LDA

is commonly used for dimensionality reduction before later classification.

The two methods have the advantage of being linear and make no precise statistical

assumptions concerning the data distribution. They are widely used in a number of

applications.

2.2.1. PCA

Consider N observations x0, . . ., xN−1, each one of length d associated with a set

of d features. We let:

X =

⎡⎢⎣ x0,0 x0,1 · · · x0,N−1

...
. . .

...

xd−1,0 xd−1,1 . . . xd−1,N−1

⎤⎥⎦ =
[
x0 . . . xN−1

]
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X can be understood from two points of view:

– either as a set of N columns, each one of them representing the features
associated with the same individual. This leads to N points in the space R

d;

– or as a set of d rows, each one of them representing the same factor for N
individuals. This leads to d points in the space R

N .

Here we will reduce the number of factors to keep only the k most significant ones,

eventually by linearly combining some of them.

First, we consider the case where k = 1. We have to search in R
d the direction of

a unit vector v such that the projection of the set of the xn onto this direction leads to

the scatter of N points with the highest dispersion.

This can be interpreted as follows: if we have to keep only one component, it might

also be the one that best separates all of the points. A classic criterion to evaluate this

dispersion is to consider the sum of the distances between all of the projected points.

Note that the projection of xn onto v is given by vvTxn and that the distance between

any two points is written as ‖vvTxi − vvTxj‖2 = vT (xi − xj)(xi − xj)
T v. The

criterion to be maximized is then written as:

J(v) =
1

2N2
vT

⎛⎝N−1∑
i=0

N−1∑
j=0

(xi − xj)(xi − xj)
T

⎞⎠ v

Let x̄ = N−1
∑N−1

j=0 xj ∈ R
d.

Therefore:

J(v) =
1

2N2
vT

⎛⎝N−1∑
i=0

N−1∑
j=0

[(xi − x̄)− (xj − x̄)][(xi − x̄)− (xj − x̄)]T

⎞⎠ v

= vTRNv

where we let:

RN =
1

N

N−1∑
n=0

(xn − x̄)(xn − x̄)T [2.1]

Note that the (d× d) matrix RN can be interpreted as a covariance matrix. Hence,

the problem can be laid out as follows:{
maxv J(v)

with vT v − 1 = 0
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The Lagrange multiplier method leads us to the following equivalent problem:{
maxv

(
vTRNv − λ(vT v − 1)

)
vT v − 1 = 0

Setting the gradient to zero with respect to v, we have:{
RNv − λv = 0

vT v − 1 = 0

The first equation means that v is an eigenvector of the matrix RN . If λ denotes

the eigenvalue associated with v, then J(v) = λ ≥ 0. Hence, the maximum is reached

when v is chosen as the eigenvector of RN associated with the highest eigenvalue,

hence the name of this method, Principal Component Analysis (or PCA).

By calculating the product vTX , we get a vector of RN which can be interpreted

as the “mean" factor that best characterizes, by itself, the N individuals, resulting in

a good separation. However, this “factor” does not really exist; it is merely a linear

combination of factors that are actually observed.

The previous result can easily be generalized: the k principal directions are the

k eigendirections of the highest eigenvalues. This leads to the following algorithm:

Data: X array of size d×N , k < d

Result: Z array of size k ×N , V array of size d× k
begin

Compute the covariance matrix R as [2.1];

Compute the eigendecomposition R = UDUT ;

Sort the eigenvalues in increasing order;

Selecting V = Ud−k:d−1, compute Z = V TX;

end
Algorithm 1: PCA algorithm

2.2.2. LDA

The LDA is a method to find a linear combination of features that allows us to

separate two or more classes of objects or events. Unlike the PCA, the LDA is a

supervised method, meaning that the response is known during the learning phase.

However, as with the PCA, the LDA is commonly used for dimensionality reduction

before later classification.
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We now consider g groups of individuals, where each group is comprised of N�

individuals for which d factors are measured. The data can then be represented in the

form of g matrices of the type:

X� =

⎡⎢⎣ x0,0 x0,1 . . . x0,N�−1

...
. . .

...

xd−1,0 xd−1,1 . . . xd−1,N�−1

⎤⎥⎦ =
[
x�,0 . . . x�,N�−1

]

with � ranging from 0 to g − 1.

In the space R
d, we obtain g scatters containing, respectively, N1, . . ., Ng points.

We let N =
∑g−1

�=0 N�.

The goal of the Linear Discriminant Analysis (or LDA) is to find the best separation

for these g scatters of points. To achieve this, we must first introduce the following

definitions:

– the mean, or barycenter, of a group:

m� =
1

N�

N�−1∑
j=0

x�,j

– the overall mean of the g groups:

m =
1

N

g−1∑
�=0

N�−1∑
j=0

x�,j =

∑g−1
�=0 N�m�∑g−1
�=0 N�

[2.2]

– the intraclass covariance (internal to the considered class) defined by:

RI =

∑g−1
�=0 N�R�∑g−1
�=0 N�

with R� =
1

N�

N�−1∑
j=0

(x�,j −m�)(x�,j −m�)
T

which leads us to:

RI =
1

N

g−1∑
�=0

N�−1∑
j=0

x�,jx
T
�,j −

1

N

g−1∑
�=0

N�m�m
T
� [2.3]

which can be interpreted as the mean of the dispersions inside of each group.
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– the extraclass covariance defined by:

RE =
1

N

g−1∑
�=0

N�(m� −m)(m� −m)T [2.4]

which can be interpreted as the dispersion of the barycenters of each class with respect

to the overall mean.

– the total covariance defined by:

R =
1

N

g−1∑
�=0

N�−1∑
j=0

(x�,j −m)(x�,j −m)T =
1

N

g−1∑
�=0

N�−1∑
j=0

x�,jx
T
�,j −mmT

These covariance matrices are (d× d) matrices. It can easily be proved that:

R = RI +RE

PROPERTY 2.1.– RE is of rank r = min(d, g − 1).

PROOF.– Indeed,

NRE =

g−1∑
�=0

N�(m� −m)(m� −m)
T

where m is given by expression [2.2]. We let:

M =
[√

N0(m0 −m) . . .
√
Ng−1(mg−1 −m)

]
The d× g matrix M verifies MMT =

∑g−1
�=0 N�(m� −m)(m� −m)

T
= NRE .

On the other hand,

M

⎡⎢⎣
√
N0

...√
Ng−1

⎤⎥⎦ =

g−1∑
j=0

Njmj −mN = 0

Therefore, the rank of M is at most equal to min(d, g − 1). This means that the

space spanned by the columns of M is at most of dimension min(d, g − 1). This is

also true for NRE = MMT . �

From property 2.1, it follows that, if g − 1 < d, RE is not invertible.
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We will now find the direction carried by the vector v, such that the intraclass

dispersion is minimal and the interclass dispersion is maximal: graphically speaking,

the scatters are farther away from each other and more compact. To achieve this

objective, one possible criterion is to minimize the evaluation function defined by:

J(v) =
vTRIv

vTREv

This amounts to searching v, such that:

min
v

vTRIv with vTREv = 1 [2.5]

Using the Lagrange multiplier method, we end up with the following equivalent

problem:{
minv

(
vTRIv +

1
λ (1− vTREv)

)
with 1− vTREv = 0

By setting the gradient to zero with respect to v, we find that v is given by:

REv = λRIv [2.6]

Note that if v is a solution of equation [2.6], then J(v) = 1/λ with λ ≥ 0.

Now we have to solve the equation [2.6] with respect to v and choose v associated

with the maximal value of λ. The resolution of [2.6] is a well-known problem, which

is called the generalized eigenvalue problem. In our case, RE and RI are positive;

therefore, there exists a basis of generalized eigenvectors that are the solution of [2.6].

In Python®, the resolution of [2.6] is obtained with the function eig(RE,RI).

Let us note that the eigenvectors of the classical eigendecomposition, equation

Rv = λv, are orthogonal, while eigenvectors of the generalized eigendecomposition,

equation REv = λRIv, are not.

To increase the capability of classification, we can choose more than one

eigenvector verifying equation [2.6]. Let vd−k, . . ., vd−1 be the k eigenvectors

associated with the k greatest generalized eigenvalues of equation [2.6]. By

compiling these k vectors, we get the (d× k) matrix:

V =
[
vd−k

]
[2.7]

This means that for each of the g families, the vectors are given by:

y�,j = V T x�,j [2.8]
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which give the representative points in R
k of each image. Theoretically, each of the g

scatter has a minimal dispersion, and all of the scatters are as far away from each

other as possible. This leads to the following algorithm:

Data: X array of size d×N , y array of size N , k < d
Result: Z array of size k ×N , V array of size d× k
begin

Compute the matrix RI as [2.3];

Compute the matrix RE as [2.4];

Compute the generalized eigen-decomposition of (RI , RE) that gives

U,D;

Sort the d eigenvalues of D in increasing order;

Selecting V = Ud−k:d−1, compute Z = V TX
end

Algorithm 2: LDA algorithm

EXERCISE 2.1 (Dimensionality reduction on the iris dataset).– (see 63)

The file located at sklearn.load_iris() consists of 3 classes of iris: Setosa,

Versicolour and Virginica. Each class consists of 50 examples, each example described

by 4 features.

Write a program reducing the dimension from 4 to 2, (i) firstly with PCA approach

i.e. without considering the iris classes and (ii) secondly with LDA approach taking

into account the iris classes.

For each example we obtain with this method a 2D feature that can be considered

as a point in the 2D plane. Plot these points for the 3 classes. Conclude.

These results will be used in exercise 2.20 for classification.

2.3. Some vocabulary

Observations may be either quantitative, or qualitative with an order notion, or

qualitative with no order notion. Quantitative values belong to Rn. The values can be

univariate (n = 1), bivariate (n = 2) or multivariate (n > 2). Unordered qualitative
values include, for example, gender (man, woman) or place of residence. Ordered
qualitative values include size (very tall, tall, small, very small), customer satisfaction

level (good, bad) or opinion score (excellent, good, fair, poor, bad).

2.3.1. Statistical inference

The aim of statistical inference is to obtain conclusions based on observations

modeled using random variables or vectors. A number of examples of statistical

inference problems are as follows:

– estimating the value of a parameter, for example the mean;
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– estimating an interval that has a 95% probability of containing the true parameter

value;

– testing the hypothesis that a parameter belongs to a given region, for example

the mean is greater than a given value;

– conducting regression analysis that addresses statistical techniques for

estimating the relationships among variables;

– classifying and/or ranking observations.

We do not aim to provide exhaustive coverage in this discussion, but simply

provide some examples of hypothesis testing, estimation and regression analysis.

In regression analysis, two sequences of values (Xn, Yn) are usually observed.

Observations Xn are considered as predictors or explanatory or independent

variables1, and observations Yn as responses or explained or dependent variables.

See, for example, the iris categories given in exercise 2.1 or the logistic regression

presented in section 2.6.6.

In the case where response Yn is quantitative, we speak of regression. When Yn

is qualitative without order, we speak of classification. Finally, when Yn is qualitative

and ordered, we speak of ranking.

2.4. Statistical model

In what follows, an element of the sample set X is denoted by x and the associated

event set is denoted by BX . The pair {X ,BX } is known as a measurable set [RUD 86].

Often, in the following, the sample set will be R
n and the associated event set will be

the Borel σ-algebra derived from the natural open topology.

DEFINITION 2.1 (Statistical model).– A statistical model is a family of probability

measures defined over the same measurable set {X ,BX } and indexed by θ ∈ Θ,

which is written as:

{Pθ ; θ ∈ Θ} [2.9]

When the set Θ ⊂ R
p is of finite dimensions, the model is said to be parametric;

otherwise, it is said to be non-parametric.

1 Let us note that the term independent should not be confused with independent in the

probability context.
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In what follows, we shall mainly focus on parametric models, where X ∈ R
n,

for which the probability distribution has either a discrete form or has a density with

respect to the Lebesgue measure. This model is denoted as:

{p(x; θ); θ ∈ Θ} [2.10]

θ is said to be identifiable if and only if:

θ0 �= θ1 ⇔ p(x; θ0) �= p(x; θ1)

We shall only consider models with identifiable parameters. It is essential that two

different parameter values will not, statistically, produce the “same” observations.

2.4.1. Notation

In the following, Eθ {f(X)} denotes the expectation of f(X) when the

distribution associated with the parameter value θ is used:

θ ∈ Θ 
→ Eθ {f(X)} =

∫
X
f(x)p(x; θ)dx

EXAMPLE 2.1 (Gaussian model).– The probability measure Pθ is Gaussian over R

with mean m and variance σ2. Thus, the parameter θ = (m,σ2) ∈ Θ = R× R
+ and

the model is parametric. If σ �= 0, the probability has a density which is written as:

p(x; θ) =
1

σ
√
2π

e−(x−m)2/2σ2

In many applications, the statistical model is connected to a sequence of

observations. For example, consider the observations modeled by n independent

Gaussian random variables, with the same mean m ∈ R and the same variance

σ2 > 0. This model, which forms the basis for a significant number of important

results, will be denoted as:

{ i.i.d. N (n;m,σ2)} = . . . [2.11]{
pX(x0, . . . , xn−1; θ) =

n−1∏
k=0

1

σ
√
2π

e−(xk−m)2/2σ2

}

where parameter θ = (m,σ2) ∈ Θ = R× R
+.
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Expression [2.11] may be generalized in cases where the observation is modeled by

a sequence of n random vectors Xn of dimension d that are Gaussian and independent:

{ i.i.d. N (n;m,C)} = . . . [2.12]{
pX(x; θ) =

n−1∏
k=0

1

(2π)
d/2
√
det {C}

e−
1
2 (xk−m)TC−1(xk−m)

}

where xk = (x0,k, . . . , xd−1,k). Parameter θ = (m,C) ∈ R
d × M+

d , where M+
d

denotes the set of positive square matrices of dimension d.

DEFINITION 2.2 (Likelihood).– Let us consider a parametric model defined by its

probability density family pX(x; θ). The likelihood is the function of Θ in R
+ defined

by:

θ 
→ p(X; θ) [2.13]

Its logarithm is called the log-likelihood.

Likelihood plays a fundamental role in statistics.

DEFINITION 2.3 (Statistic/estimator).– A statistic or estimator is any measurable

function of observations.

The statistical model { i.i.d. N (n;m,σ2)}, where σ2 is assumed to be known, is

fundamentally different from model { i.i.d. N (n;m,σ2)}, where σ2 is an unknown

parameter. In the first case, an estimator may contain the variable σ2, whereas in the

second case, it cannot.

2.5. Hypothesis testing

DEFINITION 2.4 (Hypothesis).– A hypothesis is a non-empty subset of Θ, which is

said to be simple if it reduces to a singleton; in all other cases, it is said to be composite.

EXAMPLE 2.2 (Hypothesis simple/composite).– Consider the following model:

– { i.i.d. N (n;m, 1)} of mean m ∈ Θ = R and variance 1. The hypothesis H0 =
{0} is simple, while the alternative hypothesis H1 = Θ−H0 is composite;

– { i.i.d. N (n;m,σ2)} with (m,σ2) ∈ Θ = R× R
+. The two hypotheses H0 =

{0} × R
+ and H1 = Θ−H0 are composite.
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A test of the hypothesis H0 consists of defining a subset X1 ⊂ X , such that if

realization x belongs to X1, then H0 is rejected. This is equivalent to defining the

statistic T (X) = (X ∈ X1) by taking values of 0 or 1 and such that:

ifT (X) =

{
0 then H0 is accepted,

1 then H0 is rejected.
[2.14]

The subset X1 is known as the critical region and the statistic T (X) as the critical
test function.

In some cases, a number η and a real-valued statistic S(X) exist, such that the

critical function may be written in the form T (X) = (S(X) ≥ η). The test is said to

be monolateral. In some other cases, two numbers η1 < η2 and a real-valued statistic

S(X) exist, such that T (X) = (S(X) �∈ [η1, η2]). In these cases, the test is said to

be bilateral. S(X) is referred to as statistic of test.

DEFINITION 2.5 (Significance level).– A test associated with the critical function

T (X) is said to have a significance level α if

max
θ∈H0

Eθ {T (X)} = α [2.15]

Note that, since the random variable T (X) takes its values in the set {0, 1},

Eθ {T (X)} = Pθ {T (X) = 1}. Thus, the significance level represents the

probability of accepting H1 when H0 is true. It is also known as the false alarm
probability.

DEFINITION 2.6.– A test of the hypothesis H0 against the alternative H1 = Θ−H0,

associated with the critical function T (X), is said to be uniformly most powerful

(UMP) at the level α if, for any θ ∈ H1, its power Eθ {T (X)} is higher than that of

any other test at the level α. This is written as:

∃ T (X) ∈ TH0(α), s.t. ∀S(X) ∈ TH0(α) and ∀ θ ∈ H1 :

Eθ {T (X)} ≥ Eθ {S(X)} [2.16]

where TH0(α) denotes the set of tests of the hypothesis H0 at the level α.

The power is interpreted as the probability of detection, which consists of

accepting H1 when H1 is true.

Unfortunately, in most situations, there is no UMP test.
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2.5.1. Simple hypotheses

Consider the following statistical model:

{p(x; θ); θ ∈ Θ = {θ0, θ1}} [2.17]

characterized by a set Θ that only consists of two values θ0 �= θ1 and the hypothesis

H0 = {θ0}. We let:

Λ(x) =
p(x; θ1)

p(x; θ0)
[2.18]

The following result, obtained by Neyman and Pearson, is fundamental, which

gives the expression of the UMP test at the level α [NEY 33].

THEOREM 2.1 (Neyman and Pearson).– For any value of α, there are two constants

η ≥ 0 and f ∈ (0, 1), such that the critical function test

T ∗(X) =

⎧⎪⎨⎪⎩
1 if Λ(X) > η

f ∈ (0, 1[ si Λ(X) = η

0 if Λ(X) < η

[2.19]

is UMP at the level α. When Λ(X) = η, the value of T is given by an auxiliary

Bernoulli random variable with the probability f of being equal to 0. The values of η
and f can be derived from the confidence level expression:

Eθ0 {T ∗(X)} = α [2.20]

The function Λ(X) is known as the likelihood ratio and the test is said to be

“randomized”.

EXAMPLE 2.3 (Poisson distribution test).– Consider n independent integer random

variables with the Poisson distribution, which can be written as:

P {Xk = x} =
λx

x!
e−λ

where x ∈ N and λ ∈ {λ0, λ1}, with λ0 < λ1. Determine the UMP test of H0 =
{λ0}, i.e. performing η and f given α.

HINTS: The log-likelihood ratio is written as:

� = −n(λ1 − λ0) + log(λ1/λ0)
n−1∑
k=0

Xk
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Comparing � to a given threshold is equivalent to comparing
Λ(X) =

∑n−1
k=0 Xk to another threshold. Hence, the UMP test is written as:

T ∗(X) =

⎧⎪⎨⎪⎩
1 if Λ(X) > η

f ∈ (0, 1) si Λ(X) = η

0 if Λ(X) < η

[2.21]

Using the characteristic function, it is easy to show that the distribution of Λ
under H0 is Poisson with parameter φ = nλ0.

For a given value of the significance level α, the values of η and f are derived
from the equation α = Pλ0 {Λ > η} = 1− Pλ0 {Λ ≤ η}, which can be written
as:

α = 1−
η−1∑
x=0

φx

x!
e−φ − f

φη

η!
e−φ

Hence:

η = min{x ∈ N s.t. 1−
η−1∑
x=0

φx

x!
e−φ ≤ α} and f =

α− (1−∑η−1
x=0

φx

x! e
−φ)

φη

η! e
−φ

�

In a large number of practical cases, the probability of the random variable Λ(X)
being exactly equal to η is 0. The most typical case is when the distribution of Λ has a

density. In this case, the critical function is written as:

T ∗(X) =

{
1 if Λ(X) > η

0 if Λ(X) ≤ η
[2.22]

This test is said to be “deterministic”.

The fundamental result is that the optimal test is based on the likelihood ratio.

The inequality Λ(X) ≥ η can often be simplified, as in the case of exponential

models. This may be illustrated using the following example. Consider the model

{ i.i.d. N (n;m, 1)}, with m ∈ {m0,m1} and m1 > m0. The likelihood ratio is

written as:

Λ(X) =
p(x; θ1)

p(x; θ0)
= exp

(
(m1 −m0)

n−1∑
k=0

Xk − n

2
(m2

1 −m2
0)

)
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However, as the exponential function is monotonic, comparing Λ(X) to a

threshold is equivalent to comparing the argument to another threshold. This comes

down to comparing to a threshold of the quantity:

Ψ(X) = 2(m1 −m0)
n−1∑
k=0

Xk − n(m2
1 −m2

0)

This can be simplified further by comparing the following statistic to a threshold

ζ:

T (X) = (Φ(X) ≥ ζ) with Φ(X) =
1

n

n−1∑
k=0

Xk [2.23]

The statistic Φ has a much simpler expression than that used for the likelihood

ratio. Under the hypothesis H0, the random variable Φ(X) is Gaussian, with mean

m0 and variance 1/n. The threshold value is then determined in such a way as to

satisfy the level α, which is written as:

ζ = m0 +Q[−1](α)
√
n

where Q[−1](α) is the inverse cumulative function of the standard Gaussian

distribution.

Note that the UMP test at the level α is not dependent on m1.

Figure 2.5 shows the connection between the significance level (or probability of

false alarm), the power (or probability of detection) and the probability densities of

the random variable Φ(X) under the two hypotheses.

Obviously, increasing the threshold value reduces the probability of a false alarm,

but also reduces the probability of detection. A compromise between the two types of

error is therefore required (see example 2.4).

For some issues, a cost is assigned to each decision. A cost function is defined as an

application of Θ×Θ 
→ R+. In the very simple case where Θ consists of two values,

the cost function takes four values C(θi, θj) ∈ R
+ with i, j in {0, 1}. The Bayesian

approach consists of determining the threshold that minimizes the mean risk:

RB =
1∑

i=0

1∑
j=0

C(θi, θj)P {decide i | knowing it is j} [2.24]

The choice of the cost function depends on the objective of the application, and

should be made with assistance from the experts of the domain of interest. A common

non-informative choice is C(θi, θj) = 1− δi,j .
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Figure 2.5. The two curves represent the respective probability densities of the test
function Φ(X) under the hypothesis H0 (m0 = 0) and hypothesis H1 (m1 = 2). For a
threshold value η, the light gray area represents the significance level or probability of
false alarm, and the dark gray area represents the power or probability of detection

EXAMPLE 2.4 (ROC curve).– Let { i.i.d. N (n;m, 1)} be a statistical model, where

m ∈ {m0,m1} with m1 > m0. We will test the hypothesis H0 = {m0}. The UMP

test at the level α compares:

Φ(X) =
1

n

n−1∑
k=0

Xk

with a threshold ζ. Let us note that the variance of Φ(X) is equal to 1/n for any values

of m. The value of ζ is derived from the value α of the significance level. Then, using

this value of ζ, we perform the power β of the test. The curve giving β as a function

of α is known as the receiving operational characteristic (ROC) curve. In our case, its

expression as a function of the parameter ζ ∈ R is written as:{
α =

∫ +∞
ζ

1
σ
√
2π

e−(t−m0)
2/2σ2

dt

β =
∫ +∞
ζ

1
σ
√
2π

e−(t−m1)
2/2σ2

dt
[2.25]

where σ2 = 1/n. Figure 2.6 shows the ROC curve for m0 = 0 and m1 = 1 and

different values of n. The form of these curves is typical. The ROC curve is

increasing and is concave above the first bisector. Note that the first bisector is the

ROC curve associated with the purely random test, which accepts the hypothesis H1

with probability α. Hence, for a given significance level α, the power β may not be

under the level α. The closer the ROC curve to the point (0, 1), the more efficient the

detector in discriminating between the two hypotheses. One way of characterizing

this efficiency is to calculate the area under the ROC curve, known as the AUC (area
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under the ROC curve). The expression of the AUC associated with the test function S
is given by:

A =

∫ +∞

−∞
β(ζ)dα(ζ)

=

∫ +∞

−∞

∫ +∞

−∞
(u0 < u1) pS(u0; θ0)pS(u1; θ1) du0du1 [2.26]

where pS(u0; θ0) and pS(u1; θ1) are the respective distributions of S under the two

hypotheses.

Expression [2.26] can be interpreted as the probability that U0 is lower than U1

for two independent random variables, U0 and U1, with respective distributions,

pS(u0; θ0) and pS(u1; θ1).

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability

D
et

ec
tio

n 
pr

ob
ab

ili
ty

n = 3
n = 5
n = 10

Figure 2.6. ROC curve. The statistical model is { i.i.d. N (n;m, 1)}, where m ∈ {0, 1}.
The hypothesis H0 = {0} is tested by the likelihood ratio [2.18]. The higher the value of
n, the closer the curve to the ideal point, with coordinates (0, 1). The significance level
α is interpreted as the probability of a false alarm. The power β is interpreted as the
probability of detection

2.5.1.1. Experimental ROC curve and AUC

The ROC curve and the AUC are valuable tools for evaluating test functions.

However, it is important to note that in the case of composite hypotheses, the power

depends on the choice of the parameter in the hypothesis H1. There is therefore an

infinite number of possible ROC curves, each associated with a value of parameter

θ ∈ H1. We may therefore choose a sub-set of values of H1 beforehand, carrying out

a random draw in order to obtain a mean curve.
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An experimental approach may also be used. To do this, a series of measurements

is carried out, including N0 examples under the hypothesis H0 and N1 examples under

the hypothesis H1. These data are then used to evaluate the test statistic Φ in both

cases. We obtain a series of values Φn0|0, with n0 from 1 to N0 for the data labeled

H0, and Φn1|1, with n1 from 1 to N1 for the data labeled H1. Using these two series

of values, it is possible to estimate the experimental ROC curve via the false alarm

probability estimator α̂ = N−1
0

∑N0−1
n0=0 (Φn0|0 > η) and the detection probability

estimator β̂ = N−1
1

∑N1−1
n1=0 (Φn1|1 > η) (see exercise 2.2). To obtain an estimation

Â of the area under the ROC curve, expression [2.26] can be used to derive the Mann-

Whitney statistic, which is written as:

Â =
1

N0N1

N0−1∑
n0=0

N1−1∑
n1=0

(Φn1|1 ≥ Φn0|0) [2.27]

Note that the choice of the database, containing examples under both H0 and H1,

is critical: this database must include a sufficient number of examples that are

representative of the application in question.

EXERCISE 2.2 (Empirical ROC curve and AUC).– (see p. 172) Consider the statistical

model { i.i.d. N (n;m, 1)}, where m ∈ {m0,m1}, with m1 > m0, and the

hypothesis H0 = {m0}. An observation consists of n values. We consider that a

database is available containing N0 observations under H0 and N1 observations under

H1. In this exercise, these observations will be used to estimate the ROC curve and

the AUC associated with the statistic [2.23], even though analytical expressions [2.25]

are available in this specific case:

1) Using the expression [2.23], propose an estimator of the significance level and

an estimator of the power, which are based on the database.

2) Write a program to:

1) draw N0 = 1000 observations of length n = 10 for H0 and N1 = 1200
observations of length n = 10 for H1,

2) estimate the ROC curve and compare it to the theoretical expression given

by [2.25],

3) estimate the area under the ROC curve with the Mann-Whitney statistic.

2.5.2. Generalized likelihood ratio test (GLRT)

Let us consider the parametric statistical model {Pθ; θ ∈ Θ ⊂ R
p}. In the

following, we shall assume that this family is dominated, and hence Pθ has a

probability density which may be simply denoted as p(x; θ). The basic hypothesis

H0 and the alternative H1 are both assumed to be composite.
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In the general case, the UMP test does not exist. For example, consider a situation

where the parametric family is dependent on a single scalar parameter θ and where the

hypothesis under test is H0 = {θ ≤ θ0}. If the UMP test at the level α of the simple

hypothesis {θ0} against the simple hypothesis {θ1}, with θ1 > θ0, does depend on θ1,

then a UMP test cannot be carried out.

In practice, in the absence of a UMP test, the generalized likelihood ratio test

(GLRT) is used, although it has attracted a good deal of criticism.

The GLRT is based on the critical function T (X) = (Λ(X) > η), with the

following test statistic:

Λ(X) =
maxθ∈Θ p(X; θ)

maxθ∈H0 p(X; θ)
[2.28]

This situation is illustrated in Figure 2.7. The larger the value of Λ(X) compared

to 1, the greater the probability of rejecting the hypothesis H0.

Figure 2.7. Diagram showing the calculation of the GLRT

Note that Λ(x) is positive. We may therefore take the logarithm and define as:

L(X) = 2 log Λ(X) = 2

(
max
θ∈Θ

log p(X; θ)− max
θ∈H0

log p(X; θ)

)
[2.29]

Subsequently, as the logarithmic function is monotonous and increasing,

comparing Λ(X) to the threshold η is equivalent to comparing L(X) to the threshold

log η.
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Taking θ = (θ0, . . . , θq−1, θq, . . . , θp−1) and the hypothesis under test:

H0 = {θ : θ0 = . . . = θq−1 = 0, θq, . . . , θp−1}

under relatively general conditions [MON 10], the test function [2.29] for H0 may be

shown to asymptotically follow a χ2 distribution with q degrees of freedom, which is

written as:

LH0(X) ∼ χ2
q [2.30]

This result is used in exercises 2.8 and 2.32.

In the specific case where q = 1, the hypothesis H0 to be tested is often:

– of the form H0 = {θ1 ≤ μ0}, where μ0 is a given value. The hypothesis is said

to be unilateral. It is often tested using a unilateral test;

– of the form H0 = {μ0 ≤ θ1 ≤ μ1}, where μ0 and μ1 are given values. In this

case, the hypothesis is said to be bilateral. One specific case occurs when μ0 = μ1,

which gives the hypothesis H0 = {μ = μ0}. Bilateral hypothesis testing is often

carried out in these cases. This case is illustrated by the test presented in the following

section.

2.5.2.1. Bilateral mean testing
Consider the statistical model { i.i.d. N (n;m,σ2)}, where (m,σ2) ∈ Θ = R ×

R
+ and with a hypothesis H0 = {m0}×R

+. The GLRT at the significance level α is

written as:

√
n|m0 − m̂|

(n− 1)−1/2

√∑n−1
k=0(Xk − m̂)2

H1
>
<
H0

T
[−1]
n−1 (1− α/2) [2.31]

where m̂ = n−1
∑n−1

k=0 Xk and Tn−1 denotes the Student distribution with n − 1
degrees of freedom.

PROOF.– Indeed, the log-likelihood is written as:

L(θ) = log p(X; θ) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n−1∑
k=0

(Xk −m)2

Canceling the first derivative with respect to σ2, we obtain the expression of the

maximum:

L̃(m) = −n

2
log(2π)− n

2
log

n−1∑
k=0

(Xk −m)2
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For m = m0 (hypothesis H0), the maximum is expressed as:

−n

2
log(2π)− n

2
log

n−1∑
k=0

(Xk −m0)
2

and for m �= m0 (hypothesis H1), the maximum is obtained by canceling the first

derivative of L̃(m) with respect to m, and is expressed as:

−n

2
log(2π)− n

2
log

n−1∑
k=0

(Xk − m̂)2

Consequently, following [2.28]:

Λ2/n(X) =

∑n−1
k=0(Xk − m̂)2∑n−1
k=0(Xk −m0)2

=

∑n−1
k=0(Xk − m̂)2∑n−1

k=0(Xk − m̂+ (m0 − m̂))2

=

∑n−1
k=0(Xk − m̂)2∑n−1

k=0(Xk − m̂)2 + n(m̂−m0)2

=
1

1 + n(m̂−m0)2/
∑n−1

k=0(Xk − m̂)2
[2.32]

Due to the monotonic nature of the function 1/(1 + u2), comparing the statistic

Λ(X) to another threshold is equivalent to comparing the statistic |V (X)| to a

threshold, where:

V (X) =

√
n(m̂−m0)√

(n− 1)−1
∑n−1

k=0(Xk − m̂)2
[2.33]

Setting p = 0 and then β0 = m0 in equation [2.83], we shall establish that, under

H0, V (X) follows a Student distribution with (n− 1) degrees of freedom. The test of

H0 at the level α is therefore written as [2.31]. �

EXERCISE 2.3 (Student distribution for H0).– (see p. 166) Taking the statistical model

{ i.i.d. N (n;m,σ2)} and the hypothesis H0 = {m0}, write a program to:

– simulate, for H0, 10000 observations of length n = 100;

– calculate V (X) following expression [2.33];

– compare the histogram of V (X) to the theoretical curve given by Student’s

distribution. The t.pdf function in Python® provides the probability density values

of Student’s distribution.
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EXERCISE 2.4 (Unilateral mean testing).– (see p. 167) Taking the statistical model

{ i.i.d. N (n;m,σ2)}, where (m,σ2) ∈ Θ = R × R
+ and the hypothesis H0 =

{m ≥ m0} × R
+, we determine the GLRT of H0 at the significance level α.

2.5.2.2. Test p −value

Let us consider a test of the hypothesis H0, for which the critical function is of

monolateral form, T (X) = (S(X) > η), where S(X) is a real-valued function.

Based on the observation X , it is possible to calculate T (X), which takes a value

of either 0 or 1. We will determine a confidence level associated with this decision.

The first step is to calculate the value of S(X); however, this value is meaningless in

absolute terms, whereas the probability of observing a value greater than S(X) under

the hypothesis H0 has a clear meaning: the lower the probability, the more reasonable

it would be to reject H0. The probability distribution of S(X) for all values of the

parameter θ ∈ H0 is necessary in order to carry out this calculation. If we denote

pS(s; θ) as the probability density of this distribution, the following statistic is known

as the p -value:

p -value = min
θ∈H0

∫ +∞

S(X)

pS(s; θ)ds [2.34]

The closer this value to 0, the more reasonable it would be to reject H0.

Clearly, if the critical function is of bilateral form, T (X) = (S(X) �∈ (−η,+η)),
the p -value is defined by:

p -value = 2 min
θ∈H0

∫ +∞

|S(X)|
pS(s; θ)ds [2.35]

Note that a common error consists of comparing the p -values of two samples of

different sizes. This is irrelevant because, generally, as the size of a sample increases,

the distribution of S(X) narrows and thus the p -value decreases. Moreover, note

that the p -value is dependent on the chosen test statistic. Consequently, for the same

observations, it may take a high value for one test statistic and a low value for another

statistic. Its meaning is therefore often debated, but this technique remains widespread.

Typically, rejection of H0 is recommended in cases with a p -value of less than 1%.

2.5.2.3. Confidence interval associated with a test

DEFINITION 2.7.– Consider a statistical model {Pθ; θ ∈ θ} defined over X and a

sequence of observations X = {X0, . . . , Xn−1}. Let α ∈ (0, 1). The confidence

region for θ at 100(1− α)% is a region Iα(X) ⊂ Θ, such that, for any θ:

Pθ {θ ∈ Iα(X)} ≥ 1− α
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When θ is of dimension 1, we speak of a confidence interval.

A test may therefore be associated with a region of confidence, which is as follows.

Taking a region of confidence Iα(X), at 100(1 − α)% of θ, the indicator function

(θ0 ∈ Iα(X)) appears as a test function of the hypothesis H0 = {θ = θ0} at the

significance level α.

Reciprocally, consider a statistical model, and let Rα(θ0) ⊂ X be the critical

region of a test of significance level α associated with the hypothesis H0 : {θ = θ0}.

In this case, each value x ∈ X may be associated with a set Sα(x) ⊂ Θ defined by:

Sα(x) = {θ0 ∈ Θ s.t. Rα(θ0) � x}

As the test is of level α, Pθ0 {X �∈ Rα(θ0)} ≤ α and thus:

1− α ≤ Pθ0 {X ∈ Rα(θ0)} = Pθ0 {Sα(X) � θ0}

meaning that Sα(X) is a region of confidence at 100(1− α)% of θ0.

EXAMPLE 2.5 (Variance confidence interval).– We consider the statistical model

{ i.i.d. N (n;m,σ2)}, with unknown mean and variance, and determine the GLRT at

the significance level α associated with the hypothesis H0 = {σ = σ0}. We then use

this result to deduce a confidence interval at 100(1− α)% of σ2.

HINTS: Based on [2.28], after simplification, we obtain the following test
statistic:

Φ(X) =
S(X)

σ2
0

where S(X) =
∑n−1

k=0(Xk − m̂)2, with m̂ = n−1
∑n−1

k=0 Xk. Using the results
of property 2.3, Φ(X) may be shown to follow a χ2

n−1 distribution with (n− 1)
degrees of freedom.

We may then identify a critical region at the level α:

Rα(σ0) = {X ∈ R
n s.t. σ2

0χ
2,[−1]
n−1 (α/2) ≤ S(X) ≤ σ2

0χ
2,[−1]
n−1 (1− α/2)}

where χ
2,[−1]
n−1 is the inverse of the cumulative function of the χ2 distribution

with (n−1) degrees of freedom. From this, we can deduce a confidence interval
at 100(1− α)% of σ2:

Iα(X) =

{
σ2 ∈ R

+ s.t.
S(X)

χ
2,[−1]
n−1 (1− α/2)

≤ σ2 ≤ S(X)

χ
2,[−1]
n−1 (α/2)

}

�
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EXERCISE 2.5 (Mean equality test).– (see p. 168) Consider two samples {X0,0, . . .,
X0,n0−1} and {X1,0, . . ., X1,n1−1} i.i.d. Gaussian, independent, with respective

means m0 and m1, a common variance σ2, and respective lengths n0 and n1. Here σ
is presumed to be unknown. We determine a test for the hypothesis m0 = m1.

1) Describe the statistical model and the hypothesis H0;

2) Determine the GLRT of H0 at the significance level α;

3) Show that, for H0, the test statistic is expressed as the modulus of a Student r.v.

with (n0 + n1 − 2) degrees of freedom. Use this result to identify the test at the level

α;

4) Use this result to determine the p -value;

5) Consider Table 2.1, which provides the growth results of a plant (in mm) using

two different fertilizers, denoted as 1 and 2. Give the p -value of the mean equality

test and present your conclusions.

F 1 1 1 1 2 2 2

size (mm) 51.0 53.3 55.6 51.0 55.5 53.0 52.1

Table 2.1. Growth in mm under the action of 2 fertilizers

EXERCISE 2.6 (CUSUM algorithm).– (see p. 170) Consider a sequence of n
independent random variables. These variables are presumed to have the same

probability distribution, of density p(x;μ0), between instants 0 and m − 1 and the

same probability distribution, of density p(x;μ1), between instants m and n − 1,

where m may take any value from 0 to n− 2 inclusive, or keep the same distribution

p(x;μ0) over the whole sample. The value of m is unknown, but both μ0 and μ1 are

known.

We will test the hypothesis H0 that no sudden jump exists from μ0 toward μ1:

1) Describe the statistical model;

2) Determine the test function Tn of the GLRT of the hypothesis H0, associated

with a sample of size n;

3) Taking sk = log p(xk;μ1)/p(xk;μ0), Cn =
∑n−1

k=0 sk, show that Tn may be

calculated recursively using the form Tk = max{0, Tk−1 + sk}. Write a program to

verify this assertion;

4) Write a program to implement the CUSUM algorithm.

As this test is carried out using the cumulated sum of likelihood ratios, it is

generally referred to as the CUSUM. When the parameter μ0 is unknown, it can be
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estimated using a recursive mean algorithm. When the parameter μ1 is unknown, the

situation is clearly more critical. Reference [BAS 93] gives a full treatment of the

field.

2.5.3. χ2 goodness-of-fit test

A goodness-of-fit test is a test that is concerned with the basic hypothesis H0 that

the observed sample comes from a given probability distribution. As mentioned

previously, the hypothesis H0 = {P = P0} may be simple or composite. Hence, if

the hypothesis H0 is that the observation follows a Gaussian distribution with a given

mean and variance, then H0 is simple. However, if the variance is unknown, then H0

is composite. Evidently, if the set of possible probability distributions under

consideration cannot be indexed using a parameter of finite dimensions, then the

model will be non-parametric.

Consider a sequence of N real random variables, {X0, . . . , XN−1}, i.i.d. and a

partition of R into g disjoint intervals Δ0, . . ., Δg−1. Let us denote:

Nj =
N−1∑
k=0

(Xk ∈ Δj) [2.36]

which represent the number of values in the sample {X1, . . . , XN−1}, which are

located within the interval Δj . Note that N0 + · · · + Ng−1 = N , and

pj,0 = PH0 {Xk ∈ Δj} with
∑

j pj,0 = 1. In cases where the hypothesis H0 is

composite, the quantities pj,0 may be dependent on unknown parameters. In this

case, these parameters are replaced by consistent estimations. In exercise 2.7, for

example, the true value of the variance is replaced by an estimation.

Exercise 2.7 shows that the random variable:

X2 =

g−1∑
j=0

(Nj − npj,0)
2

npj,0
= N

g−1∑
j=0

(
Nj

N − pj,0

)2
pj,0

d−→ χ2
g−1 [2.37]

This result has an obvious meaning: X2 measures the relative distance between

the empirical frequencies Nj/N and the theoretical probabilities. Based on the law

of large numbers 1.8, Nj/N converges under H0 toward pj,0 and under H1 toward

pj,1 �= pj,0. Thus, the statistic X2 will take small values for H0 and large values for

H1; these values will be increasingly large as N increases. This justifies the use of an

unilateral test, which compares X2 to a threshold.
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The choice of the number g and the interval sizes Δj is critical. One method

consists of selecting g classes of the same probability, or dividing the set of sample

values into classes with the same empirical weight (see exercise 2.8).

EXERCISE 2.7 (Proof of [2.37]).– (see p. 172)

Using the conditions associated with expressions [2.36] and [2.37], take D =

diag (P ) with P =
[
p0
]T

, where pj = P {Xk ∈ Δj}:

1) Determine the expressions of E {Nj} and E {NjNm} as a function of pj . Use

these expressions to deduce the fact that the covariance matrix of the random vector

(N0, . . . , Ng−1) can be written as nC, where C is a matrix for which the expression

will be given.

2) Show that D−1/2CD−1/2 is a projector of rank (g − 1).

3) Taking P̂j = Nj/N and Yj =
√
N(Pj − pj), determine the asymptotic

distribution of the random vector Y =
[
Y0 . . . Yg−1

]T
. Use this result to determine

the asymptotic distribution of vector Z = D−1/2Y .

Finally, identify the asymptotic distribution of variable X2 =
∑g−1

j=0 Z
2
j .

EXERCISE 2.8 (Chi2 fitting test).– (see p. 172) Write a program to simulate the

hypothesis H0 = {m = 0} for the model { i.i.d. N (N ;m,σ2)}. To do this, 3000
drawings of a sample of size N = 200 are required, with a Gaussian random variable

of mean 0 and unknown variance σ2. The set of values of each draw should be

separated into g = 8 blocks containing the same number of samples, i.e. 200/8.

Using the cumulative function of a Gaussian, calculate the values of

pj = P {Xk ∈ Δj}, in which the true, unknown value of σ is replaced by the

estimation given by the numpy.std function. Using this result, the values of X2 can

be deduced, given by expression [2.37], and a histogram is constructed, which will be

compared to the theoretical curve of χ2 with g − 1 = 7 degrees of freedom.

2.6. Statistical estimation

2.6.1. General principles

In this section, we will consider the problem of parameter estimation. We will

begin by presenting a number of general results concerning performance evaluation,

notably bias and quadratic error. We will then examine three methods used in

constructing estimators: the least squares method, mainly in the case of the linear

model, the moment method, and the maximum likelihood approach.

DEFINITION 2.8 (Estimator).– Let {Pθ; θ ∈ Θ} be a statistical model of the

observation X . An estimator is any (measurable) function of X with values in Θ.
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One fundamental question concerns the evaluation of estimator quality. We try to

choose an estimator θ̂, such that Pθ

{
θ̂ �= θ

}
= 0. Estimators of this type only exist

in exceptional situations and have no practical interest. In practice, two quantities are

commonly used, the bias and the risk, as defined below.

DEFINITION 2.9 (Bias and risk of an estimator).– Consider an estimator θ̂ : X 
→
Θ ⊂ R

d. The bias is the vector of dimension d:

B(θ, θ̂) = Eθ

{
θ̂
}
− θ

The quadratic risk is the square matrix of dimension d:

R(θ, θ̂) = Eθ

{
(θ − θ̂)(θ − θ̂)T

}
[2.38]

It is easy to show that

R(θ, θ̂) = covθ

{
θ̂
}
+B(θ, θ̂)BT (θ, θ̂)

where

covθ

{
θ̂
}
= Eθ

{(
θ̂ − E

{
θ̂
})(

θ̂ − E

{
θ̂
})T}

is the covariance matrix of θ̂.

It is worth noting that an estimator does not depend on the unknown parameter

being estimated, but the performance of the estimator does depend on this parameter.

Thus, the bias and the risk are generally dependent on the unknown value θ.

It is pointless to try and find an estimator with the minimum quadratic risk for all

values of θ. For this reason, we have to restrict the search class for θ̂. For example,

we can limit the search to bias-free estimators, or to the class of linear estimators, or

the class of estimators that are invariant by translation, etc.

Another method involves a Bayesian approach, which consists of taking into

account the available knowledge concerning θ, which takes the form of a probability

distribution pΘ(θ) and may be used for minimizing the average risk:

RB(θ̂ ) =

∫
Θ

trace
{
R(θ, θ̂ )

}
pΘ(θ)dθ [2.39]

over the set of all estimators.
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2.6.1.1. Cramer-Rao bound

Quadratic risk, expression [2.38], has a fundamental lower-bound known as the

Cramer-Rao bound (CRB).

THEOREM 2.2 (Cramer-Rao bound (CRB)).– Any estimator θ̂ of the parameter θ ∈
Θ ⊂ R

d verifies2:

R(θ, θ̂) ≥ (Id + ∂θB(θ, θ̂))F−1(θ)(Id + ∂θB(θ, θ̂))T [2.40]

+B(θ, θ̂)BT (θ, θ̂)

where ∂θB(θ, θ̂) is the Jacobian matrix of the vector B(θ, θ̂) with respect to θ, and

where

F (θ) = −Eθ

{
∂2
θ log p(X; θ)

}
[2.41]

where ∂2
θ log p(X; θ) is the Hessian of log p(X; θ) (square matrix of dimension d)

for which the element in line m, column � is written as
∂2 log p(X;θ)

∂θm∂θ�
.

It can be shown that:

F (θ) = Eθ

{
∂θ log p(X; θ)∂T

θ log p(X; θ)
}

[2.42]

where ∂θ log p(X; θ) is the Jacobian of log p(X; θ) (vector of length d).

In the case of an unbiased estimator, formula [2.40] is written as:

R(θ, θ̂) = covθ

{
θ̂
}
≥ F−1(θ) [2.43]

The matrix F is known as the Fisher information matrix (FIM). An estimator that

reaches the CRB is said to be efficient. Unfortunately, an efficient estimator does not

always exist.

In the case where X is a sequence of N i.i.d. r.v. with the same density pX(x; θ),

the log-likelihood is written as �(θ) =
∑N−1

n=0 log pX(xn; θ) and the FIM as

F (θ) = −NEθ

{
∂2
θ log pX(X0; θ)

}
[2.44]

The following result is given without proof.

2 Consider two positive square matrices A and B of the same dimension d. We say that A ≥ B
if and only if A−B ≥ 0, i.e. for any w ∈ C

d, we have wHAw ≥ wHBw.
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THEOREM 2.3.– Let us consider N observations of the Gaussian model

{ i.i.d. N (N ;m(θ), C(θ))}, where θ is the parameter of interest. The FIM associated

with this model can be written as:

Fk,� =
N

2
trace

{
C−1(θ)∂kC(θ)C−1(θ)∂�C(θ)

}
+N∂km

T (θ)C−1(θ)∂�m(θ)[2.45]

where ∂km(θ) and ∂kC(θ), respectively, denote the derivative of m and C with

respect to the kth component of θ.

It is worth noting that if m(θ1) and C(θ2) depend on disjoint parameters θ1 and

θ2 of respective lengths p1 and p2, the FIM given by [2.45] is a two-block diagonal

according to the following form:

F =

[
F11 0p1,p2

0p2,p1 F22

]
where F11 and F22 are square matrices, respectively, of sizes p1 and p2 associated

with the parameters θ1 and θ2.

EXAMPLE 2.6 (CRB for univariate Gaussian i.i.d.).– Consider the Gaussian model

{ i.i.d. N (N ;m,σ2)}. Determine the CRB for the parameter θ = (m,σ2).

HINTS: The parameter of interest is (m,σ2). Therefore, ∂m = 1, ∂σ2m = 0,
∂mσ2 = 0 and ∂σ2σ2 = 1. Using the expression [2.45], we have:

Fm,m =
N

σ2
, Fm,σ2 = 0, Fσ2,σ2 =

N

2σ4

The CRB is written as:

F−1 =

[
σ2

N 0

0 2σ4

N

]

We will see in example 2.8 that m̂ = N−1
∑N−1

n=0 Xn is unbiased with
asymptotic variance σ2/N , meaning that m̂ is asymptotically efficient. �

EXERCISE 2.9 (CRB expression using symbolic calculus).– (see p. 173) Let us

consider N observations of the bivariate Gaussian model { i.i.d. N (N ;m,C)},

where C00 = σ2
1 , C11 = σ2

2 and C01 = C10 = ρσ1σ2. Here ρ is the parameter of

interest.

Using the symbolic toolbox of Python® determine the CRB (which is a square

matrix of size 3) for N = 1. To import this toolbox, execute import sympy as sp. It

is advised to use sp.Matrix, sp.diff, sp.simplify and sp.Inverse. Using the
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program, verify that the CRB coefficients, associated with the parameters m1, m2, σ1,

σ2 and ρ, write for N i.i.d. observations:

CRBm1 =
σ2
1

N
, CRBm2 =

σ2
2

N
[2.46]

CRBσ1 =
σ2
1

2N
, CRBσ2 =

σ2
2

2N
, CRBρ =

(1− ρ2)2

N
[2.47]

To check these results, simulation is proposed in exercise 2.21.

2.6.2. Least squares method

Consider a series of observations yn of the form:

yn = xn(β) + wn [2.48]

where xn(β) is a deterministic model dependent on the parameter of interest β ∈
Θ ⊂ R

d and wn is a random process representing an additive noise. Here we deal

with the context of regression analysis, where xn is the explanatory variable and yn is

the response.

Using a sequence of N observations, the least squares method consists of the

following estimator of β:

β̂ = argmin
α∈Θ

N−1∑
n=0

|yn − xn(α)|2 [2.49]

This very general method was introduced by Gauss to determine the trajectories of

the planets. It still plays a key role in estimator construction methods. It may be applied

to the condition that we have a deterministic model, dependent on the parameter being

estimated. The added noise wn models the measurement noise, but also the “model”

noise, i.e. the fact that we are not completely certain of the presumed model xn(β).
As we shall see, the least squares estimator corresponds to the maximum likelihood

estimator in cases where wn is a Gaussian random process.

Take the example of a sinusoid in noise.

EXAMPLE 2.7 (Frequency estimation of a sinusoid in noise).– Consider N
observations yn, which are written as:

yn = R cos(2πf0n− ψ) + wn = ac cos(2πf0n) + as sin(2πf0n) + wn
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where wn is a sequence of N independent random variables with zero mean and

unknown variance σ2. The parameter is written as θ = (σ2, f0, ac, as) ∈
R

+ × (0, 1/2) × R × R. Determine the estimator of θ based on the least squares

approach. We note that the model is nonlinear with respect to f0.

Using the matrix notation and letting a =
[
ac as

]T
and

H(f0) =

⎡⎢⎢⎢⎣
1 0

cos(2πf0) sin(2πf0)
...

...

cos(2πf0(N − 1)) sin(2πf0(N − 1))

⎤⎥⎥⎥⎦
we can write y = H(f0)a + w. The least squares approach consists of minimizing

J(θ) = ‖y −H(φ)α‖2 with respect to θ. Then, the expression of θ is determined.

HINTS: Canceling the derivative of J with respect to α leads to

HT (φ)(y −H(φ)α) = 0, ⇒ α̂ = (HT (φ)H(φ))−1HT (φ)y

Carry α̂ in J and after a few calculations, we have:

f̂0 = arg max
φ∈(0,1/2)

K(φ)

whereK(φ) = yTH(φ)(HT (φ)H(φ))−1HT (φ)y

This scalar maximization with respect to φ is highly nonlinear. However, a
simple way to solve the problem consists of using a fine grid on the interval
(0, 1/2).

It is important to note that when the product Nf0 � 1, the matrix
HT (f0)H(f0) ≈ NI2 and

K(φ) ≈
∣∣∣∣∣
N−1∑
n=0

yne
−2jπφn

∣∣∣∣∣
2

is approximately equal to the squared modulus of the discrete Fourier transform
(DFT). Write a program to compare the least squares estimation and the DFT
estimation for different values of f0N .

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 26 18:59:40 2016

****** estimf0

@author: maurice
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"""

from numpy import pi, cos, sin, arange, zeros, mean, array,

fft, sqrt, matrix as mat

from numpy.random import randn

from numpy.linalg import pinv

N = 10; sigma = 0.03; f0 = 0.08; psi = pi/3; R = 1.0;

a = array((R*cos(psi), R*sin(psi)));

L=2**12; twoL=2.0*L; err2=zeros(L); listphi = arange(L)/twoL;

Lruns = 20; hatf0 = zeros(Lruns); hatf0fft = zeros(Lruns)

for idr in range(Lruns):

yT = R*cos(2.0*pi*f0*arange(N)-psi)+sigma * randn(N);

y = mat(yT).T

for ir in range(L):

phi = listphi[ir]; H = mat(zeros([N,2]))

H[:,0]=cos(2.0*pi*phi*arange(N).reshape(N,1))

H[:,1]=sin(2.0*pi*phi*arange(N).reshape(N,1))

pinvH = pinv(H.T*H); Piortho = H*pinvH*H.T

err2[ir] = y.T*Piortho*y

hatf0[idr] = listphi[err2.argmax()]

Yf = abs(fft.fft(yT,2*L))**2; Yfpos = Yf[0:L]

hatf0fft[idr] = Yfpos.argmax()/twoL

print(’LS: MSE = %4.2e, FFT: MSE = %4.2e’%(sqrt(mean(abs

(hatf0-f0)**2)),\

sqrt(mean(abs(hatf0fft-f0))**2)))

�

2.6.3. Least squares method for the linear model

Solving the problem [2.49] to find an estimator does not generally result in a simple

analytical expression, but requires the use of numerical approaches. Moreover, while

a number of asymptotic results exist, performance often needs to be studied on a case-

by-case basis. The exception to this rule is the case of the linear model, for which a

considerable number of results have been found. This section is devoted to a detailed

study of this model, which is written as, for n = 0, . . . , N − 1:

yn = ZT
n β + σεn [2.50]

where Zn =
[
1 Xn,1 . . . Xn,p

]T
=
[
1 Xn

]T
is a sequence of known vectors, εn is

a random sequence of white, zero-mean uncorrelated r.v. with variance 1 and σ is an

unknown positive number.
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The expression “linear model” refers to linearity of expression [2.50] with respect

to the unknown parameter β. This is also known as the linear regression, where yn
denotes the explained variable or response. Explanatory or independent variables Xn

may be seen in two ways: either as N points in the space Rp or as p points in the space

R
N .

In the following, we will consider the case of real data; however, the results are

applicable only to cases involving complex data values.

2.6.3.1. Standardization
A common preprocessing in applied regression is the standardization of the

explanatory variables, by subtracting its mean and dividing by its standard deviation.

Subtracting the mean makes it easier to interpret the presence of interactions, similar

to what we do with the covariance, and dividing by the standard deviation puts all

predictors on a common scale. Let us refer to the example 2.9. For more details, see

reference [GEL 08].

2.6.3.2. Linear model assumptions
Using the matrix notation, [2.50] can be rewritten as:

y = Zβ + σε, [2.51]

where

– y is a vector of dimension N × 1;

– the so-called design matrix:

Z =
[
1N X

]
[2.52]

is a matrix of dimension N × (p + 1), in which all of the components in the first

column are equal to 1;

– β = (β0, . . . , βp) ∈ R
p+1. Coefficient β0 is called the intercept;

– σ ∈ R
+.

ε is a random vector taking values in R
N and verifying either the assumption

E {ε} = 0N , cov (ε) = IN [2.53]

or ε ∼ N (0N , IN ) [2.54]

Model [2.53] is non-parametric, whereas [2.54] is parametric.[2.54] entails [2.53],

but the reverse is not necessarily true. Here the parameter of interest is:

θ = (β, σ) ∈ R
p+1 × R

+ [2.55]
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2.6.3.3. Useful notations

– r denotes the rank of the matrix Z. It is well known that r ≤ min{N, p+ 1}. If

r = (p + 1) ≤ N , Z is said to be of “full column rank”, and the square matrix ZTZ
of dimension p+ 1 is invertible.

– ΠZ denotes the orthogonal projector onto the sub-space spanned by the columns

of Z. This sub-space is denoted by Im(Z) as the image of Z. Note that 0N ≤ ΠZ ≤
IN and that ΠZ has r eigenvalues equal to 1 and (N − r) eigenvalues equal to 0.

Hence, trace {ΠZ} = r.

– Π⊥
Z = IN −ΠZ denotes the projector onto the sub-space orthogonal to Im(Z).

Π⊥
Z is positive. Hence, trace

{
Π⊥

Z

}
= N − r.

– hn,n denotes the nth diagonal element of the matrix ΠZ . From this, we can

deduce that
∑N−1

n=0 hn,n = trace {ΠZ} = r. If un denotes the vector for which all

components are null except for the nth component, which is 1, then hn,n = uT
nΠZun.

Applying the double inequality Π1N
≤ ΠZ ≤ IN (see expression [2.69] ) to vector

un, we obtain:

1

N
≤ hn,n ≤ 1 [2.56]

Note that hn,n is dependent on the Xn variables, but not on the yn variables. The

mean value of the hn,n is r/N . A value of hn,n that is close to 1 indicates that, in the

space R
p, point Xn is far from the center of the cloud of points associated with other

values. Conversely, a value close to 1/N indicates that the point is close to this center.

The quantity hn,n is known as the leverage (see exercise 2.10).

As Π⊥
Z +ΠZ = IN , any sum of the diagonal elements of the same rank in Π⊥

Z and

ΠZ must be equal to 1, i.e. π⊥
Z (i, i) + πZ(i, i) = 1, and any sum of the non-diagonal

elements of the same rank will be equal to 0, i.e. π⊥
Z (i, j) + πZ(i, j) = 0, i �= j.

According to the projection theorem 2.1, the best approximation, in the least square

sense, of y in the sub-space Im(Z) is given by the orthogonal projection:

ŷ = ΠZy [2.57]

An estimator β̂ of β, in the least square sense, therefore verifies:

Zβ̂ = ΠZy [2.58]

If Z is of full column rank, ZTZ is inversible and the projector

ΠZ = Z(ZTZ)−1ZT [2.59]
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There is therefore a single element β̂ that verifies equation [2.58], which is written as:

β̂ = (ZTZ)−1ZT y [2.60]

In cases where Z is not a full rank matrix, there are an infinite number of solutions

defined within an additive factor, an element of the null-space (kernel) of Z.

One expression that is useful in practice can be obtained by replacing y by [2.51]

in expression [2.58]:

Zβ̂ = Zβ + σΠZε [2.61]

If Z is a full column rank matrix, then [2.61] can be rewritten as:

β̂ = β + σ(ZTZ)−1ZT ε [2.62]

This allows us to deduce the properties of β̂ from those of ε.

2.6.3.4. Centering variables

In this section, we show that the intercept β0, on the one hand, and β1, . . . , βp,

on the other hand, are associated with two orthogonal spaces, and can therefore be

calculated “separately”.

Let 1N be a vector of length N , all the components of which are 1. We can verify

that the projector of rank 1 onto the sub-space spanned by 1N is expressed as:

Π1N
=

1

N
1N1T

N

Let Xc be a matrix of which the column vectors are the centered column vectors

of X , written as:

Xc = X −Π1NX = (IN −Π1N )X = Π⊥
1N

X [2.63]

Finally, let ΠXc be the orthogonal projector over the sub-space spanned by the

columns of Xc. Multiplying expression [2.63] by Π1N
on the left-hand side, we obtain

Π1NXc = 0, and thus:

Π1N
ΠXc = ΠXcΠ1N

= 0 [2.64]

This means that 1N is orthogonal to Xc and, consequently,

Im(
[
1N Xc

]
) = Im(1N )⊕ Im(Xc). Exercise 2.10 demonstrates that:

ΠZ = Π1N +ΠXc [2.65]
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From [2.65], we deduce that the orthogonal projection ŷ, given by expression

[2.57], can be written as:

ŷ = Π1N y +ΠXcy [2.66]

Using [2.64], we have Π1N
ŷ = Π1N

y, which can be rewritten as:

1

N

N∑
n=1

yn =
1

N

N∑
n=1

ŷn [2.67]

Taking yc = y −Π1N
y, [2.66] can also be written as:

ŷ = Π1N y +ΠXcy = Π1N y +ΠXcyc +ΠXcΠ1N y = Π1N y +ΠXcyc [2.68]

Again, this expression uses [2.64]. Expression [2.68] shows that the orthogonal

projection consists of two components: one representing the mean and the other the

projection onto the space spanned by the centered variables.

EXERCISE 2.10 (Decomposition of the design matrix).– (see p. 174)

1) Show that (Π1N +ΠXc)Z = Z. Derive the expression [2.65];

2) Use this result to show that:

Π1N
≤ ΠZ ≤ IN [2.69]

3) Multiplying each term of [2.69] on both sides by a vector, all components of

which are null except for the nth component, which is 1, demonstrate the double

inequality [2.56];

4) Write a program to show that if hn,n is close to 1/N , the point of coordinates

Xn in R
p is close to the center of the cloud formed by the other points. Conversely, if

hn,n is close to 1, the point is far from the cloud. To visualize the result with a plot,

take p = 2.

EXERCISE 2.11 (Atmospheric CO2 concentration).– (see p. 175) The curve shown in

Figure 2.2 indicates the weekly change of the atmospheric CO2 concentration for a

period of 44 years. The data are stored in the file

statsmodels.api.datasets.co2.load(). Let us note that some data are

missing, annotated by NaN. We observe, on the one hand, a polynomial trend and, on

the other hand, a periodic evolution. The periodic part is clearly of one year, i.e. 52

samples. We assume that the polynomial trend is of second order and the periodic
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part consists of the fundamental component and the second harmonic. This can be

written as:

yn ≈ a0 + a1n+ a2n
2︸ ︷︷ ︸

polynomial trend

+

2∑
k=1

bk cos(2πkf0n) + ck sin(2πkf0n)︸ ︷︷ ︸
seasonal part

[2.70]

with f0 = 7/365. This shows that the model is linear with respect to the parameter

θ = (a0, a1, a2, b1, b2, c1, c2).

Write a program to determine θ and plot the residue. In theory, the residue standard

deviation decreases when the order of the polynomial trend and the harmonic number

increase. Therefore, it cannot be used to evaluate these two quantities. In exercise 2.39,

we will see how to estimate these two values by cross-validation.

EXERCISE 2.12 (Change-point detection of Nile flow).– (see p. 175) The Nile is a

major north-flowing river in north-eastern Africa. The flow between 1871 and 1970
is shown in Figure 2.8. The curve presents an apparent change point around 1899.

Taking two one-order polynomial models, one before the date t and the other after the

date t, determine the total error for each value of t. Determine the value of t given the

minimal error.

Remark: for a sequential analysis of the change location, the CUSUM algorithm

can be used (see exercise 2.6).

Figure 2.8. Flow, expressed in m3/s averaged over one year, of the
Nile as measured at Ashwan from 1871 to 1970. The curve presents an

apparent change around 1899
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2.6.3.5. Probabilistic properties

Consider the linear model given by expression [2.50] with hypotheses [2.53]. The

εn are centered r.v.s, of variance 1, which are not correlated with each other. Suppose

that Z is of full column rank, with the matrix ZTZ therefore being invertible.

PROPERTY 2.2 (Best Linear Unbiased Estimator - BLUE).– The estimator

β̂ = (ZTZ)−1ZT y [2.71]

is an unbiased estimator of β and has the lowest covariance of all of the linear unbiased

estimators. It is called BLUE (Best Linear Unbiased Estimator). This covariance is

expressed as:

cov
(
β̂
)
= σ2(ZTZ)−1

PROOF.– Replacing y by [2.50] in β̂, we obtain β̂ = β+σ(ZTZ)−1ZT ε. If E {ε} = 0,

then E

{
β̂
}
= β. β̂ is unbiased. From this, we deduce that cov

(
β̂
)
= σ2(ZTZ)−1.

Now, consider another linear estimator with respect to y of the form b̂ = Qy, such

that E
{
b̂
}

= β. In this case, E
{
b̂
}

= QZβ = β, implying that QZ = Ip+1. From

this, we deduce that cov
(
b̂
)
= σ2QQT .

Additionally, A = IN − Z(ZTZ)−1ZT is a projector; A = AT and AA = A.

Hence, Q(IN − Z(ZTZ)−1ZT )QT ≥ 0. By developing the expression and using

QZ = I , we deduce that:

QQT − (ZTZ)−1 ≥ 0

which is the expected result.

In the rest of this chapter, unless indicated otherwise, we shall consider hypothesis

[2.54], i.e. ε is white and Gaussian. �

PROPERTY 2.3.– The solution to problem [2.51] using hypothesis [2.54] possesses the

following properties:

– β̂ = (ZTZ)−1ZT y;

– ŷ = β̂y ∼ N (Zβ;σ2ΠZ), where the rank of ΠZ is r;

– ê = y − ŷ ∼ N (0;σ2Π⊥
Z ), where the rank of Π⊥

Z is N − r. We have 1T ê = 0;

– ê and ŷ are independent random variables;

– if Z is of full rank, ê and β̂ are independent random variables.
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PROOF.– Substituting expression [2.51] into expression [2.57], we obtain:

ŷ = Zβ + σΠZε [2.72]

using ΠZZ = Z. From this, we deduce that the prediction residual defined by the

vector ê = y − ŷ ∈ R
N can be written as:

ê = y − ŷ = σΠ⊥
Z ε [2.73]

This leads to the following results:

– based on [2.67], 1T ê =
∑N−1

n=0 en = 0;

– based on [2.72], the distribution of ŷ is Gaussian, which is written as:

ŷ ∼ N (Zβ;σ2ΠZ) ⇔ ŷ − Zβ

σ
∼ N (0;ΠZ) [2.74]

– based on [2.73], the distribution of error ê is Gaussian, which is written as:

ê ∼ N (0;σ2Π⊥
Z ) ⇔ ê

σ
∼ N (0;Π⊥

Z ) [2.75]

– the random vectors ê and ŷ are independent. Following [2.72] and [2.73],

cov (ê, ŷ) = σ2Π⊥
ZΠZ = 0, meaning that ê and ŷ are not correlated; as they are

jointly Gaussian, they are independent;

– if Z is of full rank, then random vectors ê and β̂ are independent. In this case,

cov (ê, ŷ) = cov
(
ê, β̂

)
ZT = 0, hence cov

(
ê, β̂

)
= 0. �

Note that the random vector (ŷ − Zβ) should not be confused with the random

vector ê = (y − ŷ). The former is not observable, as the true value of β is unknown,

whereas the latter is observable (i.e. computable with the observations).

2.6.3.6. Unbiased estimator of σ2

Following [2.75], E
{
ê êT /σ2

}
= Π⊥

Z and thus:

E
{
êT ê

}
= trace

{
E
{
ê êT

}}
= σ2trace

{
Π⊥

Z

}
= σ2(N − r)

From this, we deduce that σ̂2, defined by

σ̂2 =
1

N − r
êT ê [2.76]

is an unbiased estimator of σ2.
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2.6.3.7. Calculating a confidence interval for Znβ

Using expression [2.74] and multiplying the left-hand side by a vector, all

components of which are null except for the nth component, which has a value of 1,

we deduce that (ŷn − Znβ)/σ ∼ N (0, hn,n) using theorem [1.6]. Applying [2.75]

and the definition of Student’s law, we deduce that:

ŷn − Znβ

σ̂
√
hn,n

∼ TN−r

where TN−r denotes a Student r.v. with (N − r) degrees of freedom.

To provide a confidence interval for Znβ, this expression can be rewritten as:

ŷn − σ̂δ(α) ≤ Znβ ≤ ŷn + σ̂δ(α) [2.77]

with δ(α) = T
[−1]
N−r(1− α/2)

√
hn,n

where σ̂ is derived from [2.76].

If hn,n is small, i.e. close to 1/N , see [2.56], then ŷn is weakly dispersed around

the true value Znβ. On the other hand, if hn,n ≈ 1, then ŷn is strongly dispersed

around the true value Znβ. Hence, the term leverages for hn,n.

2.6.3.8. Calculating a confidence interval for σ2

The distribution of σ̂2/σ2 is the sum of the squares of (N − r) independent,

Gaussian r.v.s of variance 1. σ̂2/σ2 is thus distributed as a χ2 distribution with

(N − r) degrees of freedom, which can be written as:

σ̂2

σ2
∼ χ2

N−r [2.78]

From this, we may deduce a confidence interval of level 100(1−α)% of σ, which

can be written as:

σ̂√
χ
2[−1]
N−r (1− α/2)

≤ σ ≤ σ̂√
χ
2[−1]
N−r (α/2)

[2.79]

2.6.3.9. Calculating a confidence interval on “fresh” observations

Using the estimated value of β for N learning data points

(yn=0...N−1, Zn=0...N−1), we can deduce the prediction of a “fresh” (new)
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observation zo, which is a vector of length (p + 1) beginning by 1. This can be

written as:

ŷo = zTo β̂ [2.80]

The confidence interval at 100(1− α)% for yo can be written as:

ŷo − σ̂δ(α) ≤ yo ≤ ŷo + σ̂δ(α) [2.81]

with δ(α) = T
[−1]
N−r(1− α/2)

√
1 + zTo (Z

TZ)−1zo

where σ̂ is derived from [2.76].

PROOF.– From [2.80], we get yo − ŷo = zTo (β − β̂) + σεo. Assuming that the design

matrix Z is full column rank, we derive that ŷo is a centered Gaussian r.v. with

variance:

var (ŷo) = σ2(zto(Z
tZ)−1zo + 1) [2.82]

Using [2.60] we can write yo−ŷo

σ = −zTo (Z
TZ)−1ZT ε+εo. Following [2.75], the

r.v. (yo − ŷo)/σ is independent from ê/σ. Hence taking the ratio we have:

yo − ŷo

σ̂
√
1 + zTo (Z

TZ)−1zo
∼ TN−r

�

Note that the confidence interval of Znβ given by [2.77] is narrower than the

confidence interval of ŷo given by [2.81]. This is legitimate, given that it is harder to

make a prediction using new data points than using data taken from the learning set

(see exercise 2.13).

2.6.3.10. Testing the hypothesis H0 = {βk = 0}
We will begin by showing that:

β̂k − βk

σ̂
√
[(ZTZ)−1]k,k

∼ TN−p−1 [2.83]

where TN−p−1 denotes a Student r.v. with (N − p− 1) degrees of freedom.

PROOF.– Following [2.62], in the case where Z is of full column rank:

β̂ − β

σ
∼ N (0; (ZTZ)−1)
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Multiplying the left-hand side by the vector, all components of which are null

except the kth component, which is 1, and then dividing by
√
[(ZTZ)−1]k,k, we

obtain:

β̂k − βk

σ
√
[(ZTZ)−1]k,k

∼ N (0; 1) [2.84]

Dividing the first member of [2.84] by the square root of the first member of [2.78],

we obtain [2.83].

It is worth noting that expression [2.83] is not a statistic, as it depends on the

unknown parameter β. Such a function is said to be pivotal. �

Expression [2.83] can be used to derive a critical function for testing the hypothesis

H0 = {βk = 0}. Indeed, under the hypothesis H0, we have:

Tk(y) =
β̂k

σ̂
√

[(ZTZ)−1]k,k
∼ TN−p−1 [2.85]

Tk(y) is also referred to in the literature as the Z-score. Roughly speaking, a Z-

score larger than two in absolute value is significantly non-zero (at the confidence level

of 5%). This provides a method for model selection. By model selection, we mean the

selection of significant explanatory variables.

The bilateral test of H0 with critical function (Tk(y) �∈ (−η, η)) can therefore be

used, where η is determined for a given significance level. Based on expression [2.35],

this bilateral test has a p -value of:

p -value = 2

∫ +∞

|Tk|
pTN−p−1

(t)dt [2.86]

where pTN−p−1(t) is the probability density of Student’s distribution with (N −p−1)
degrees of freedom. As stated in section 2.7, the Student distribution is a specific

instance of the Fisher distribution.

2.6.3.11. Testing the hypothesis H0 = {β1 = · · · = βp = 0}
We will test the hypothesis H0 = {β1 = · · · = βp = 0}. To do this, we take:

– the mean yc =
1
N

∑N−1
n=0 yn;

– the explained sum of squares:

ESS = ‖ŷ − yc‖2 =
N−1∑
n=0

(ŷn − yc)
2 [2.87]
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Following [2.74], the ratio ESS/σ2 follows, under H0, a χ2 distribution with p
degrees of freedom;

– the residual sum of squares:

RSS = êT e =
N−1∑
n=0

(yn − ŷn)
2 [2.88]

Following [2.75], the ratio RSS/σ2 follows, under H0, a χ2 distribution with N −
(p+ 1) degrees of freedom;

– the total sum of squares:

TSS = ‖y − yc‖2 =
N−1∑
n=0

(yn − yc)
2 [2.89]

Based on Pythagoras’ theorem (see also Figure 2.1), we have TSS = RSS+ESS;

– coefficient of determination R2, such that:

R2 =
ESS

TSS
= 1− RSS

TSS
∈ (0, 1)R2 [2.90]

The closer the R2 is to 1, the smaller the residuals, and the better the model will

explain observations. Inversely, if R2 ≈ 0, there will be little connection between the

set of explanatory variables and the response y. This may be used to deduce a test for

the hypothesis H0. To do this, we denote:

F =
(N − p− 1)R2

p(1−R2)
=

p−1ESS

(N − p− 1)−1RSS
[2.91]

In accordance with section 2.7, the statistic F follows, under H0, a Fisher

distribution with (p,N − p− 1) degrees of freedom, which can be written as:

F ∼ Fp,N−p−1 [2.92]

We can therefore construct for the hypothesis H0 the critical test function

T = (F �∈ (−η, η)) and calculate the threshold η for a given significance level,

along with a p -value.

We also consider the adjusted R2:

adjusted R2 = 1− RSS/(N − p− 1)

TSS/(N − 1)
[2.93]

Maximizing adjusted R2 is equivalent to minimizing RSS/(N −p−1), but while

RSS always decreases as the number of variables in the model increases, adjusted R2
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may increase or decrease, due to the presence of p in the denominator. Therefore,

adjusted R2 can be used for model selection, as briefly presented in section 2.6.3.13.

In example 2.9, we see that the statistics TSS, ESS, R2, adjusted R2 and F are

invariant by standardization, whereas β̂ is not.

2.6.3.12. AIC and BIC

As mentioned previously, RSS cannot be used for model selection; indeed, it

always decreases as the number of variables in the model increases. A simple idea

consists of penalizing the high order as with adjusted R2. This leads to two

commonly used indices of model quality in statistics: the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). The expressions for

the linear model are given by:

AIC = N log(RSS/N) + 2(p+ 1) [2.94]

BIC = N log(RSS/N) + (p+ 1) log(N) [2.95]

The preferred model is the one with either the minimum AIC value or the

minimum BIC value. For AIC derivation, see exercise 2.19. For a detailed

comparison of AIC and BIC, see [BUR 02].

The linear model analysis is summarized as follows:

Data: yn=0:N−1, Xn=0:N−1 ∈ R
p

begin
Form the design matrix Z =

[
1N X

]
;

perform the mean yc;

perform A = (ZTZ)−1;

perform ΠZ = ZAZT , leverage hn,n = ΠZ,n,n;

perform β̂ = AZT y, ŷ = Zβ̂ and ê = y − ŷ;

perform σ̂2 = 1
N−p−1 ê

T ê ∼ σ2 × ξ2N−p−1;

perform Zk−score =
β̂k

σ̂
√

Ak,k

∼ TN−p−1 for k = 0 : p;

perform the confidence interval on β̂ as [2.83];

perform the confidence interval on “fresh” data as [2.80];

perform ESS = ‖ŷ − yc‖2, RSS = êT e, TSS = ‖y − yc‖2;

perform F = p−1ESS
(N−p−1)−1RSS ∼ Fp,N−p−1;

perform R2 = ESS
TSS ;

perform adjusted R2 = 1− RSS/(N−p−1)
TSS/(N−1) ;

perform AIC = N log(RSS/N) + 2(p+ 1);
perform BIC = N log(RSS/N) + (p+ 1) log(N);

end
/* Z is assumed to be full rank column p+ 1 */

Algorithm 3: Linear regression calculation
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EXAMPLE 2.8 (Mean estimation).– Mean estimation may be seen via linear model

writing, with obvious notations, y = m1 + σε. Determine an estimator of m̂ and an

estimator of σ. Determine the distribution of these estimators.

HINTS: Therefore, Z = 1, ZTZ = N and m̂ = N−1
∑N−1

n=0 Xn. Following
[2.62], m̂ is unbiased. Following [2.76], σ̂2 = (N − 1)−1

∑N−1
n=0 (Xn − m̂)2,

which is unbiased. Also, m̂ and σ̂2 are independent.

Following [2.83], (m− m̂)
√
N/σ̂ ∼ TN−1. A confidence interval of m at 95%

is written as:

m̂− σ̂√
N

T
[−1]
N−1(1− α/2) ≤ m ≤ m̂+

σ̂√
N

T
[−1]
N−1(1− α/2)

with T
[−1]
N−1(1− α/2) = 2.01 for N = 50. This result can be compared with the

confidence interval, when σ is known, which is a little smaller (see example 2.1).

Because σ̂ tends to σ, the asymptotic variance of m̂ is σ2/N , meaning that m̂
is asymptotically efficient (see example 2.6).

�

EXAMPLE 2.9 (Water fluoridation).– The values reported in Table 2.2 give the

occurrence of dental cavities and the level of fluoride in drinking water observed in

21 American cities in a total of 7257 children [MC 43]. These values are illustrated

on the left-hand side of Figure 2.9. The linear model does not appear to be suitable. A

model of the form y ≈ γ(x + 1)α with α < 0 seems to give a more satisfactory

result. Taking the logarithm of the two members, we obtain

log y ≈ β0 + β1 log(x + 1), which is linear with respect to log(x + 1). This

corresponds well with the illustration on the right-hand side of Figure 2.9.

fluoride 1.90 2.60 1.80 1.20 1.20 1.20 0

cavities 17.13 17.85 18.29 18.72 20.39 21.99 23.44

fluoride 1.30 0.90 0.60 0.50 0.40 0.30 0

cavities 24.89 29.90 32.22 40.35 47.32 51.02 51.23

fluoride 0.20 0.10 0.20 0.10 0.10 0.10 0

cavities 53.19 56.02 59.73 75.26 58.78 48.84 52.40

Table 2.2. Cavity values given in thousands. The fluoride level
is given in ppm (parts per million)

Take y = β0+β1x, where x denotes the log-percent of the number of cavities and

y the log-concentration of fluoride. Write a program to perform the statistics RSS,

TSS, R2, adjusted R2 and F , and test the hypothesis β1 = 0.
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Figure 2.9. Percentage of dental cavities observed as a function of
fluoride levels in drinking water in ppm (parts per million)

HINTS: Run the following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 08:57:15 2016

****** testfluorcaries

@author: maurice

"""

from numpy import array, log10, ones, sum, mean, dot, zeros,

std

from numpy.linalg import pinv

from scipy.stats import f

import scipy.stats as ss

caries = array([\

1.90,2.60,1.80,1.20,1.20,1.20,\

1.30,0.90,0.60,0.50,0.40,0.30,\

0.20,0.10,0.20,0.10,0.10,0.10,0,0,0]);

fluor = array([17.13,17.85,18.29,18.72,20.39,21.99,23.44,\

24.89,29.90,32.22,40.35,47.32,51.02,51.23,\

53.19,56.02,59.73,75.26,58.78,48.84,52.40]);

xns = log10(caries+1);

# to see effect of the standardization, test 0 and 1

standardizatioflag = True

if standardizatioflag:

xc = xns-mean(xns)

x = xc / std(xns)

else:
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x = xns

y = log10(fluor);

N = len(x); H =zeros([N,2])

H[:,0] = ones(N); H[:,1] = x; invH = pinv(H)

hatbeta = dot(invH,y);

haty = dot(H,hatbeta);

ESS = sum((haty-mean(y)) **2); TSS = sum((y-mean(y)) **2);

RSS = TSS-ESS; R2 = ESS/TSS;

adjR2 = 1.0-(RSS/(N-2.0)/(TSS/(N-1.0)))

F = (N-2)*R2/(1.0-R2);

pvalue = 1-f.cdf(F,1,N-2);

print(’\t******* p-value = %3.1e\n’%pvalue)

print(hatbeta, ESS, TSS, R2, adjR2, F, pvalue)

We obtain R2 = 0.9092 and F = (N−2)R2

(1−R2) = 190.20, and the p -value ≈
2.4× 10−11. This leads us to reject the hypothesis β1 = 0.
Assigning the value True to the variable standardiseflag, we note that
SST,R2, S, pvalue are invariant by standardization, whereas beta is not. �

EXERCISE 2.13 (Confidence intervals on linear model features).– (see p. 176) The

file statsmodels.api.datasets.diabetes.load() consists of 10 explanatory

variables (age, sex, body mass index, blood pressure and 6 blood serum

measurements) measured on 442 patients, and an indication of disease progression

after one year. Let us verify that all explanatory variable values have zero mean and

norm 1.

We denote yn as the indication of disease progression and xn as the age, and write

yn = β0 + β1xn + σεn.

Write a program to perform the regression coefficients β, the predictions ŷn, the

confidence intervals of Znβ, expression [2.77] and, for an arbitrary fresh values, the

confidence interval of ŷo, expression by [2.81].

EXERCISE 2.14 (Hypothesis test on H0 = {β1:p = 0}).– (see p. 177) The file

sklearn.datasets.load_boston() consists of the Boston housing price (median

value of owner-occupied homes in $1000’s) considered as the target data and 13
features considered as the explanatory variables. We consider that the target can be

modeled by yn = β0 +
∑p

k=1 βkxn,k + σεn, where xn,k are the following selected

explanatory variables: RM, LSTAT, CRIM, ZN, CHAS, DIS (6 among 13).

Determine the value of the statistic F , equation [2.91], and the p -value associated

with the test of the hypothesis H0 = {β1 = . . . = βp = 0}.

EXERCISE 2.15 (Model selection based on Z-score).– (see p. 178) Let us consider

the file statsmodels.api.datasets.diabetes.load() of exercise 2.13. We let
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yn = β0 +
∑10

k=1 βkxn,k + σεn, where xn,k denotes the kth features associated with

the patient n. Write a program to perform the Z-score [2.85] for the intercept and for

the 10 explanatory variables. Conclude.

2.6.3.13. Feature selection in the linear model

An important concern is to select only the relevant explanatory variables in the

linear model. Brute force consists of computing a significative value as, e.g. the

adjusted R2, for all the possible subsets of explanatory variables, i.e. for the 2p

combinations, but for large p, this computation could be cumbersome.

Here we only present the approach called backward stepwise selection. This

consists of two steps: in the first step, we start with the full linear model consisting of

all p predictors, and then iteratively remove the least useful predictor, one at a time.

This leads to p + 1 models. Let us denote M0, . . ., Mp as these models, where Mk

is specified by k explanatory variables and the response y. In second step, we select

the best among them and use a criterion, e.g. AIC, BIC or adjusted R2, etc. or also a

cross-validation-type approach, as presented in section 2.6.8. For more details, see

[HAS 09].

This procedure is summarized in the following algorithm 4:

Data: X ∈ R
p × R

N , y ∈ R
N , with N > p

Result: best model

begin
for k = p to 1, step −1 do

for j = 1 to k do
compute Tj of the model Mk,j ;

end
T ∗ = argminj Tj ;

Mk = Mk,T∗

end
Select the best model from among M0, . . ., Mp using selection

criterium;

end
/* Tj denotes a scalar statistic, as e.g. the norm of the

prediction residue */

/* A model Mk is specified by a list of explanatory

variables and the target y */

/* The model selection criterium could be AIC, BIC, etc,

or cross-validation */

Algorithm 4: Backward stepwise selection
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EXERCISE 2.16 (Model selection based on adjusted R2, AIC and BIC).– (see

p. 178) Let us consider the file statsmodels.api.datasets.diabetes.load()

of exercise 2.13. We let yn = β0 +
∑10

k=1 βkxn,k + σεn, where xn,k denotes the kth

features associated with the patient n.

Write a program which implements the backward stepwise selection algorithm

4, successively using the adjusted R2, the AIC and the BIC as the model selection

criterium. Compare the three selected models.

2.6.3.14. Weighted least squares (WLS)

In some cases, for the model y = Zβ + σε, the covariance of ε is a known matrix

Γ �= I . The best estimator in terms of least squares can then be expressed as:

β̂ = (ZTΓ−1Z)−1 ZTΓ−1Y, [2.96]

[2.96] is known as the weighted least squares (WLS) estimator.

PROOF.– Let P be the square matrix of dimension N , such that PPT = Γ−1. We

have Py = (PZ)β + σξ, with ξ = Pε. We can verify that cov (ξ) = IN , as in the

case of ordinary least squares (OLS). Therefore, we can use the expression [2.60],

replacing y by Py and Z by PZ. From this, we deduce that the estimator is given by

[2.96]. Moreover, it is unbiased, and its covariance is expressed as:

cov
(
β̂
)
= σ2(ZTΓ−1Z)−1 [2.97]

It is easy to show that the weighted least squares estimator minimizes the following

function:

J(β) = (Y − Zβ)TΓ−1(Y − Zβ) = ‖y − βZ‖2Γ−1 [2.98]

Hence, given that Γ ≥ 0, we can derive [2.96] directly from the projection

theorem. �

2.6.4. Method of moments

Let us consider N observations X0, . . ., XN−1 i.i.d. from a Gamma distribution

of parameter θ = (k, λ) ∈ R
+ × R

+, with the probability density:

pX(x; θ) =
1

λkΓ(k)
xk−1 e−x/λ (x ≥ 0) [2.99]
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where Γ(k) =
∫ +∞
0

tk−1e−tdt. We can show that E {Xn} = kλ and E
{
X2

n

}
=

k(1 + k)λ2.

The basic idea behind the method of moments is to relate statistical and empirical

moments, which can be written as:

{{ 2
kλ ≈ 1

N

∑N−1
n=0 Xn

k(1 + k)/λ2 ≈ 1

N

∑N−1
n=0 X2

n

To obtain an estimator of θ, we must simply solve the above two equations with

respect to the two unknown parameters (k, λ). Hence:⎧⎪⎨⎪⎩
k̂ =

m̂2

σ̂2

λ̂ =
σ̂2

m̂

[2.100]

where m̂ = N−1
∑N−1

n=0 Xn and σ̂2 = N−1
∑N−1

n=0 (Xn − m̂)2.

EXERCISE 2.17 (Moment estimator: central limit theorem).– (see p. 180) For the

moment estimator given by [2.100], determine the asymptotic behavior deduced from

the central limit theorem 2.9 and the continuity theorem 2.10.

2.6.4.1. Generalized method of moments

Clearly, multiple estimators may be obtained by choosing moments of the form

Eθ {g(Xn)}. It is even possible to use more moments then parameters to estimate,

leading to more equations than unknowns. Starting with M moments of the form

E {gm(X0)} = Sm(θ) (X0 may be used with no loss of generality, as the r.v.s are

considered to be i.i.d.), the generalized method of moments consists of taking the

following estimator:

θ̂ = argmin
θ

M∑
m=1

(
1

N

N−1∑
n=0

gm(Xn)− Sm(θ)

)2

= argmin
θ

‖Ŝ − S(θ)‖2 [2.101]

where Ŝ is a vector of length M , written as:

Ŝ =

⎡⎢⎣
1
N

∑N−1
n=0 g0(Xn)

...
1
N

∑N−1
n=0 gM−1(Xn)

⎤⎥⎦ and S(θ) =

⎡⎢⎣ Eθ {g0(X0)}
...

Eθ {gM−1(X0)}

⎤⎥⎦ [2.102]
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The estimator given by expression [2.101] may be improved by using the

covariance matrix of Ŝ and by using the weighted least squares approach given by

expression [2.98]. This yields the following estimator:

θ̂ = argmin
θ

(Ŝ − S(θ))TC−1(θ)(Ŝ − S(θ)) [2.103]

where the covariance matrix is given by:

C(θ) = Eθ

{
(Ŝ − μ(θ))(Ŝ − μ(θ))T

}
, where μ(θ) = Eθ

{
Ŝ
}

[2.104]

Using the fact that the r.v.s Xn are i.i.d., the (m,m′)-entry of C(θ) is written as:

Cm,m′(θ) = Eθ {(gm(X0)− μm(θ)) (gm′(X0)− μm′(θ))}
= Eθ {gm(X0) gm′(X0)} − μm(θ)μm′(θ)

[2.103] is generally minimized using a computational approach via a minimization

program such as scipy.optimize.fmin.

When C(θ) has no closed form expression, another possibility is to replace the

matrix C(θ) in expression [2.103] with a consistent estimation Ĉ, giving:

θ̂ = argmin
θ

(Ŝ − S(θ))T Ĉ−1(Ŝ − S(θ)) [2.105]

then to apply a general minimization program.

A major problem with the generalized method of moments is that there is nothing

to indicate, a priori, how many and which moments we have to choose, except in cases

where a “sufficient” statistic exists (see the Fisher factorization criterion in [NEY 33,

STI 73]). However, in these cases, the maximum likelihood approach is preferable.

In conclusion, the method of moments is easy to apply, but a case-by-case study

is required in order to obtain satisfactory performances. However, in the case of large

samples, the law of large numbers 2.8 and the central limit theorem 2.9 can be used

for performance evaluation.

EXERCISE 2.18 (Moment estimators of mixture proportion).– (see p. 181)

Consider a sequence of N random variables Xn i.i.d., where the common distribution

has the following probability density:

pX(x) =
α

σ0

√
2π

e−(x−m0)
2/2σ2

0 +
1− α

σ1

√
2π

e−(x−m1)
2/2σ2

1



84 Digital Signal Processing with Python Programming

where α ∈ (0, 1). We suppose that α is unknown, but m1, m2, σ1 and σ2 are known:

1) Give the expression of the statistical model. Use this result to deduce the

expressions of E {Xn}. Derive an estimator based on E {Xn} and E
{
X2

n

}
.

2) Determine a moment estimator for the parameter α, which is based on the

statistic Ŝ(X) = N−1
∑N−1

n=0 Xn.

3) Determine a moment estimator for α based on two statistics, Ŝ0(X) =

N−1
∑N−1

n=0 Xn and Ŝ1(X) = N−1
∑N−1

n=0 X2
n, using the expression of S(α) given

by [2.102].

4) Determine the expression of the covariance C(α), defined by [2.104]. Use

expression [2.103] to find a moment estimator for α.

5) Write a program to simulate and compare the behavior of the three estimators.

2.6.5. Maximum likelihood approach

The maximum likelihood estimation method is based on the fact that a good

estimator of θ may be reasonably thought to maximize the probability of what has

been observed. In the case of “continuous” random variables, the probability is

replaced by the probability density.

DEFINITION 2.10.– Let us consider a parametric model with a likelihood

θ 
→ pX(x; θ). A maximum likelihood estimator (MLE) is an estimator defined by:

θ̂MLE = argmax
θ∈Θ

pX(X; θ) [2.106]

As the logarithm is an increasing function, the likelihood may be replaced by the

log-likelihood in expression [2.106]. Note that:

– one sufficient condition for the existence of a maximum is that the set Θ is

compact and the function defined by [2.13] is continuous over Θ;

– the MLE is not generally unique;

– the MLE is invariable by re-parameterization. This means that if θ 
→ g(θ) is a

function defined over Θ and if θ̂ is an MLE of θ, then g(θ̂) is an MLE of g(θ).

In most practical situations, the maximum likelihood estimator converges toward

the true value of the parameter as the number of samples tends toward infinity. More

precisely, under very general conditions, it can be shown that:

√
N
(
θ̂MLE − θ

)
d−→ N (0, C) [2.107]
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where

C = lim
N→+∞

N F−1 with F = −Eθ

{
∂2
θ log p(X0:N−1; θ)

}
[2.108]

F is the Fisher information matrix, as given by expression [2.41].

This result is fundamental, showing that maximum likelihood estimators are

asymptotically unbiased and asymptotically efficient, in that their asymptotic

covariance matrix is the limit of the Cramer-Rao bound, as given by expression

[2.43].

This is the reason why this estimator is generally preferred, even when problem

[2.106] can only be solved using a computational approach. Note, however, that the

maximum likelihood approach can fail: an example is shown in exercise 2.25.

When X0, . . . , XN−1 is a sequence of N i.i.d. r.v.:

C = F−1 with F = −Eθ

{
∂2
θ log p(X0; θ)

}
[2.109]

EXAMPLE 2.10 (Poisson distribution).– For discrete observations, the MLE can be

extended using the probability instead of the probability density. Let us consider N
observations i.i.d., with values in N and a Poisson distribution with parameter λ, which

can be written as:

P {Xn = x} =
λx

x!
e−λ

where λ ∈ R
+. Determine an MLE for λ.

HINTS: The log-likelihood is written as:

�(λ) = −Nλ+ log λ
N−1∑
n=0

Xn −
N−1∑
n=0

Xn!

Canceling the derivative with respect to λ, we obtain λ̂ = N−1
∑N−1

n=0 Xn. It is
worth noting that the r.v.

∑N−1
n=0 Xn is Poisson distributed with parameter Nλ,

but the distribution of λ̂ is very complex. Using the central limit theorem 1.9,
it can be approximated by a Gaussian distribution with mean λ and variance
λ/N . From

∂2
λ�(X) = −

∑N−1
n=0 Xkn

λ2
⇒ Eλ

{
∂2
λ�(X)

}
= −N

λ

we derive the Cramer-Rao bound λ/N , which means that the estimator is
efficient. �
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2.6.5.1. MLE of the i.i.d. Gaussian model

Consider a sequence of N Gaussian observations { i.i.d. N (N ;m,C)}, where m
is a vector of dimension d and C is a square matrix of dimension d, assumed to be

strictly positive. C is therefore invertible with det {C} �= 0. The log-likelihood is

written as:

�(θ) = −Nd

2
log(2π)− N

2
log det {C}

−1

2

N−1∑
k=0

(Xk −m)TC−1(Xk −m) [2.110]

where θ = (m,C) ∈ R
d × M+

d . The maximum likelihood estimators of the i.i.d.

Gaussian model are:

m̂MLE =
1

N

N−1∑
k=0

Xk [2.111]

ĈMLE =
1

N

N−1∑
k=0

(Xk − m̂MLE)(Xk − m̂MLE)
T [2.112]

and the likelihood maximum is expressed as:

�max = −Nd

2
log(2π)− N

2
log det

{
ĈMLE

}
− Nd

2
[2.113]

PROOF.– Maximization of � with respect to m is carried out by canceling the gradient

of �:

∂m�(θ) =
N−1∑
k=0

C−1(Xk −m) = 0

Hence, assuming that C is of full rank, we have:

m̂MLE =
1

N

N−1∑
k=0

Xk

Let:

Ĉ =
1

N

N−1∑
k=0

(Xk − m̂MLE)(Xk − m̂MLE)
T
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Substituting m̂MLE and Ĉ into �, using the identity vTAv = trace
{
AvvT

}
and

the linearity of the trace, we obtain the log-likelihood as a function of C:

�̃(C) = −Nd

2
log(2π)− N

2
log det {C} − N

2
trace

{
C−1Ĉ

}
[2.114]

We now need to maximize �̃(C) with respect to C. To do this, the trace and the

determinant (for matrices of ad hoc dimensions) verify:

trace {AB} = trace {BA} and det {AB} = det {BA} = det {A}det {B}

Let:

S = Ĉ−1/2CĈ−1/2 [2.115]

S is positive and can therefore be diagonalized. Substituting [2.115] into [2.114],

we then obtain:

�̃(C) = −Nd

2
log(2π)− N

2
log det

{
Ĉ1/2SĈ1/2

}
− N

2
trace

{
S−1

}
= −Nd

2
log(2π)− N

2
log det

{
Ĉ
}
− N

2
log det {S} − N

2
trace

{
S−1

}
[2.116]

Let λs be the eigenvalues of S. Expression [2.116] can be rewritten as:

�̃(C) = −Nd

2
log(2π)− N

2
log det

{
Ĉ
}
− N

2

d−1∑
s=0

(
log λs + λ−1

s

)
[2.117]

Canceling the derivative with respect to λs, we obtain λs = 1, and thus S = Id
which is clearly a positive matrix. Using S = Id in expression [2.115], we deduce that

the matrix C that maximizes the likelihood is, in fact, the matrix Ĉ. �

In the specific case where d = 1, we obtain:

m̂MLE =
1

N

N−1∑
k=0

Xk

σ̂2
MLE =

1

N

N−1∑
k=0

(Xk − m̂MLE)
2

�max = −N

2
log(2π)− N

2
log det

{
σ̂2
MLE

}
− N

2
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EXERCISE 2.19 (MLE for the linear model).– (see p. 182) The Gaussian linear model

is the statistical model defined by N independent, Gaussian random variables with

respective mean Znθ and variance σ2, where Zn is given by [2.50]. Let us note that

the model is not identically distributed because the mean does depend on n. Determine

the MLE of (θ, σ2).

2.6.5.2. Voronoi regions
We consider a likelihood function p(x; θ), where x ∈ R

p and θ belongs to a finite

discrete set of values Θ = {θ0, . . . , θg−1}. The estimation of θ is clearly a

classification problem, which consists of determining a function that associates with

x, an index value in Θ. This is equivalent to defining a g-partition3 of Rp as:

Λi = {x ∈ R
p : p(x; θi) ≥ p(x; θj), ∀ j �= i} [2.118]

Regions Λi are called Voronoi regions. They can be used for classification as

follows: given a “fresh data” xo, if xo belongs to Λi, then it can be decided that xo

belongs to class i.

More generally we may replace p(x; θi) by any other metric, as for example, the

Mahalanobis distance:

d2(x) = (x−m)
T
C−1(x−m) [2.119]

where C is a positive square matrix of size p and m is a vector in R
p.

EXERCISE 2.20 (Iris classification).– (see p. 183) Let us consider the iris dataset. For

each of the three classes, we do a partition in one training and one testing dataset. We

apply to the training dataset the LDA dimensionality reduction determined in

exercise 2.1. We assume that the three “reduced” classes may be modeled as

Gaussian distributions with respective means m0, m1 and m2 and respective

covariances C0, C1 and C2.

Write a program to (i) reduce the feature dimension, (ii) estimate the parameters

of the three classes of the model using the training dataset and then after projection in

the reduced space, (iii) determine the maximum likelihood class of the testing dataset

elements.

EXERCISE 2.21 (Asymptotic distribution of a correlation MLE).– (see p. 184) We

consider N i.i.d. bivariate Gaussian observations distributed as { i.i.d. N (N ;m,C)}.

The MLE of the covariance matrix C is given by [2.112]. Let us consider the case

d = 2 and assume that the correlation is defined by ρ = C0,1/
√
C0,0C1,1.

3 Strictly speaking, [2.118] does not define a partition due to the presence of common borders.

But this problem can be avoided by using the strict inequality for j > i and the large inequality

for j < i.
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1) Using [2.112], show that a MLE of ρ is given by:

ρ̂ =
Ĉ0,1√
Ĉ0,0Ĉ1,1

[2.120]

2) Based on the CRB expression [2.47], the asymptotic distributions of σ̂1, σ̂2 and

ρ̂ have the standard deviations σ1/
√
2N , σ2/

√
2N and (1− ρ2)/

√
N , respectively;

3) Perform a simulation that confirms these results.

EXERCISE 2.22 (MME versus MLE of the correlation).– (see p. 184) We consider

N i.i.d. bivariate Gaussian observations distributed as { i.i.d. N (N ; 0, C)}. Let us

consider the case d = 2 and

C =

[
1 ρ
ρ 1

]
with ρ ∈ (−1, 1). We denote Xn,0 and Xn,1 as the two components of the bivariate

process.

1) Give the expression of the statistical model;

2) Given that the correlation is defined by ρ = C0,1/
√
C0,0C1,1, derive a moment

method estimator (MME) of ρ;

3) Derive an MLE of ρ;

4) Perform a simulation program to compare the two estimators.

EXERCISE 2.23 (Correlation GLRT).– (see p. 185) Let us consider two samples

{X0,0, . . ., Xn−1,0} and {X0,1, . . ., Xn−1,1} i.i.d. Gaussian, with respective means

m0 and m1 and respective variances σ2
0 and σ2

1 , and with a correlation coefficient

ρ ∈ (−1, 1).

1) Based on the results of section 2.6.5.1, particularly on equation [2.113], derive

the GLRT for the hypothesis H0 = {|ρ| ≤ ρ0}, which tests whether the modulus of

the correlation is lower than a given positive value ρ0;

2) Transformation r 
→ f = 0.5 log( 1+r
1−r ) = arg tanh(r) is known as Fisher’s

transformation4. The Fisher transformations of ρ̂ and ρ0 are denoted by f̂ and f0,

respectively. Under the hypothesis H0, the random variable f̂ can be shown to

approximately follow a Gaussian distribution of mean f0 and variance 1/(n − 3)
[SHA 08];

3) Use the previous result to determine the p -value of the test for the hypothesis

H0 = {|ρ| =≤ 0.7} using the data provided in Table 2.3.

4 arg tanh is the inverse hyperbolic tangent function.
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H (cm) 162 167 167 159 172 172 168

W (kg) 48.3 50.3 50.8 47.5 51.2 51.7 50.1

Table 2.3. H height in cm, W weight in kg

EXERCISE 2.24 (MLE with Γ(k, λ) distribution).– (see p. 187) Consider N
observations Xn i.i.d., with:

1) distribution Γ(1, λ) of density pX(x;λ) = λ−1e−x/λ (x ≥ 0). Determine the

expression of the MLE of λ. Perform a simulation. Compare the dispersions obtained

to the Cramer-Rao bound (expression [2.108]);

2) distribution Γ(k, λ); the expression of the distribution is given in [2.99].

Determine the expression of the MLE of θ = (k, λ).

EXERCISE 2.25 (Singularity in the MLE approach).– (see p. 188) Consider N
observations i.i.d., with values in R, with the probability distribution:

pXn(xn; θ) =
1

2
√
2πσ0

e−(xn−m0)
2/2σ2

0 +
1

2
√
2πσ1

e−(xn−m1)
2/2σ2

1

where θ = (m0,m1, σ0, σ1) ∈ Θ = R×R×R
+×R

+. Show that the likelihood �(θ)
may tend toward infinity. More precisely, for any A > 0, there exists θ ∈ Θ, such that

�(θ) ≥ A.

EXERCISE 2.26 (Parameters of a homogeneous Markov chain).– (see p. 189)

Consider a series of N Markovian r.v. X0, . . ., XN−1 with values in the finite set

S = {0, . . . , S − 1}, with an initial distribution P {X0 = s} = αs ≥ 0 and a

transition law:

P {Xn = s|Xn−1 = s′} = ps|s′ ≥ 0

Hence,
∑S−1

s=0 αs = 1 and for any s′ ∈ {0, . . . , S − 1},
∑S−1

s=0 ps|s′ = 1. For ease

of calculation, the following notation may be used:

P {X0 = x0} =

S−1∑
s=0

αs (x0 = s)

and for n = 1, . . . , N − 1:

P {Xn = xn|Xn−1 = xn−1} =
S−1∑
s=0

S−1∑
s′=0

ps|s′ (xn = s, xn−1 = s′)

where xn belong to S.
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Let us consider the function g(x) =
∑S−1

s=0 gs (s = x). Then, for any function f :

f(g(x)) =
S−1∑
s=0

f(gs) (x = s)

1) Determine the expression of the likelihood associated with the observations X0,

. . ., XN−1 as a function of ps|s′ and αs.

2) Use this result to deduce a maximum likelihood estimator for ps|s′ .

3) Write a program to generate a sequence of N Markov r.v.s with values in

{0, . . . , S − 1} for a transition law P (drawn at random) and for an initial distribution

α (drawn at random), and then estimate the matrix P .

2.6.5.3. EM algorithm
Consider an observation Y with likelihood function pY (y; θ), the maximization of

which is intractable. In contrast, we assume that a joint probability law pX,Y (x, y; θ)
exists, such that:

L(θ) = pY (y; θ) =

∫
X
pX,Y (x, y; θ)dx

In this context, the pair (X,Y ) is known as complete data and X as incomplete
data. Because log pX,Y (x, y; θ) cannot be maximized directly, since X has not been

observed, the idea consists of maximizing the conditional expectation

E {log p(X,Y ; θ)|Y }, which is, by definition, a function of Y and is therefore

observable. The EM (expectation-maximization) algorithm that is used to solve this

problem has been presented in a seminal article [DEM 77]. Each iteration involves

the following two steps :

Data: pY (y; θ), pX,Y (x, y; θ) distributions

Result: θ̂
Initialization: p = 0, θ̂(0);
while stopping condition do

Expectation step:
Q(θ, θ(p)) = Eθ(p) {log pX,Y (X,Y ; θ)|Y };

Maximization step:
θ(p+1) = argmaxθ Q(θ, θ(p));

p = p+ 1;
end

Algorithm 5: EM algorithm

θ(p) denotes the estimated value of the parameter at the pth iteration of the

algorithm. This two-step process is repeated until convergence is reached. Because
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the EM algorithm is only able to reach a local maximum, the choice of the initial

value of θ is crucial. It is commonly advised to choose random starting points and

keep the value that gives the highest maximized likelihood.

The following property is fundamental:

PROPERTY 2.4.– For each iteration of the EM algorithm, the likelihood of the

observations increases. This can be written as:

pY (Y ; θ(p+1)) ≥ pY (Y ; θ(p)) [2.121]

PROOF.– Indeed, if θ is such that Q(θ, θ(p)) ≥ Q(θ(p), θ(p)), then using Bayes’ rule,

pX,Y (X,Y ; θ) = pX|Y (X,Y ; θ)pY (y; θ), we have:

0 ≤ Q(θ, θ(p))−Q(θ(p), θ(p)) [2.122]

= Eθ(p)

{
log pX|Y (X,Y ; θ)|Y

}
+ log pY (Y ; θ)

−Eθ(p)

{
log pX|Y (X,Y ; θ(p))|Y

}
− log pY (Y ; θ(p))

= Eθ(p)

{
log

pX|Y (X,Y ; θ)

pX|Y (X,Y ; θ(p))
|Y
}
+ log pY (Y ; θ)− log pY (Y ; θ(p))

Using the concavity of the log function and the Jensen inequality, we obtain:

Eθ(p)

{
log

pX|Y (X,Y ; θ)

pX|Y (X,Y ; θ(p))
|Y
}

≤ logEθ(p)

{
pX|Y (X,Y ; θ)

pX|Y (X,Y ; θ(p))
|Y
}

= 0

Substituting this result in [2.122], we obtain:

log pY (Y ; θ(p))− log pY (Y ; θ) ≥ Q(θ, θ(p))−Q(θ(p), θ(p))

Therefore, choosing θ such that Q(θ, θ(p))−Q(θ(p), θ(p)) ≥ 0 leads to expression

[2.121]. �

Based on the result, we also see that the likelihood of the observations increases

as long as Q(θ, θ(p)) increases. Therefore it is not necessary to take the maximum of

Q(θ, θ(p)) w.r.t. θ, as that is done in algorithm 5, but Q(θ, θ(p)) can simply be

increased. In this case, the algorithm is known as the generalized expectation

maximization (GEM) algorithm.

Two examples of the applications of the EM algorithm are shown below, namely

the mixture model and the censored data model.
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2.6.5.4. Mixture model

Consider a series of N observations i.i.d., with a probability density written as:

pYn(yn; θ) =
K−1∑
k=0

αkfk(yn;μk) [2.123]

where, for example,

fk(yn;μk) =
1

σk

√
2π

e−(yn−mk)
2/2σ2

k , where μk = (mk, σk) [2.124]

The parameter of interest is therefore θ = {m0, σ0, α0, . . ., mK−1, σK−1, αK−1},

where αk ≥ 0,
∑

k αk = 1 and σk ∈ R
+. This model is known as the Gaussian

mixture model (GMM). It is used in a variety of fields, particularly speaker recognition

and population mixing. A distribution of this type is shown in Figure 2.10. There are

three discernible “states” or “modes”: one around a value of 1, the second around a

value of 5 and the third around a value of 8. In certain cases, there is a clear explanation

for the presence of these “modes”. For example, using a problem concerning the size

of adult individuals, if two modes occur, these will clearly correspond to the male and

female populations.

−5 0 5 10 150

0.05

0.1

0.15

0.2

Figure 2.10. Multimodal distribution

From [2.123], the analytical expression of maximum likelihood is given by:

θ̂ = argmax
θ

N−1∑
n=0

log

K−1∑
k=0

αkfk(yn;μk) [2.125]
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Unfortunately, in this case, the calculation is intractable. This leads us to use the

EM algorithm, which consists of an iterative search process for a local maximum of

the likelihood function log pY1...,YN−1(y0, . . . , yN−1; θ).

Consider a series of random variables Sn i.i.d., with values in {0, . . . ,K − 1} and

such that P {Sn = k} = αk. We note:

pYn,Sn(yn, Sn = sn; θ) =
K−1∑
k=0

αkfk(yn;μk) (sn = k) [2.126]

We then verify that
∑K−1

sn=0 pYn,Sn(yn, Sn = sn; θ) =
∑K−1

k=0 αkfk(yn;μk),
which is expression [2.123] of the mixture model. We may therefore consider the pair

(Sn, Yn) as complete data. Taking the logarithm of the complete law [2.126], we

obtain:

�(s, y; θ) =
N−1∑
n=0

K−1∑
k=0

log(αkfk(yn;μk)) (sn = k)

=
N−1∑
n=0

K−1∑
k=0

log(fk(yn;μk)) (sn = k) +
N−1∑
n=0

K−1∑
k=0

log(αj) (sn = k)

We will now determine the expression of the auxiliary function Q. Note that as

the pairs (Sn, Yn) are independent, the conditional expectation of Sn conditionally

to Y0:N−1 is only dependent on Yn. Using the expression of fk given by [2.124] and

letting vk = σ2
k, we obtain:

Q(θ, θ(p)) = Eθ {�(S, Y ; θ)|Y }

= −
N−1∑
n=0

K−1∑
k=0

1

2

(
log(vk) +

(yn −mk)
2

vk

)
Eθ(p) { (Sn = k)|Yn}

+

N−1∑
n=0

K−1∑
k=0

log(αk)Eθ(p) { (Sn = k)|Yn} −
1

2
NK log(2π)

The expression of Eθ(p) { (Sn = k)|Yn} is obtained using Bayes’ rule:

Eθ(p) { (Sn = k)|Yn} = Pθ(p) {Sn = k|Yn}

=
pYn|Sn=k(yn; θ

(p))P
{
Sn = k; θ(p)

}
pYn(yn; θ

(p))

=
α
(p)
k fk(yn;μ

(p)
k )∑K−1

j=0 α
(p)
j fj(yn;μ

(p)
j )
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We must therefore simply calculate α
(p)
k fk(yn;μ

(p)
k ) and then normalize using:

c(p)n = pYn(yn; θ
(p)) =

K−1∑
j=0

α
(p)
j fj(yn;μ

(p)
j ) [2.127]

In what follows, we will use:

γ
(p)
k,n = Pθ(p) {Sn = k|Yn} [2.128]

which verifies that, for any n,
∑K−1

k=0 γ
(p)
k,n = 1 and thus

∑N−1
n=0

∑K−1
k=0 γ

(p)
k,n = N .

We can now determine the value of the parameter that maximizes the function

Q(θ, θ(p)), canceling the derivatives with respect to θ.

For a maximization with respect to α, we consider the Lagrange multiplier η,

associated with the constraint
∑

k αk = 1. Canceling the derivative with respect to

αk of the Lagrangian:

L = Q(θ, θ(p)) + η

⎛⎝1−
K−1∑
j=0

αj

⎞⎠
we obtain:

1

αk

N−1∑
n=0

Eθ(p) { (Sn = k)|Yn} = η

hence, after normalization:

α
(p+1)
k =

1

N

N−1∑
n=0

γ
(p)
n,k

Substituting this value into function Q, we obtain the function Q̃. Canceling the

derivative of Q̃ with respect to mk, we have:

m
(p+1)
k =

∑N−1
n=0 γ

(p)
k,n yn∑N−1

n=0 γ
(p)
k,n

Then, canceling the derivative with respect to vk, we obtain:

v
(p+1)
k =

∑N−1
n=0 γ

(p)
k,n

(
yn −m

(p+1)
k

)2
∑N−1

n=0 γ
(p)
k,n
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Finally, note that following expression [2.127], the log-likelihood of the

observations for each iteration is written as:

�(p) =
N−1∑
n=0

log pYn(yn; θ) =
N−1∑
n=0

c(p)n [2.129]

It is worth noting that �(p) must increase at each iteration of the EM algorithm.

The previous algorithm may be easily generalized to the cases with a mixture of

K Gaussians of dimension d, with respective means m0, . . ., mK−1 and covariances

C0, . . ., CK . We note:

p(X;m,C) =
1

(2π)d/2
√
det {C}

e−
1
2 (X−m)TC−1(X−m)

The algorithm is written as:

Data: K and Xn ∈ R
d for n = 0 to N − 1

Result: α̂, m̂, Ĉ, �
Initialization: p = 0, α

(0)
0:K−1,m

(0)
0:K−1, C

(0)
0:K−1;

while stopping condition do
for n = 0 to N − 1 do

for k = 0 to K − 1 do
gk,n = p(Xn;m

(p)
0:K−1, C

(p)
0:K−1);

end
cn =

∑K−1
k=0 α

(p)
k gk,n;

for k = 0 to K − 1 do
γk,n = α

(p)
k gk,n/cn;

end
end
α
(p+1)
k =

∑N−1
n=0 γk,n/N ;

�(p+1) =
∑N−1

n=0 cn;

for k = 0 to K − 1 do
Sk =

∑N−1
n=0 γk,n

m
(p+1)
k = S−1

k

∑N−1
n=0 γk,n Xn

C
(p+1)
k = S−1

k

∑N−1
n=0 γk,n (Xn −m

(p+1)
k )(Xn −m

(p+1)
k )T

end
p = p+ 1;

end
Algorithm 6: EM algorithm for GMM
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REMARKS:

– initialization may be carried out either at random or using a rough estimation,

for example obtained by dividing the data into K blocks and calculating the empirical

means and covariances for each block;

– the stopping condition usually involves the relative increase of �(p) as:

ρ =
|�(p+1) − �(p)|

|�(p)|

and/or a maximum number of iterations;

EXERCISE 2.27 (GMM generation).– (see p. 190) Write a program to:

– generate N data of a mixture of K Gaussians with respective proportions αk,

means mk and variances σ2
k;

– estimate the parameters of a GMM using the EM algorithm. For the initialization,

divide the observations into K groups of the same size and estimate the mean and the

variance for each group. For the proportion initialization, take 1/K for the K groups.

EXERCISE 2.28 (Estimation of states of a GMM).– (see p. 193)

Consider the mixture model used in exercise 2.27. We presume that the parameters

of the model have been estimated, for example, using the program written in exercise

2.27.

– Using equation [2.128], propose an estimator of state S;

– Write a program to estimate the state of a series of observations and compare

this state with the true value of the data obtained. Begin by applying a learning process

for θ using a sample of 10000 values.

2.6.5.5. Censored data model

In this section, we will consider the distribution of survival periods of patients

receiving treatment. The survival period for each patient is collected at a given

moment. There are two possibilities: either the patient is deceased and the survival

period is therefore known, or the patient is still living, in which case we know only

that the survival period is greater than the observed treatment time. Observations of

this type are said to be right-censored.

More precisely, let us denote Xn as the r.v. modeling the survival period and

pX(x; θ) as its probability density. We observe a sequence of N pairs (yn, cn), such

that when cn = 0, the value yn is a realization of the r.v. Xn and when cn = 1, we

only know that the non-observed r.v. Xn is greater than yn; in other words,

Xn ∈ (yn,+∞). Note that when cn = 0, the likelihood of Xn is equal to pX(yn; θ),
whereas when cn = 1, this is no longer possible, and we only know that
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Xn ∈ (yn,+∞) with the probability of (1 − FX(yn; θ)), where the cumulative

function FX(x; θ) =
∫ x

−∞ pX(u; θ)du.

An approach similar to the maximum likelihood method consists of maximizing

the following expression:

L(θ) =
N−1∑
n=0

log pX(yn; θ) (cn = 0) +
N−1∑
n=0

log(1− FX(yn; θ)) (cn = 1) [2.130]

Generally speaking, it is impossible to maximize expression [2.130]; this leads us

to use the EM algorithm. To do this, we consider that the full model is the survival

value Xn, and thus:

Q(θ, θ′) = Eθ′ {log pX(X0, . . . , XN − 1; θ)|Y0, . . . , YN−1, c0, . . . , cN−1}

where Xn are complete data points and Yn are incomplete data points. Using the

independence hypothesis, we obtain:

Q(θ, θ′) =
N−1∑
n=0

Eθ′ {log pXn(Xn; θ)|Yn, cn}

– when cn = 0, as Xn = yn, the conditional expectation of log pX(Xn; θ)
conditionally on Yn, based on the definition of conditional expectation itself, is equal

to log pX(yn; θ);

– when cn = 1, the conditional expectation of pX(Xn; θ) conditionally on the fact

that Xn > yn is written as:

Eθ′ {log pX(Xn; θ)|Xn > yn} = g(yn)

where

g(y) =

∫ +∞
y

log pX(x; θ)pX(x; θ′)dx

1− FX(y; θ′)
[2.131]

Applying Bayes’ rule, we obtain:

Pθ′ {Xn ≤ x|Xn > y} =
Pθ′ {Xn ≤ x,Xn > y}

Pθ′ {Xn > y}

=
Pθ′ {y < Xn ≤ x}
Pθ′ {Xn > y} (y < x)

=

∫ x

y
pX(u; θ′)du

1− FX(y; θ′)
(y < x)
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Consequently, applying a derivation with respect to x, we obtain the density of Xn

conditionally on Xn > yn, giving:

pXn|Xn>yn
(x, y; θ′) =

pX(x; θ′)
1− FX(y; θ′)

(x > y)

Finally, using the fact that for any function h(x) independent of y:

Eθ′ {h(X)|X ≥ y} =

∫ +∞

−∞
h(x)pX|X>y(x; θ

′)dx

Using h(x) = log pX(x; θ) (note that we use θ and not θ′), we obtain the result given

in [2.131]. Finally, we have:

Q(θ, θ′) =
N−1∑
n=0

log pXn(yn; θ) (cn = 0) [2.132]

+

N−1∑
n=0

∫ +∞
yn

log pX(x; θ)pX(x; θ′)dx∫ +∞
yn

pX(x; θ′)dx
(cn = 1)

In cases where the cancellation of the derivative with respect to θ is hard to express,

we may choose to use the GEM algorithm instead of the EM algorithm. This consists

of calculating an increase in the function Q. This may be done using a number of steps

from the gradient algorithm. The method of moments may be used for initialization

(see section 2.6.4).

EXERCISE 2.29 (MLE on censored data).– (see p. 194)

This exercise considers an unusual case where the recurrence of the EM algorithm

has an analytical solution. We suppose that, following medical treatment, patients’

survival periods Xn follow an exponential distribution of parameter θ, i.e. pX(x; θ) =
θe−xθ (x ≥ 0) and thus log p(x; θ) = log θ − θx. During the evaluation process,

certain survival periods are censored as the patients are still living at the moment of

evaluation.

1) Using expression [2.132], determine the function Q(θ, θ′);

2) Determine the recurrence over θ associated with the EM algorithm;

3) Perform a simulation to compare the estimator obtained in the previous question

with an estimation leaving aside the indication of censored data and an estimation

which only uses uncensored data, using results from exercise 2.24, question 1;
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4) The data available in statsmodels.apidatasets.heart consist of the

survival day number after receiving a heart transplant, the age of the patient and

whether or not the survival time is censored. Without taking into account the age,

estimate the life expectation.

EXERCISE 2.30 (Heart implant, model with exogenous variable).– (see p. 195) The

data available in statsmodels.apidatasets.heart consist of the survival day

number after receiving a heart transplant, the age of the patient and whether or not

the survival time was censored. The survival number is considered as the endogenous

variable and age as the exogenous variable. We consider the likelihood model:

log p(x; θ(a)) = log θ(t)− θ(a)x

where θ(a) = α0 + α1a does depend linearly on the age a. Using the expression

[2.132] of the auxiliary function of the EM algorithm, determine the recursion on the

parameters α0 and α1. Based on the EM algorithm, write a program to estimate α0

and α1 for the data.

2.6.6. Logistic regression

In this section, we consider that the explanatory variable falls within X = R
p and

that the qualitative response has values within Y = {0, 1}. Logistic regression

consists of modeling the probability of the response Yn, conditionally on the

explanatory variable Xn, as follows:

P {Yn = yn|Xn = xn;β0, β} = {{ 2.2
eβ0+βT xn

1 + eβ0+βT xn
if yn = 0

1

1 + eβ0+βT xn
if yn = 1

[2.133]

where β0 ∈ R and β ∈ R
p. We let α =

[
β0 β

]T
.

Writing the log-likelihood of N observations, assumed to be independent, we

obtain pX,Y (x, y;α) =
∏N−1

n=0 p(yn|xn;α)pXn(xn). Assuming that the

non-specified marginal distribution of X does not depend on α, the log-likelihood

may be written, up to an additive constant that does not depend on α:

�(α) =
N−1∑
n=0

αTZn (Yn = 0)−
N−1∑
n=0

log
(
1 + eα

TZn

)
[2.134]

where Zn =
[
1 XT

n

]T
.
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The search for a maximum likelihood estimator is a nonlinear maximization

problem. It may be numerically solved, for example using the Newton-Raphson

method.

The Newton-Raphson algorithm is an iterative algorithm that aims to minimize

a real-valued function �(α) with respect to the multivariate α. Let αp be the value

calculated in step p. Thus, the value at step p+ 1 can be written as:

αp+1 = αp −
[
∂2�

∂2α

]−1

α=αp

× ∂�

∂α

∣∣∣∣
α=αp

[2.135]

When maximizing expression [2.134], the first and second derivatives are written

as:

∂�

∂α
=

N−1∑
n=0

Zn (Yn = 0)−
N−1∑
n=0

Zn
eα

TZn

1 + eαTZn

= −
N−1∑
n=0

Zn (Yn = 1) +
N−1∑
n=0

1

1 + eαTZn
[2.136]

and

∂2�

∂2α
= −

N−1∑
n=0

ZnZ
T
n

eα
TZn

(1 + eαTZn)2
[2.137]

This algorithm is implemented in exercise 2.31.

While the logistic model is not identically distributed, property [2.107] may still

be used, where

F (α) = lim
N→+∞

1

N

N−1∑
n=0

ZnZ
T
n

eα
TZn

(1 + eαTZn)2

≈ 1

N

N−1∑
n=0

ZnZ
T
n

eα
TZn

(1 + eαTZn)2

Z̃ is the matrix of dimension N × (p + 1), for which line n has the following

expression:

Z̃n =
eZ

T
n α/2

1 + eZ
T
n α

Zn
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Thus, F (α) ≈ N−1Z̃T Z̃. From this, we see that:

(α̂MLE − α)
d−→ N (0, (Z̃T Z̃)−1) [2.138]

This expression allows the calculation of asymptotic confidence intervals for the

components of α, along with test statistics following the construction presented in the

subsection on page 54. These results are applied in exercise 2.31.

EXERCISE 2.31 (Logistic regression).– (see p. 196) Write a program to estimate the

parameter α of the logistic model, based on the iteration [2.135] of the

Newton-Raphson algorithm.

Apply this program to the data series presented in Table 2.4, which gives the state,

faulty/no faulty, of an O-ring (toric joint) as a function of temperature. Using [2.138],

calculate a confidence interval at 95% of α. Using [2.30], calculate the p -value of the

log-GLRT of the hypothesis H0 = {α2 = 0}.

K 53 56 57 63 66 67 67 67 68 69 70 70

S 1 1 1 0 0 0 0 0 0 0 0 1

K 70 70 72 73 75 75 75 76 78 79 80 81

S 1 1 0 0 0 1 0 0 0 0 0 0

Table 2.4. Temperature in degrees Fahrenheit and state of the
O-ring: 1 signifies the existence of a fault and 0 the absence

of faults. These data are related to the Space Shuttle
Challenger disaster occurred on January 28, 1986

EXERCISE 2.32 (GLRT for the logistic model).– (see p. 199) The function

determined in exercise 2.31 calculates the log-likelihood of a logistic model based on

a set of observations. It may therefore be used to determine the log-GLRT [2.29] of

the hypothesis that one of the coefficients of model [2.133] is null.

Consider the logistic model where the parameter α =
[
0.3 0.5 1 0 0

]
. Let us note

that the two last components of α are null. Write a program to test the hypothesis

H0 = {α : α4 = α5 = 0} with the GLRT approach and verify, in accordance with

[2.30], that the statistic of the test has a χ2 distribution with 2 degrees of freedom.

EXERCISE 2.33 (Logistic regression on home owner/rent).– (see p. 199)

Apply the function logisticNR proposed in exercise 2.31 to the data provided in

statsmodels.api.datasets.ccard. The regression will be based on the following

two explanatory variables: age and income.
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2.6.7. Non-parametric estimation of probability distribution

This section provides a simplified discussion of non-parametric estimations of

probability densities and cumulative functions. We will not consider kernel-based

methods, which are essential when searching for a consistent estimation of

probability density. The variance of an estimator may be reduced by carrying out

smoothing using a kernel function.

2.6.7.1. Histogram approach

Consider a sample of N real-valued i.i.d. r.v.s X0, . . ., XN−1, the probability

density of which is denoted by p(x). The approach considered here to estimate p(x)
consists of dividing the observation set into g intervals in a similar manner to

constructing goodness-of-fit tests in section 2.5.3. Here the same notation will be

used.

The total observation interval is split into g intervals Δj of respective length �(Δj).
We denote cj as the middle of Δj . Assuming that p(x) is almost equal to p(cj) in all

the intervals Δj , we can therefore write:

P {Xn ∈ Δj} =

∫
Δj

p(x)dx ≈ �(Δj) p(cj)

In contrast, based on the empirical distribution, we obtain an estimator of

P {Xn ∈ Δj}, which is written as:

P̂j =
1

N

N−1∑
k=0

(Xk ∈ Δj)

For a more detailed definition of the empirical distribution, see section 2.6.8, page

107.

Equalizing the last two expressions, we obtain an estimator for p(cj), written as:

p̂(cj) =
1

�(Δj)
P̂j =

∑N−1
k=0 (Xk ∈ Δj)

N�(Δj)

Exercise 2.7 shows that the asymptotic distribution of a vector P̂ , with g
components P̂j , converges in law toward a vector P , with g components of values

P{Xn ∈ Δj}:

√
N(P̂ − P )

d−→ N (0, C)
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where C = diag (P )− PPT . Hence:

√
N(p̂(cj)− p(cj))

d−→ N (0, γj)

where γj = Cjj/�
2(Δj). This expression allows us to calculate the confidence

intervals of p(cj) of the form:

p̂(cj)−
c(α)

√
γj√

N
≤ p(cj) ≤ p̂(cj) +

c(α)
√
γj√

N

where α is given by
∫ c

−∞(2π)−1/2e−u2/2du = 1−α/2. In practice, γj is replaced by

an estimate obtained from P̂ .

The following program provides an example:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 2 07:27:34 2016

****** estimdsproba

@author: maurice

"""

from scipy.stats import norm

from numpy import linspace, sqrt

from numpy.random import randn

from matplotlib import pyplot as plt

N=10000;g=50; alpha=0.05; c=norm.isf(1.0-alpha/2.0);

x=linspace(-5.0,5.0,g); Deltax = x[1]-x[0]; V=randn(N); plt.clf()

auxH = plt.hist(V,x,normed=’True’); hatP = auxH[0]; LP = len(hatP)

xP = auxH[1][0:LP]+(auxH[1][1]-auxH[1][0])/2.0

hatCP = hatP-hatP*hatP; CI95=c*sqrt(hatCP)/sqrt(N)/Deltax;

pfd0I=hatP-CI95; pfd0S=hatP+CI95; pdftheo=norm.pdf(xP,0,1);

plt.hold(’on’); plt.plot(xP,pdftheo,’.-b’);

plt.plot(xP,pfd0I,’.-r’); plt.plot(xP,pfd0S,’.-r’);

plt.hold(’off’); plt.grid(’on’)

2.6.7.2. Estimation of the cumulative function

Consider a sample of N i.i.d. r.v.s X0, . . ., XN−1. We denote FX(x) as the

common cumulative function, which is defined by F (x) = P {Xn ≤ x}. The

empirical distribution method consists of assigning a probability of 1/N to each

observed value. Therefore, an estimator of the cumulative function is expressed as:

F̂N (x) =
1

N

N−1∑
n=0

(Xn ≤ x) [2.139]
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Let us denote {X(n)} as the sequence of values sorted in the ascending order. The

sequence {X(n)} is commonly called the order statistic of the sequence {Xn}. Using

the order statistic of Xn, we can rewrite expression [2.139] as:

F̂N (s) =
1

N
(X(0) ≤ s < X(1)) +

2

N
(X(1) ≤ s < X(2)) + · · · [2.140]

Therefore, F̂N (s) appears as a stepwise function, with steps equal to 1/N and

located on the values of the sequence {X(n)}. From this, we deduce the algorithm for

performing F̂N (s): (i) ordering the values in ascending order and (ii) assigning a step

1/N to the ordered values.

1

0.8

0.6

0.4

0.2

0
−2 x(1) x(2) x(3) x(4) x(5) 20

Figure 2.11. Step equal to 1/N for the five values of the series,
ranked in increasing order

Following [2.139], F̂N (x) appears as the mean of the sequence of i.i.d. r.v.s Yi =
(Xi ≤ x) with same means F (x) and same variances F (x)(1 − F (x)). Therefore,

the central limit theorem is written as:

√
N
(
F̂N (x)− F (x)

)
→ N(0, F (x)(1− F (x))) [2.141]

Hence, an approximate confidence interval at 95% can be obtained using:

F̂N (x)− 1.96
√

γ̂√
N

≤ F (x) ≤ F̂N (x) +
1.96

√
γ̂√

N

where γ̂ = F̂N (x)(1− F̂N (x)).

It is worth noting that the empirical median can be derived from the order statistic.
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DEFINITION 2.11 (Empirical median).– Let {X(0), . . . , X(N−1)} be the order
statistic of the sequence {X0, . . . , XN−1}. The median can be written as:

M =

{
X((N−1)/2) if N is odd
1
2 (X(N/2−1) +X(N/2) if N is even

EXERCISE 2.34 (Cumulative function estimation).– (see p. 200) We consider a

sequence of i.i.d. r.v.s in the following two cases: (i) with discrete multinomial

distribution with four respective probabilities 0.5, 0.25, 0.125 and 0.125 and (ii) with

Gaussian continuous distribution with mean 0 and variance 1.

Write a program to generate a sequence of N values, estimate the cumulative

function and compare the result to the theoretical result.

EXERCISE 2.35 (Estimation of a quantile).– (see p. 201) Consider an r.v. with a

cumulative function denoted by F (x). The quantile at 100c% associated with F (x) is

defined by:

c 
→ s = min{t : F (t) ≥ c} [2.142]

1) Use definition [1.5] to deduce an estimator ŝN of s;

2) Applying the δ-method (see section 1.5.3) to expression [2.141], deduce the

asymptotic distribution of ŝN :

3) Use this result to deduce an approximate confidence interval at 95%;

4) Write a program to verify these results.

Exercise 2.36 illustrates the estimation of the cumulative function in the context of

image processing.

EXERCISE 2.36 (Image equalization).– (see p. 202) Image equalization in grayscale

consists of transforming the value of pixels, so that the pixel value distribution of the

transformed image is uniform. In section 4.3.1, we saw that the application of the

function F (x) to an r.v. of the cumulative function F (x) gives an r.v. with a uniform

distribution over (0, 1). This result can be applied in equalizing images. To do this, we

begin by estimating the cumulative function of the original image, and then applying

the estimated distribution to the image.

Consider a grayscale image where the value In,m of pixel (n,m) is modeled as an

r.v. with values in the set I = {0, . . . , S − 1}. Let ps be the probability that a pixel

will be equal to s, and F (x) be the cumulative function. This is a piecewise linear

function with steps located in I of height ps = P {In,m = s} (see Figure 2.11). Thus,
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to estimate the cumulative function of the image, we estimate the probability ps using

the empirical law, for s from 0 to S − 1, written as:

p̂s =
1

NM

N−1∑
n=0

M−∑
m=0

(In,m = s)

This gives us an estimate of the cumulative function:

F̂ (x) =
S−1∑
s=0

p̂s (s ≤ x)

Write a program to equalize the levels of gray in an image. Verify the result by

estimating the cumulative function of the transformed image. Note that the cumulative

function of the uniform distribution over (0, 1) is written as F (x) = x× (x ∈ (0, 1)).

2.6.8. Bootstrap and others

In this section, we will give a brief introduction to the non-parametric estimation

of estimator variance. In practice, three approaches are generally used: bootstrap
approach, jackknife approach and cross-validation. In all the cases, once the variance

has been estimated and based on the assumption of Gaussian behavior, it becomes

possible to estimate a confidence interval.

Before considering the way in which estimator variance is determined, let us define

the empirical distribution and expectation.

DEFINITION 2.12 (Empirical distribution).– Consider a sequence of N i.i.d. random

vectors X0, . . ., XN−1 taking their values in the space R
d (provided with its Borel

set B⊗d). The empirical distribution, derived from the observations X0, . . ., XN−1,

associates at each Borelian b ∈ B⊗d the probability

P̂N (b) =
N−1∑
n=0

1

N
(Xn ∈ b) [2.143]

In short, each observation has an assigned probability of 1/N . Moreover, taking

into account that the Xn are i.i.d., we can express the joint distribution of any sequence

of N Borelians bn′ ∈ B⊗d as the product of the identical empirical distributions,

which can be written as:

P̂
(N)
N (b0, . . . , bN−1) =

N−1∏
n′=0

N−1∑
n=0

1

NN
(Xn ∈ bn′)
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This is equivalent to assigning a probability of 1/NN to all of the N -uplets

constructed, with duplication, using these observations.

It is worth noting that the empirical distribution is random due to the use of

sequence Xn: each outcome ω is associated with a realization of the sequence X0,

. . ., XN−1, and thus with a realization of the empirical distribution.

Based on the joint empirical distribution, the empirical expectation of the function

g(X0, . . . , XN−1) with values in R
q is defined as follows.

DEFINITION 2.13 (Empirical expectation).– Consider a sequence of N i.i.d. random

vectors X0, . . ., XN−1 with their values in R
d given its Borel set B⊗d. The empirical

distribution associated with this sequence is denoted by P̂
(N)
N . The empirical

expectation of the function g(X0, . . . , XN−1), with their values in R
q , is the vector:

ĜN = E
P̂
(N)

N

{g(X0, . . . , XN−1)}

Using [2.144], it is easy to show that:

E
P̂
(N)

N

{g(X0, . . . , XN−1)} =
1

NN

∑
1≤i0,...,iN−1≤N

g(Xi0 , . . . , XiN−1
) [2.144]

In the specific case where g(X1, . . . , XN ) =
∏N−1

n=0 gn(Xn), we have:

ĜN =
1

NN

N−1∏
n=0

N−1∑
n=0

gn(Xn)

In the specific case where g(X0, . . . , XN−1) = g(X0), we have:

ĜN =
1

N

N−1∑
n=0

g(Xn)

Now, consider a series of N observations i.i.d., of unknown distribution, and let

θ be the parameter of interest and θ̂(X0, . . . , XN−1) an estimator of θ. To estimate

the variance of θ̂, expression [2.144] can be applied to calculate the first two moments

of θ̂(X0, . . . , XN−1); however, this calculation is often impossible, even for simple

estimators. Note that, in general, NN terms are involved (a very large number of terms

for N = 100, for example). This leads us to consider a Monte Carlo-type approach,

which consists of carrying out a draw from these NN possible cases; the bootstrap

approach, introduced by B. Efron [EFR 79], may be seen in this way.
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2.6.8.1. Bootstrap

Consider a sequence of observations X0, . . ., XN−1 and a parameter of interest θ
of dimension p. The bootstrap technique consists of carrying out B random draws,

with replacement of N samples from the set of observations. B is always very small

compared to NN , typically B = 300. The samples of the bth drawing are denoted by

X
(b)
0 , . . ., X

(b)
N−1, and the associated estimation value is denoted by

θ̂(X
(b)
0 , . . . , X

(b)
N−1). For the sake of simplicity, we note that θ̂(X(b)) =

θ̂(X
(b)
0 , . . . , X

(b)
N−1). The bootstrap technique may then be used to obtain the

empirical covariance:

σ̂2
B(θ̂) =

1

B − 1

B−1∑
b=0

(θ̂(X(b))− μ̂B(θ̂))(θ̂(X
(b))− μ̂B(θ̂))

T [2.145]

with μ̂B(θ̂) =
1

B

B−1∑
b=0

θ̂(X(b))

Note that the term (B−1) in [2.145] leads to the creation of an unbiased estimator

of the covariance matrix.

EXAMPLE 2.11 (Bootstrap of mean estimator).– Consider a sequence of N Gaussian

r.v.s of mean μ and variance 1, and consider the estimation of the mean

μ̂ = N−1
∑N−1

n=0 Xn. Write a program to compare the variance using the bootstrap

technique and the theoretical variance of μ̂, with a value of 1/N , over L simulations.

HINTS: Type:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 08:02:15 2016

****** bootstraponmean

@author: maurice

"""

from numpy import zeros, mean, std

from numpy.random import randn, randint

from matplotlib import pyplot as plt

N = 300; mu = 3; B = 300; Lruns = 100;

sigma2b = zeros(Lruns); mub = zeros(B);

for irun in range(Lruns):

X = randn(N)+mu;

U = randint(0,N,size=[N,B]);

Xb = X[U]; mub = mean(Xb,axis=0);

sigma2b[irun]= std(mub)**2;



110 Digital Signal Processing with Python Programming

plt.clf()

plt.boxplot(sigma2b)

print(mean(sigma2b))

�

EXERCISE 2.37 (Bootstrap for a regression model).– (see p. 203) Consider a series of

N observations of the linear model:

X = Zβ + σε

where

Z =

⎡⎢⎢⎢⎣
1 0
1 1
...

...

1 N − 1

⎤⎥⎥⎥⎦ and β =
[
3 2
]T

and ε is a centered Gaussian vector with covariance IN . Note that, according to

property 2.2, the covariance matrix of β̂ = (ZTZ)−1ZTX is expressed as

(ZTZ)−1. Write a program to compare the covariance obtained using the bootstrap

technique and the theoretical covariance over L simulations.

2.6.8.2. Jackknife

The jackknife (multi-usage foldable knife) technique was introduced by

M. H. Quenouille [QUE 56, MIL 74] to reduce the bias of an estimator. J. W. Tuckey

[TUC 58] extended the technique for estimating the estimator variance.

The fundamental idea involves calculating θ̂ several times, removing a sample

each time. More precisely, if X(j) denotes the sequence of observations from which

the sample Xj is removed, we obtain the following N estimates:

θ̂(j) = θ̂(X(j)) [2.146]

From this, we obtain the jackknife empirical covariance associated with the

estimator θ̂:

σ̂2
J =

N − 1

N

N−1∑
j=0

(θ̂(j) − μ̂J)(θ̂
(j) − μ̂J)

T [2.147]

with μ̂J(θ̂) =
1

N

N−1∑
j=0

θ̂(j) [2.148]
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A simple application is provided for the mean estimate:

θ̂(j) =
1

N − 1

∑
i�=j

Xi [2.149]

2.6.8.3. Cross-validation

Cross-validation may be seen as a generalization of the jackknife approach. Instead

of removing a single value (leave-one-out, LOO), we remove several values. Typically,

the sequence of observations is divided into K blocks of the same length, and each of

the K blocks is used successively as the test database, with the remaining (K − 1)
blocks acting as the learning database. Let the block k be our test database. Over

the remaining (K − 1) blocks, we estimate θ, obtaining the value of θ̂(−k). We then

calculate the error on the block k using the parameter value of θ̂(−k). We then calculate

an average over the K blocks (see Figure 2.12).

Without losing generality, we assume that N = LK, where L is the size of a

block. The element of the block of test data k is denoted as X
(k)
� = X(k−1)L+�, with

� ranging from 1 to L, and the remaining data is denoted as X
(−k)
� . The covariance of

the estimator θ̂(X) is written as:

σ̂2
CV =

1

K

K∑
k=1

1

L− 1

L∑
�=1

(θ̂(X
(k)
� )− θ̂(X

(−k)
� ))(θ̂(X

(k)
� )− θ̂(X

(−k)
� ))T [2.150]

learning learning learning testing learning learning

Figure 2.12. Cross-validation: a block is selected as the test base, for
example block no. 4 in this illustration, and the remaining blocks are

used as a learning base, before switching over

Instead of using the cross-validation scheme, as shown in Figure 2.12, another

scheme consists of randomly drawing the learning subset and the testing subset. This

can be done using the function sklearn.train_test_split, which splits arrays

into random train and test subsets. The parameter test_size indicates the percentage

of the full set used for the test subset. The balance is associated with the training

subset.

The cross-validation approach may be used to estimate the order of the model. If

we add columns to Z, the projection theorem guarantees that the average prediction

error for the learning data can only decrease or, at worst, remain constant if the
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additional vector is contained in the space created by the columns of Z. In simple

terms, the more the columns are added, the easier it is to “explain” the noise ε.
However, the more the columns are added, the more the error over the test data will

increase; this is illustrated in exercise 2.38.

EXERCISE 2.38 (Model selection based on cross-validation).– (see p. 203) We want

to show that, if we increase the number of predictors, the error begins by decreasing

and then increases. The minimum can be used to estimate the significative predictors.

Write a program to:

– generate N = 3000 data following the linear model y = Zθ + σε, where Z
is the design matrix associated with the first 10 columns of a matrix X of size N ×
20 obtained by randn(N,20). Therefore, the first 10 columns of X represent the

explanatory variables, whereas the others are non-explanatory.

– apply a cross-validation of order K = 10 (see scheme 2.12) and vary the number

of predictors from 1 to 20, calculate the prediction errors over the learning base and

over the test base as a function of p.

EXERCISE 2.39 (Cross-validation on CO2 concentration).– (see p. 204) Taking CO2

concentration with the linear model considered in exercise 2.11, write a program to

perform the residual standard deviation for different values of (p, q). Use this

calculation to estimate p and q using a cross-validation approach: for each couple

(p, q) in [0, . . . , 6] × [1, . . . , 6], the data will be split 100 times into 80% for training

and 20% for testing.

EXERCISE 2.40 (Cross-validation for home owner/rent).– (see p. 206) Taking the

data considered in exercise 2.33, write a program to estimate the logistic model from

the learning database and derive the prediction on a testing database. The

cross-validation approach will be obtained with the function

sklearn.train_test_split using 80% for learning and 20% for testing, and will

be run 500 times. At each time, the percentage of good prediction will be evaluated.

EXERCISE 2.41 (Model selection with cross-validation).– (see p. 206) Let us consider

the file statsmodels.api.datasets.diabetes.load() of exercise 2.13. We let

yn = β0 +
∑10

k=1 βkxn,k + σεn, where xn,k denotes the kth features associated with

the patient n. Write a program to perform the backward stepwise algorithm 4 and

select the model using the residual norms derived from the cross-validation scheme

shown in Figure 2.12. Compare the result with the results of exercises 2.15 and 2.16.
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Inferences on HMM

In this chapter, we will give a brief overview of hidden Markov models (HMM)

[BAS 93]. These models are widely used in many areas. They have a fundamental

property that results in the existence of recursive algorithms, meaning that the number

of operations and the size of the memory needed to calculate the required values do not

increase with the number of samples. The best-known example of this is the Kalman

filter [EMI 60].

Throughout this chapter, for simplicity, the notation (n1 : n2) will be used to

denote the sequence of integer values from n1 to n2 inclusive.

3.1. Hidden Markov models (HMM)

A hidden Markov model (HMM) is a bivariate discrete-time process (Xn, Yn),
where Xn and Yn are two real random vectors of finite dimension, such that:

– Xn, n ≥ 0, is a Markov process, i.e. for any function f , the conditional

expectation of f(Xn+1) given the σ-algebra generated by {Xs; s ≤ n} (the past

until n) coincides with the conditional expectation of f(Xn+1) given the σ-algebra

generated by {Xn}. If the conditional distributions have a density, it can be written

as:

pXn+1|X0:n
(xn+1;x0:n) = pXn+1|Xn

(xn+1;xn) [3.1]

– Yn, n ≥ 0, is a process such that the conditional distribution of Y0, . . . , Yn−1

given X0, . . . , Xn−1 is the product of the distributions of Yk conditionally on Xk. If

the conditional distributions have a density, it can be written as:

pY0:n|X0:n
(y0:n;x0:n) =

n∏
k=0

pYk|Xk
(yk;xk) [3.2]



114 Digital Signal Processing with Python Programming

– the initial r.v. X0 has a known probability law. If this initial distribution has a

probability density, it will be denoted as pX0(x0).

The following expression of the joint distribution can be deduced from the previous

assumptions:

pX0:n,Y0:n(x0:n, y0:n) = [3.3]

n∏
k=0

pYk|Xk
(yk;xk)

n∏
k=1

pXk|Xk−1
(xk;xk−1)pX0(x0)

PROOF.– Using Bayes’ rule and equation [3.2], we have:

pX0:n,Y0:n(x0:n, y0:n) = pY0:n|X0:n
(y0:n;x0:n) pX0:n(x0:n)

=
n∏

k=0

pYk|Xk
(yk;xk) pX0:n(x0:n)

Again, using Bayes’ rule and equation [3.1], we may write:

pX0:n(x0:n) = pXn|X0:n−1
(xn;x0:n−1) pX0:n−1(x0:n−1)

= pXn|Xn−1
(xn;xn−1) pX0:n−1(x0:n−1)

By repeating this process, we deduce that:

pX0:n(x0:n) =

n∏
k=1

pXk|Xk−1
(xk;xk−1) pX0(x0)

which completes the proof of expression [3.3]. �

Expression [3.3] may be represented by the directed acyclic graph (DAG) shown

in Figure 3.1, using the coding rule:

P {X0:n, Y0:n} =
∏
i∈V

P {i|parents(i)}

where V denotes the set of all nodes in the graph. Note that the DAG of an HMM is a

tree. In more general cases, we speak of a dynamic Bayesian network.

In practice, the variables Y0:n represent observations and variables X0:n represent

“hidden” variables. Our objective is thus to make inferences concerning the hidden
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variables based on the observations. In very general terms, we therefore need to

calculate conditional distributions of the form pXn1:n2 |Ym1:m2
(xn1:n2 ; ym1:m2). Thus,

if we wish to “extract” all information concerning Xn based on the observations

Y0:n, we need to determine the distribution pXn|Y0:n
(xn; y0:n). Subsequently, any

function of interest f(Xn) may be calculated using the conditional expectation:

E {f(Xn)|Y0:n} =

∫
f(x)pXn|Y0:n

(x;Y0:n)dx

which is a “measurable” function of the observations.

Xk+1

Yk+1YkY1Y0

X0 X1 Xk

Figure 3.1. Directed acyclic graph (DAG) associated with an HMM

A priori, the problem appears very simple. We only need to apply Bayes’ rule and

write as follows:

pXn1:n2 |Ym1:m2
(xn1:n2 ; ym1:m2) =

pXn1:n2 ,Ym1:m2
(xn1:n2

, ym1:m2
)

pYm1:m2
(ym1:m2)

Let us note that the numerator and the denominator can be obtained by integrating

the joint probability distribution a certain number of times. For example, we have:

pXn|Y0:n
(xn; y0:n) =

∫
pX0:n,Y0:n(x0:n, y0:n)dx0:n−1∫
pX0:n,Y0:n(x0:n, y0:n)dx0:n

Unfortunately, with the exception of certain cases – such as the linear Gaussian

case that leads to the Kalman filter, or the case where the variables X0:n have values

within a discrete finite set – this expression is impossible to calculate. Other methods,

such as extended Kalman filter, particles filtering, etc., are therefore required for these

cases.
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The factorized form of the expression [3.3] induces separation properties that are

the basis of recursive algorithms. Let us consider a few examples. For any k ≤ n, it is

easy to show that:

pX0:n,Y0:n(x0:n, y0:n) = [3.4]

pX0:k,Y0:k
(x0:k, y0:k)pXk+0:n,Yk+0:n|Xk

(xk+0:n, yk+0:n;xk)

or that:

pX0:n,Y0:n(x0:n, y0:n) = pX0:k,Y0:k
(x0:k, y0:k) . . .

pXk+1|Xk
(xk+1;xk)pXk+2:n,Yk+2:n|Xk+1

(xk+2:n, xk+2:n;xk+1)

or that, for any j ≥ 1:

pX0:n,Y0:n(x0:n, y0:n)(x0:n, y0:n) = p(x0:k, y0:k) . . . [3.5]

pXk+0:k+j ,Yk+0:k+j |Xk
(xk+0:k+j , yk+0:k+j ;xk) . . .

pXk+j+0:n,Yk+j+0:n|Xk+j
(xk+j+0:n, yk+j+0:n;xk+j)

Taking j = 1 and integrating expression [3.5] over x0:k−1 and over xk+2:n, we

obtain:

pXk:k+1,Y0:n(xk, xk+1, y0:n) = pXk|Y0:k
(xk; y0:k) [3.6]

pYk+1|Xk+1
(yk+1;xk+1) pXk+1|Xk

(xk+1;xk) pYk+2:n|Xk+1
(yk+2:n;xk+1)

All of these results may be obtained using graphic rules applied to the DAG

associated with the considered Bayesian network. For more details, refer to

[PEA 88].

3.2. Inferences on HMM

The following list covers a number of inference problems:

– Learning: the joint law [3.3] is taken to depend on a parameter θ, which

may be constituted of parameters μ associated with the distributions of observations

pYk|Xk
(yk;xk, μ), and/or parameters φ associated with the distributions of the

hidden states pXk+1|Xk
(xk+1;xk, φ). The aim is to estimate θ based on a series of

observations Y0:n. The EM algorithm presented in section 2.6.5.3 may be used.

– Inferences on Xn+k based on the observations Y0:n. Here the joint law [3.3] is

assumed to be known, and we wish to find the expression of pXn+k|Y0:n
(xn+k; y0:n):
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1) If k = 0, it is known as filtering;

2) If k > 0, it is known as prediction;

3) If k < 0, it is known as smoothing.

– Estimation of the sequence of hidden states X0:n based on the observations Y0:n

in the case where the values of Xn are found in S = {0, . . . , S − 1}, which is finite

and discrete. To do this, the a posteriori maximum can be used:

X̂0:n = arg max
s0:n∈Sn+1

P {X0:n = s0:n|Y0:n}

One rough approach consists of “testing” the Sn+1 possible value combinations.

However, a deeper examination allows us to obtain an algorithm with a complexity in

terms of only (n+1)×S2. This is the Viterbi algorithm, which is presented in section

3.5.5.

3.3. Filtering: general case

In general cases, filtering consists of calculating the a posteriori distribution

pXn|Y0:n
(xn|y0:n). A simple calculation shows that the HMM structure leads to a

recursive algorithm, which calculates pXn+1|Y0:n+1
(xn+1|y0:n+1) in two steps based

on pXn|Y0:n
(xn|y0:n):

1) a prediction step, which calculates:

pXn+1|Y0:n
(xn+1; y0:n) =

∫
pXn|Y0:n

(xn; y0:n)pXn+1|Xn
(xn+1;xn)dxn

2) an update step, which calculates:

pXn+1|Y0:n+1
(xn+1; y0:n+1)

=
pXn+1|Y0:n

(xn+1; y0:n)pYn+1|Xn+1
(yn+1;xn+1)

pYn+1|Y0:n
(yn+1; y0:n)

[3.7]

Note that the denominator pYn+1|Y0:n
(yn+1; y0:n) is not dependent on xn+1.

Hence, using the fact that the integral of pXn+1|Y0:n+1
(xn+1; y0:n) with respect to

xn+1 is equal to 1, we deduce that:

pYn+1|Y0:n
(yn+1; y0:n)

=

∫
pXn+1|Y0:n

(xn+1; y0:n)pYn+1|Xn+1
(yn+1;xn+1)dxn+1
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Therefore, we only need to calculate the numerator of [3.7]:

pXn+1|Y0:n
(xn+1; y0:n)pYn+1|Xn+1

(yn+1;xn+1)

and then normalize by integration with respect to xn+1. Hence, we can replace, in the

update step, expression [3.7] by:

pXn+1|Y0:n+1
(xn+1; y0:n+1)

∝ pXn+1|Y0:n
(xn+1; y0:n)pYn+1|Xn+1

(yn+1;xn+1) [3.8]

where the symbol ∝ means “proportional to” i.e. up to a function which does not

depend on xn+1. Usually this function can be obtained by using that the integral of

pXn+1|Y0:n+1
(xn+1; y0:n+1) w.r.t. xn+1 is equal to 1.

pxn+1|Y0:n+1(xn+1; y0:n+1) ∝ h(xn+1; y0:n+1)

where h(xn+1; y0:n+1) is known. To compute pxn+1|y0:n+1(xn+1; y0:n+1) we use

that inf pX0:n+1|Y0:n+1dx = 1 and write:

pXn+1|Y0:n+1(xn+1; y0:n+1) =
h(xn+1; y0:n+1)∫
h(x; y0:n+1)dx

Generally speaking, the prediction and update expressions are intractable;

however, there are two important cases in which closed-form expressions may be

obtained. First, the linear Gaussian case leads to the Kalman filter, which is discussed

in section 3.4. The second case arises when Xn takes its values in a finite state set,

which will be discussed in section 3.5.

3.4. Gaussian linear case: Kalman algorithm

3.4.1. Kalman filter

Let us consider the model defined for n ≥ 0 by the two following equations:{
Xn+1 = AnXn +Bn (evolution equation)

Yn = CnXn + Un (observation equation)
[3.9]

where {An} and {Cn} are two sequences of matrices with adequate dimensions. In

this context, An is called the state matrix and Cn the observation matrix.
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{Bn} and {Un} are two centered Gaussian vector sequences, independent of each

other, with the covariances RB
n and RU

n , respectively. We also assume that the random

vector X0 is Gaussian with zero mean and covariance Σ0.

The first equation of [3.9] describes the recurrence of the hidden state Xn. It is

called the state equation or evolution equation.

The vector Yn denotes the measurement vector and the second equation of [3.9] is

called the observation equation.

Generally speaking, we wish to make inferences concerning states based on the

observations. In this context, the evolution equation may be viewed as an a priori
probability distribution of the states. For this reason, we can consider that we are in a

Bayesian framework.

Let us return to equations [3.9]. As an exercise, the following properties can be

shown:

– based on the linear transformation property of the Gaussian distribution,

(X0:n, Y0:n) is jointly Gaussian;

– the sequence Xn is a Markov chain;

– the probability density of Xn+1 given Xn is written as:

pXn+1|Xn
(xn+1, xn) ∼ N (AnXn;R

B
n )

– the probability distribution of Y0:n conditionally on X0:n verifies the property of

independence expressed in equation [3.2];

– the probability density of Yn given Xn is written as:

pYn|Xn
(xn, yn) ∼ N (CnXn;R

U
n )

The bivariate process (X0:n, Y0:n) is therefore an HMM.

The fact that the probability distribution of Xn conditional on Y0:n is Gaussian

constitutes a fundamental property. We therefore simply need to determine the

expression of its mean and covariance. The Kalman algorithm provides a recursive

way of calculating these two quantities. In this context, the following notation is

commonly used:

Xn|k = E {Xn|Y0:k} [3.10]

Pn|k = cov (Xn|Y0:k) [3.11]
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Note that, in accordance with property 1.11, the Gaussian character implies that

the conditional expectation Xn|k corresponds to the orthogonal projection of Xn onto

the linear space spanned by Y0, . . ., Yk. The Kalman filter can therefore be deduced on

the basis of geometric arguments alone, associated with the projection theorem (see

section 1.3). In this context, note that (X,Y ) = E {XY } denotes the scalar product

of X and Y , and that (X|Y0:k) is the orthogonal projection of X onto the linear space

spanned by Y0:k.

Before presenting the Kalman algorithm, let us consider a classic example,

concerning trajectography, leading to equations of the form set out in [3.9].

EXAMPLE 3.1 (1D rectilinear motion).– Consider a vehicle moving along a straight

line at the constant speed v. The position at the time n+1 is given by dn+1 = dn+vT ,

where T denotes the sampling period. This motion equation can also be written as:{
dn+1 = dn + vnT
vn+1 = vn

with the initial conditions d0 and v0. Note that the second equation of the system is

reduced to vn = v0 if we assume that the vehicle has a constant speed. But if we

have little faith in this hypothesis of a constant speed, the possible variability can be

modeled by adding a random variable bn to vn. This leads to:{
dn+1 = dn + vnT
vn+1 = vn + bn

Hence, the evolution of the couple (dn, vn) can be rewritten in matrix form:[
dn+1

vn+1

]
=

[
1 T
0 1

] [
dn
vn

]
+

[
0
1

]
bn

Let us now assume that only the position dn is observed at the output of a noised

device delivering the value yn = dn + un, where un is a random process used as a

model for the measurement noise.

If we let Xn =
[
dn vn

]T
, and write the expression of the observation Yn in vector

form, we get:{
Xn+1 = AXn +Bn

Yn = CXn + Un

where C =
[
1 0

]
. This expression has the form similar to [3.9].
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3.4.1.1. Kalman filter algorithm

The Kalman algorithm offers a recursive solution to the HMM filtering problem

in the linear Gaussian case, as defined in expressions [3.9]. Its recursive characteristic

should be understood in the sense that the number of operations and the amount of

memory required by the algorithm do not increase as the number of observations

increases. The Gaussian and linear characteristics of the model mean that the a

posteriori law of Xn given Y0:n is Gaussian, and is therefore characterized

completely by its mean Xn|n and covariance Pn|n.

Exercise 3.1 gives a detailed proof of the Kalman algorithm in the scalar case. For

the vectorial case, a fully similar proof leads to the Algorithm 7.

Data: Yn≥0, An≥0, Cn≥0, RB
n≥0, RU

≥0, Σ0

Result: for n ≥ 0, Xn|n, Pn|n, Pn|n−1, �n
Initialization:

X0|0 = 0, P0|0 = Σ0

Γ0 = C0Σ0C
T
0 +RU

0

�0 = − 1
2 (ny log(2π) + Y T

0 Γ−1
0 Y0 + log det {Γ0})

for n ≥ 1 do

Xn|n−1 = An−1Xn−1|n−1 (prediction) [3.12]

Pn|n−1 = An−1Pn−1|n−1A
T
n−1 +RB

n−1 [3.13]

Γn = CnPn|n−1C
T
n +RU

n [3.14]

Kn = Pn|n−1C
T
n Γ

−1
n (Kalman gain) [3.15]

in = Yn − CnXn|n−1 (innovation) [3.16]

Xn|n = Xn|n−1 +Knin (update) [3.17]

Pn|n = (Inx −KnCn)Pn|n−1 [3.18]

�n = �n − 1

2
(ny log(2π) + iTnΓ

−1
n in + log det {Γn}) [3.19]

end
/* nx, ny denote the dimensions of Xn and Yn respectively.

Xn|n the filter outputs, Pn|n the covariance of Xn|n, �
the log-likelihood of the observations. */

Algorithm 7: Kalman algorithm

The Kalman algorithm performs a computation of Xn|n at the time n from the

value Xn−1|n−1 in two successive steps: the prediction by equation [3.12] and the

update by equation [3.17]. These two steps are similar to the two steps of the general

cases in section 3.3. Moreover, this calculation only requires the memorization of the

finite dimension state.
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The sequence in = Yn − E {Yn|Y0:n−1} is known as the innovation, and is the

difference between that which is observed at instant n and that which can be

“explained” by previous observations.

The sequence �n = 2 log pY0:n(Y0:n) in algorithm 1 is the log-likelihood of the

observations, calculated using the series of innovations. In the case where pY0:n(Y0:n)
depends on an unknown parameter θ, the Kalman algorithm can be used to carry out

maximization with respect to θ.

The expression of this algorithm calls for a few additive comments:

1) Kn is called the Kalman gain. It can be calculated beforehand, since it is

determined by equations [3.13], [3.14] and [3.18], which do not depend on the

observed data Yn. However, except in the case of scalars (see exercise 3.1), the

expression of Kn requires to solve a complex recursive equation referred to as

the Riccati equation.

2) Let RU
n = 0. Using expressions [3.14] and [3.15], we obtain Kn =

Pn|n−1C
T
n (CnPn|n−1C

T
n )

−1. From this, we see that CnKn = Iny . In the absence

of observation noise, the Kalman gain is the right inverse of the observation matrix.

3) Now, let RB
n = 0. The Kalman gain can be shown to tend toward 0. In this

case, the evolution model is highly reliable, and the estimation Xn|n is principally

calculated using the prediction An−1Xn−1|n−1.

4) The significance of equation [3.17] is obvious. According to the state equation

of [3.9], the “best” value of Xn at time n is An−1Xn−1|n−1. Then, this value is

corrected by a quantity proportional to the difference between what we observe, say

Yn, and what we can expect from the previous observation, say CnAnXn−1|n−1. This

may be seen as an adaptive compromise between what we see, i.e. Yn, and what we

know, i.e. the equation of evolution.

5) We wish to draw your attention to the fact that the algorithm requires us to

know RB
n and RU

n . However, the theory can be generalized to include the situation

where these quantities have to be estimated based on the observed data. In that case,

the sequence of gains can no longer be calculated beforehand.

3.4.1.2. Deterministic case

Let us say a few words on the deterministic stationary case, which can be written

as: {
Xn+1 = AXn

Yn = CXn

[3.20]

where An = A and Cn = C.
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An interesting issue is to say if we are able to perform X0 from dX observations

Y0:dX−1, where dX denotes the dimension of the state. In the literature, this property

is known as observability. It is worth noting that if we can perform X0, we can also

perform Xn for any n > 0 using the first equation.

PROPERTY 3.1.– The system described by equation [3.20] is observable if and only if

the following matrix W is of rank dX :

W =

⎡⎢⎢⎢⎣
C
CA

...

CAdX−1

⎤⎥⎥⎥⎦ [3.21]

PROOF.– Using [3.20], we can successively write:

Y0 = CX0

Y1 = CAX0

...

YdX−1 = CAdX−1X0

In more compact form, this set of linear equations with respect to X0 can be written

as WX0 = Y , where Y =
[
Y0 . . . YdX−1

]T
. Hence, there is a unique solution if and

only if the matrix W is of rank dX . Let us note that W is of dimension (dY dX , dX),
where dY is the dimension of Y . �

Non-observability does not mean that X0 cannot be performed. This only means

that the solution is not unique. It is reasonable to assume observability. If

non-observability occurs, some components of the estimated hidden states could be

large.

EXERCISE 3.1 (Kalman filter derivation, scalar case (see p. 208)).– Consider the

system described by the two equations:{
Xn+1 = anXn +Bn

Yn = cnXn + Un

[3.22]

where {an} and {cn} are two sequences of scalars. {Bn} and {Un} are two centered

Gaussian sequences, independent of each other, with the variances σ2
B(n) and σ2

U (n),
respectively. In particular, E {BnYk} = 0 and E {UnXk} = 0.
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We wish to determine the filtering distribution, i.e. the conditional distribution of

Xn given Y0:n. As we saw in section 1.4.3, this conditional distribution is Gaussian.

Its mean corresponds to the orthogonal projection of Xn onto the sub-space spanned

by Y0:n (expression [1.44]) and its covariance is given by [1.45]. Using the notation

introduced in section 1.4.3, we can therefore write that Xn|n = (Xn|Y0:n), Xn+1|n =
(Xn+1|Y0:n) and E {Yn+1|Y0:n} = (Yn+1|Y0:n).

1) Show that Xn+1|n = anXn|n;

2) Show that (Yn+1|Y0:n) = cn+1Xn+1|n;

3) Use this result to deduce that Kn exists, such that Xn+1|n+1 = Xn+1|n +
Kn+1in+1, where in+1 = Yn+1 − cn+1Xn+1|n;

4) Let Pn+1|n = (Xn+1 −Xn+1|n, Xn+1 −Xn+1|n). Show that:

var (in+1) = c2n+1Pn+1|n + σ2
U (n+ 1)

5) Show that the r.v. i0:n are independent. Use this to deduce the expression of

pY0:n
(y0:n) as a function of i0:n and var (i0:n);

6) From this result, deduce that:

Kn+1 =
Pn+1|ncn+1

σ2
U (n+ 1) + cn+1Pn+1|ncn+1

7) Show that:

Pn+1|n = a2nPn|n + σ2
B(n)

then that:

Pn+1|n+1 = (1−Kn+1cn+1)Pn+1|n

Bringing together all of the previous results, verify that we obtain algorithm 7.

EXERCISE 3.2 (Denoising an AR-1 using Kalman (see p. 228)).– We consider, n ≥
0, the discrete-time signal Yn = Xn + Un, where Xn denotes an zero-mean AR-1

process. This can be written as:{
Xn+1 = aXn +Bn (state equation)

Yn = Xn + Un (observation equation)

Bn and Un are assumed to be two white uncorrelated noises. Let ρ = σ2
b/σ

2
u.

We want estimate Xn using the observed Y0:n. Such a process is called AR-1 (auto-

regressive of order 1).
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Let us note that, provided that |a| < 1, the state equation has a unique solution

which is a second-order stationary process whose expression is causal with respect to

Bn [BLA 14]. It is easy to show that E
{
X2

n

}
=

σ2
b

1−a2 . This value can be used as the

initial value P0|0.

Let us note that the function scipy.signal.lfilter with the parameter

(1,alpha) implements the equation Xn+1 + αXn = Bn. Therefore, alpha=-a.

1) Determine, as a function of a and ρ, the recursive equation of the Kalman gain,

as well as its initial value K0. Show that the Kalman gain tends toward a limit, and

determine the expression of this limit;

2) Write a program to implement the Kalman filter for this model.

EXERCISE 3.3 (Kalman filtering of a noisy 1D trajectory (see p. 230)).– Let us

consider the 1D trajectory of length N = 100, generated by the first equation of the

system model of example 3.1, which can be written as:{
Xn+1 = AXn +Dbn

Yn = CXn + Un

[3.23]

where

A =

[
1 0.1

0 1

]
and D =

[
0

1

]

bn is a zero-mean Gaussian sequence with standard deviation equal to σb = 1.0, and

Un a zero-mean Gaussian sequence with standard deviation 10.0.

Write a program to (i) generate the state sequence and the observation sequence

and (ii) estimate the state sequence from the observation using the Kalman filter. You

will consider two cases: the first with C =
[
1 0

]
and the other with C =

[
0 1

]
.

What do you observe? To conclude, perform the rank of W given by [3.21].

EXERCISE 3.4 (Calculating the likelihood of an ARMA (see p. 233)).– Consider the

HMM model defined by:{
Xn+1 = AXn +RZn+1

Yn = CXn

[3.24]
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where Zn is a sequence of independent random variables, with a Gaussian distribution,

of mean 0 and variance σ2, and Xn is a vector of length r, where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−a1 1 0 . . . 0

−a2 0 1 . . . 0
...

−ar−1 0 0 . . . 1

−ar 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

b1

b2
...

br−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C =

[
1 0 0 . . . 0

]

1) Show that Yn verifies the recursive equation:

Yn +
r∑

m=1

amYn−m = Zn +
r−1∑
k=1

bkZn−k

Consequently, if aj = 0 for j > p and bj = 0 for j > q, and taking r =
max(p, q + 1), Yn verifies:

Yn +

p∑
m=1

amYn−m = Zn +

q∑
k=1

bkZn−k [3.25]

Thus, if a(z) = 1 +
∑p

m=1 amz−m �= 0 for |z| ≥ 1, Yn is an ARMA-(p, q)
[BLA 14], which is expressed causally as a function of Zn.

2) Use the Kalman algorithm to calculate, recursively, the log-likelihood �n =
log pY0:n(y0:n; θ) of an ARMA associated with parameter θ = {a1:p, b1:q, σ2}.

3) Let θ = {a1:p, b1:q, σ2} and θ̃ = {a1:p, b1:q, 1}. Determine the relationship

giving the likelihood � associated with θ as a function of the likelihood �̃ associated

with θ̃.

4) Write a function that uses a1, . . ., ap, b1, . . ., bq and σ2 to calculate the first

n covariance coefficients of an ARMA-(p, q). First, let us note that if Ỹn denotes the

AR-p process defined by:

Ỹn +

p∑
m=1

amỸn−m = Zn [3.26]

then the process Yn defined by [3.25] is related to Ỹn by

Yn = Ỹn +

q∑
k=1

bkỸn−k [3.27]
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To calculate the covariance of Ỹn, use the following recursion [BRO 90]:

R(k) + a1R(k − 1) + . . .+ apR(k − p) = 0 for k ≥ p+ 1 [3.28]

For the (p+ 1) initial values, let us use:⎡⎢⎢⎢⎢⎢⎣
R(0) R(1) . . . R(p− 1)

R(1) R(0)
...

R(p− 1) . . . . . . R(0)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
a1
...

ap

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
R(1)

...

R(p)

⎤⎥⎥⎦ [3.29]

and σ2 = R(0)+a1R(1)+ . . .+R(p)ap. Equation [3.29] can be rewritten as a linear

expression with respect to R(0), R(1), . . ., R(p − 1). Once R(k) is performed for k
ranging from 0 to n + r − 1, we can use the relation [3.27] to derive the following

expression for the calculation of the covariance γ(k) of the ARMA process:

γk =

q+1∑
i=0

q+1∑
j=0

bibjR(|k − i− j|) [3.30]

where b0 = 1. Write a program to calculate the likelihood of an ARMA-(p, q)
using the Kalman algorithm. Compare this result with those obtained using the direct

calculation program.

3.4.2. RTS smoother

In general cases, smoothing consists of calculating pXn|Y0:N
(xn|y0:N ), where N

is the final observation time. Thus, this a “batch” (off-line) algorithm. It is shown that

the HMM structure leads to recursive two-pass algorithms, one pass forward and the

other backward [CAP 05]. Here we only give without proof the algorithm known as

RTS (Rauch-Tung-Striebel) smoother.

Data: Yn=0:N , An=0:N , Cn=0:N , RB
n=0:N , RU

n=0:N , Σ1

Result: for n = 0 : N , Xn|N , Pn|N
Initialization:

Call Kalman filter providing for n = 0 : N , Xn|n, Pn|n, Pn|n−1 (see

algorithm 7),

for n = N − 1 to 1 (backward pass) do

Kn = Pn|nAT
nP

−1
n+1|n [3.31]

Xn|N = Xn|n +Kn(Xn+1|N −AnXn|n) [3.32]

Pn|N = Pn|n −Kn(AnPn|n − Pn+1|NKT
n ) [3.33]

end
Algorithm 8: RTS smoother.
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EXERCISE 3.5 (Filtering and smoothing for 2D tracking (see p. 237)).– Consider a

mobile element in the plane Ox1x2. Let x1(t) and x2(t) be continuous time functions

representing the two components of its position, ẋ1(t) and ẋ2(t) their first derivatives

(speeds) and ẍ1(t) and ẍ2(t) their second derivatives (accelerations).

If the acceleration is null, i.e. ẍ1(t) = 0 and ẍ2(t) = 0, the trajectory of the mobile

element is a straight line. When the acceleration is non-null, this may mean that the

vehicle has increased or decreased its speed in a straight line, and/or that the vehicle

has deviated from the straight line.

To take account of possible acceleration, ẍ1(t) and ẍ2(t) are modeled by two

Gaussian, centered white noises of the same variance σ2. This allows us to track a

mobile element with a trajectory that does not follow a straight line.

Let T be the sampling period. For i = 1 and i = 2, let Xi,n = xi(nT ) and

Ẋi,n = ẋi(nT ), and let Xn =
[
X1,n X2,n Ẋ1,n Ẋ2,n

]T
.

We presume that only the position is observed, and that this observation is subject

to additional noise. The position is therefore written as Yn = CXn + Un with:

C =

[
1 0 0 0

0 1 0 0

]

and Un is the observation noise.

1) Use a first-order Taylor approximation to show that:

Xn+1 = AXn +Bn with A =

⎡⎢⎢⎢⎢⎣
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ [3.34]

and where Bn is a noise. Give the covariance matrix as a function of T and σ2.

2) Suppose that T = 1/10 s and the speed is of the order of 30 m/s (approximately

90 km/h). Explain the connection between σ and a possible acceleration over a

duration T . The speed may be considered to vary by a quantity proportional to v0.

3) Write functions implementing the Kalman filter algorithm and the RTS

smoothing algorithm in the case where the parameters of the model are not dependent

on time. Write a program to simulate a 2D trajectory, compute filtering and smoothing,

and compare their confidence ellipses. Note that the confidence region at 100α% of a

random Gaussian vector of dimension 2, mean μ and covariance matrix C is an ellipse

with equation (x− μ)TC−1(x− μ) = −2 log(1− α).
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To create a 2D trajectory, you are not obliged to use equation [3.34], you can take

of any form, for example that obtained using:

# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 10:51:12 2016
****** generate2Dtrajectory
@author: maurice
"""
from numpy import cos, sin, arange, pi
from matplotlib import pyplot as plt
M0 = 2; N = 50; t = 2*pi*arange(0,N)/N/4.0;
X1 = cos(t); X2 = cos(t)**2+sin(t)
plt.clf(); plt.plot(X1,X2); plt.show()

We see that the plotted trajectory consists of two almost linear parts and a highly

curved part. It is clear that the linear parts can be better modeled by equation [3.34]

than the curved part. It follows that better filtering and smoothing can be expected in

the linear parts.

3.5. Discrete finite Markov case

In cases where the states Xn of an HMM take their value in a finite set of values,

the inference on Xn has a closed-form expression. This expression is based on two

smoothing algorithms, as defined in section 3.2, known as the Baum-Welch or

forward-backward algorithms.

Consider an HMM with hidden states Xn, where n ranges from 0 to N − 1, which

have values in a finite set S = {0, 2, . . . , S − 1}. The distribution of the observations

Yn given Xn = i is taken to have a probability density denoted as gn(yn|i). Let us

denote pn(i|j) = P {Xn = i|Xn−1 = j} and ω(i) = P {X0 = i}.

EXERCISE 3.6 (Discrete HMM generation (see p. 242)).– Consider an HMM with

S = 4 hidden states, with an initial distribution ω0 =
[
1/2 1/4 1/8 1/8

]
and the

following transition probability matrix1:

P =

⎡⎢⎢⎢⎢⎣
0.4 0.1 0.3 0.2

0.1 0.4 0.3 0.2

0.3 0.1 0.4 0.2

0.1 0.3 0.1 0.5

⎤⎥⎥⎥⎥⎦ where Pj,i = p(i|j)

1 The number in line j denotes the initial state, and the number in column i gives the final state.

Thus,
∑

i Pj,i = 1, i.e. the sum of the elements in a line is equal to 1.
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Let Fs(x) be the cumulative function associated with the conditional distribution

of Xn given Xn−1 = s. More precisely:

Fs(x) =
S−1∑
i=0

(x ≤ i)p(i|s) =
S−1∑
i=0

(x ≤ i)Ps,i

1) Show that:

Xn+1 =
S−1∑
j=0

j × (Un ∈ [FXn(j − 1), FXn(j)])

where Un is a sequence of independent r.v.s with a uniform distribution over the

interval (0, 1).

2) Consider that the observations Yn, conditionally on the states Xn, are Gaussian

random vectors of size d, with respective means μi and covariance Ci with i = 0 to

S−1. Using the results of exercise 4.2, write a function to generate a sequence of data

following the proposed HMM.

For d = 2, plot the vectors Yn and their ellipse of confidence at 95%.

We suggest for generating the positive covariance matrix Ci to draw an auxiliary

random matrix Mi and execute Ci = MiM
T
i .

3.5.1. Forward-backward formulas

Now let us determine two recursive formulas, known as the forward-backward
formulas. We will then consider the way in which these formulas are used in 1 and 2

instant smoothing algorithms, and in the algorithm used to estimate the hidden

variables X0:N on the basis of the observations Y0:N .

Let:

αn(i) = P {Xn = i|Y0:n} [3.35]

βn(i) = pYn+1:N |Xn=i(yn+1:N |Xn = i)
L(y0:n)

L(y0:N )
[3.36]

where

L(y0:n) = pY0:n(y0:n) [3.37]
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is the likelihood associated with the observations Y0:n assuming that the distribution

of Y0:n has a density. In the case of discrete r.v.s, pY0:n(y0:n) should be replaced by

P {Y0:n = y0:n}.

3.5.1.1. Forward recursion

The recursion formula giving αn(i) as a function of αn−1(i) can be written as:

αn(i) =
α̃n(i)

cn
[3.38]

with

α̃n(i) = gn(yn|i)×
S−1∑
j=0

αn−1(j)pn(i|j) and cn =
S−1∑
i=0

α̃n(i) [3.39]

We also derive the log-likelihood recursion:

�N = logL(y0:N ) =
N∑

n=0

log cn [3.40]

PROOF.– We can write:

P {Xn = i|Y0:n} =
S−1∑
j=0

P {Xn = i,Xn−1 = j|Y0:n} [3.41]

Based on expression [3.3], we have:

P {X0:n = x0:n|Y0:n} L(y0:n) = P {X0:n−1 = x0:n−1|Y0:n−1}L(y0:n−1)× . . .

pn(xn|xn−1)× gn(yn|xn)

Summing on xk with k = 0 to n− 2, we obtain:

P {Xn−1 = xn−1, Xn = xn|Y0:n} =
L(y0:n−1)

L(y0:n)
× . . .

P {Xn−1 = xn−1|Y0:n−1} × pn(xn|xn−1)× gn(yn|xn)

Applying this expression to [3.41], we obtain:

αn(i) = gn(yn|i)× L(y0:n−1)

L(y0:n)
×

S1∑
j=0

αn−1(j)pn(i|j) [3.42]



132 Digital Signal Processing with Python Programming

Let us note that the initial value is written as α0(i) = g0(Y0|i)ω0(i)/L(y0).

REMARK: the sum of the αn(i) for i ranging from 0 to S − 1 is equal to 1. For this

reason, we simply need to calculate the following terms:

α̃n(i) = gn(yn|i)×
S−1∑
j=0

αn−1(j)pn(i|j)

and then sum these terms over i in order to obtain the normalization constant. This

constant is expressed as:

cn =
L(y0:n)

L(y0:n−1)
=

S−1∑
i=0

α̃n(i) [3.43]

This result allows us to find an important formula giving the log-likelihood of the

N observations: �N = logL(y0:N ) =
∑N

n=0 log cn. �

In summary, the forward algorithm is written as:

Data: n = 0 to N , yn ∈ R
d,

i, j = 0 to S − 1, ω0(i), gn(y|i), pn(i|j)
Result: αn(i), cn, �n
Initialization:

for i = 0 to S − 1 do
α̃0(i) = g1(y0|i)ω0(i);

end
c1 =

∑S−1
i=0 α̃1(i); �0 = log c0;

for i = 0 to S − 1 do
α0(i) = α̃0(i)/c0;

end
for n = 1 to N do

for i = 0 to S − 1 do
α̃n(i) = gn(yn|i)

∑S−1
j=0 αn−1(j)pn(i|j);

end
cn =

∑S−1
i=0 α̃n(i);

for i = 0 to S − 1 do
αn(i) = α̃n(i)/cn;

end
�n = �n−1 + log cn;

end
Algorithm 9: Forward recursion
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3.5.1.2. Backward recursion

We now wish to determine the recursion giving βn(i) as a function βn+1(i). As

an exercise, following an approach very similar to that used to obtain [3.38], we can

show that:

βn(i) =
L(y0:n)

L(y0:n+1)
×

S−1∑
j=0

βn+1(j)pn+1(j|i)gn+1(yn+1|j) [3.44]

with the final value βN (i) = 1 for any i. The backward algorithm is written as:

Data: n = 0 to N , i, j = 0 to S − 1,

Yn ∈ R
d, gn(y|i), pn(i|j),

cn (from algorithm 9)

Result: βn(i)
Initialization:

for i = 0 to S − 1 do
βN (i) = 1;

end
for n = N − 1 to 0 do

for i = 0 to S − 1 do

βn(i) =
1

cn+1

∑S−1
j=0 βn+1(j)pn+1(j|i)gn+1(yn+1|j);

end
end

Algorithm 10: Backward recursion

3.5.2. Smoothing formula at one instant

In this section, for the sake of simplicity, expression P {X0:N = x0:N |Y0:N} ×
L(y0:n) will be noted P {X0:N = x0:N , Y0:N = y0:N}, which is more concise, but

only correct in cases where Xn and Yn are random variables with discrete values.

Note that L(y0:n) is obtained using expression [3.37]. Let us denote:

γn(i) = P {Xn = i|Y0:N} [3.45]

We have the following recursion:

γn(i) = αn(i)× βn(i) [3.46]
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PROOF.– Using expression [3.4], we can write that:

P {X0:N = x0:N , Y0:N = y0:N} = P {X0:n = x0:n, Y0:n = y0:n} . . . [3.47]

×P {Xn+1:N = xn+1:N , Yn+1:N = yn+1:N} /P {Xn = xn}

Summing over x0:n−1 and xn+1:N and replacing xn by i, we obtain:

P {Xn = i, Y0:N = y0:N} = P {Xn = i, Y0:n = y0:n} . . .

×P {Yn+1:N = yn+1:N |Xn = i}

Using expressions [3.35], we obtain:

P {Xn = i, Y0:N = y0:N} = αn(i)× βn(i)× L(y0:N )

Therefore, [3.46]. �

3.5.3. Smoothing formula at two successive instants

Let us denote:

ξn(i, j) = P {Xn+1 = i,Xn = j|Y0:N} [3.48]

We have:

ξn(i, j) = αn(j)βn+1(i)pn+1(i|j)gn+1(yn+1|i) [3.49]

PROOF.– Starting with expression [3.6], it may be rewritten as:

pXn:n+1,Y0:N
(xn, xn+1, y0:N ) = pXn|Y0:n

(xn, y0:n)

pYn+1|Xn+1
(xn+1, yn+1)︸ ︷︷ ︸

gn+1(yn+1|xn+1)

pXn+1|Xn
(xn+1, xn)︸ ︷︷ ︸

pn+1(xn+1,xn)

pYn+2:N |Xn+1
(xn+1, yn+2:N )︸ ︷︷ ︸

L(y0:N)

L(y0:n+1)
βn+1(xn+1)

Dividing by L(y0:n) and using the definition of αn(i), expression [3.43] and

equation [3.43], which is written as cn+1 = L(y0:n+1)
L(y0:n)

, lead to [3.49]. �

Bringing together the forward and backward algorithms along with expressions

[3.46] and [3.49], we obtain a means of calculating smoothing formulas for cases with

one and two instants.
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3.5.4. HMM learning using the EM algorithm

As we shall see, the one and two instant smoothing formulas are required in order

to calculate the auxiliary function of the EM algorithm associated with the estimation

of θ = (ωi, p(i|j), ρi), where ρi is a parameter of the observation distribution g(y|i) =
g(y; ρi). In this case, we presume that these distributions are not dependent on n.

Let us prove that the auxiliary function of the EM algorithm, as defined in

algorithm 5, associated with the distribution of the discrete HMM has the following

expression:

Q(θ, θ′) =
N∑

n=0

S−1∑
i=0

log g(yn; ρi)γ
′
n(i) +

N−1∑
n=0

S−1∑
i=0

S−1∑
j=0

log p(i|j)ξ′n(i, j)

+

S−1∑
i=0

log(ωi)γ
′
1(i) [3.50]

where the prime indicates that the calculated quantity is associated with the value θ′

of the parameter.

PROOF.– Indeed, the joint probability law of (X0:N , Y0:N ) is written as:

pX0:N ,Y0:N (x0:N , y0:N ) =

N∏
n=0

g(yn|Xn = xn)×

N∏
n=1

P {Xn+1 = xn+1|Xn = xn}P {X0 = x0}

Taking its logarithm, we have:

log pX0:N ,Y0:N
(x0:N , y0:N ) =

N∑
n=0

log g(yn|Xn = xn)

+
N∑

n=1

logP {Xn+1 = xn+1|Xn = xn}+ logP {X0 = x0}

Using the identity f(xk) =
∑S−1

i=0 f(i) (xk = i), we obtain:

log pX0:N ,Y0:N (x0:N , y0:N ) =

S−1∑
j=0

N∑
n=0

log g(yn|j) (Xn = i)

+

S−1∑
i=0

S−1∑
j=0

N−1∑
n=0

log p(i|j) (Xn+1 = i,Xn = j) +
S∑

j=1

logωj (X1 = j)
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Taking the conditional expectation with respect to Y0:N under the parameter θ′ and

using the fact that E { (X = i)} = P {X = i}, we have:

Eθ′ { (Xn = i)|Y0:N} = Pθ′ {Xn = i|Y0:N} = γ′
n(i)

Eθ′ { (Xn+1 = i,Xn = j)|Y0:N} = Pθ′ {Xn+1 = i,Xn = j|Y0:N} = ξ′n(i, j)

Eθ′ { (X1 = i)|Y0:N} = Pθ′ {X0 = i|Y0:N} = γ′
0(i)

This demonstrates [3.50]. �

3.5.4.1. Re-estimation formulas
The maximization of Q(θ, θ′) with respect to θ is carried out as follows. Canceling

the first derivative with respect to ωi, under the constraint that
∑

i ωi = 1, we obtain:

ωi =
γ′
1(i)∑S−1

j=0 γ′
1(j)

[3.51]

Canceling the first derivative of Q with respect to p(i|j), under the constraint that∑
i p(i|j) = 1 for any j, we have:

p(i|j) =
∑N−1

n=0 ξ′n(i, j)∑S−1
i=0

∑N−1
n=0 ξ′n(i, j)

[3.52]

In addition, we assume that the distribution g(y|i) is Gaussian, with mean μi and

covariance Ci. Canceling the first derivative of Q with respect to μi, we have:

μi =

∑N
n=0 Ynγ

′
n(i)∑N

n=0 γ
′
n(i)

[3.53]

Similarly, canceling the first derivative of Q with respect to Ci, we have:

Ci =

∑N
n=0 γ

′
n(i)(Yn − μi)(Yn − μi)

T∑N
n=0 γ

′
n(i)

[3.54]

EXERCISE 3.7 (EM algorithm for a HMM (see p. 245)).– Consider an HMM with

S = 4 discrete states, including the initial state distribution ω =
[
1/2 1/4 1/8 1/8

]
,

with the following matrix of transition probabilities:

P =

⎡⎢⎢⎢⎢⎣
0.4 0.1 0.3 0.2

0.1 0.4 0.3 0.2

0.3 0.1 0.4 0.2

0.1 0.3 0.1 0.5

⎤⎥⎥⎥⎥⎦ , where Pj,i = p(i|j)
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and the densities g(y;μi, Ci) are Gaussian, with respective means μi and covariances

Ci. Let us remark that μi and Ci are assumed to be independent of n. Let θ =
(μi, Ci, ωi, p(i|j)) and Y0:N be a sequence of N observations.

1) Use Python® to write a function to implement algorithms [9] and [10]. The

inputs consist of the observations, along with ω, p(i|j), μi and Ci. The function will

perform the sequences α and β and the likelihood.

2) Write a function to estimate θ using the EM algorithm.

3) Test this algorithm using the generator obtained in exercise 3.6.

3.5.5. The Viterbi algorithm

Consider an HMM of which the states have values in a finite set

S = {0, . . . , S − 1} of S values. The transition distributions pn(i|j) =
P {Xn = i|Xn−1 = j} are assumed to be known, as are the probability densities Yn

conditionally on Xn = i, denoted by gn(y|i).

We observe y0, . . ., yN−1 and we wish to determine the sequence x0, . . ., xN−1

that maximizes P {X0:N−1 = x0:N−1|y0:N−1}. Maximizing {X0:N−1 = x0:N−1|
y0:N−1} with respect to x0:N is equivalent to maximizing the joint distribution of

(X0:N−1, Y0:N−1).

The “brute force” approach involves calculating the joint law for the SN possible

configurations of the sequences x0:N−1. As we shall see, the Viterbi algorithm reduces

the number of calculations requiring only NS2 steps, which is considerably lower than

SN .

We assume that, at time step n− 1, we have S optimal sequences of length n− 1
ending with the S possible values of xn−1. In what follows, the sequence ending

with the value j ∈ {0, . . . , S − 1} at instant (n− 1) will be referred to as the jth path

of length n. Let metn−1(j) be the associated joint probability, known as the path

metric. Using [3.3], taking the logarithm and noting dn(i|j) = log
P {X0:n−2 = x0:n−2, Xn−1 = j,Xn = i, y0:n}, we have:

dn(i|j) = metn−1(j) + log gn(yn|i) + log pn(i|j)

where dn(i|j) is known as the branch metric (the branch ranging from j to i at step

n). There are S possible ways of extending the jth path of length n. However, as

we wish to find the maximum metric, only the ascendant giving the maximum metric

should be saved. Consequently, the ith path of length (n+1) has the following metric:

metn(i) = maxj∈{0,...,S−1} dn(i|j). The ascendant giving the maximum value is

written asascn(i) = argmaxj∈{0,...,S−1} dn(i|j) It must be saved in order to calculate

the optimal sequence at final step N .
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Figure 3.2 shows a calculation diagram for S = 3 and N = 6, with a graph

of SN = 18 nodes which is known as a lattice. At step n, we calculate the S2 = 9
branch metrics. From these nine possible extensions, we only retain the S = 3 optimal

metrics reaching the S nodes of step n, along with their ascendants.

n− 1 n

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

Figure 3.2. Lattice with 3 states for a sequence of length 6. At step n,
we keep the best ascendants (plain arrows) and compute the

remaining three path metrics

In conclusion, for each stage, we determine the S possible paths of length n with

their associated metrics. The calculation is continued up to step N . The optimal

sequence is obtained at the end of the process via backtracking.

Data: g(Y (n), i), p(n, i, j),
for n from 0 to N − 1, for i and j from 0 to S − 1
Result: X(n) for n from 0 to N − 1
Initialization: met(0, j) = 0 for j from 0 to S − 1:

for n = 0 to N − 1 do
for i = 0 to S − 1 do

for j = 0 to S − 1 do
d(i, j) = met(n− 1, j) + log g(n, Y (n), i) + log p(n, i, j);

end
end
for i = 0 to S − 1 do

met(n, i) = maxj d(i, j);
asc(n, i) = argmaxj d(i, j);

end
end
X(N − 1) = argmaxi met(N − 1, i);
for n = N − 2 to 0 by step −1 do

X(n) = asc(n+ 1, X(n+ 1));
end

Algorithm 11: Viterbi algorithm
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The Viterbi algorithm is a dynamic programming algorithm in a lattice. In theory,

the optimal sequence is deduced based on the totality of the N observations. In

practice, if the observations are time indexed, stopping criteria are used in order to

take intermediate decisions before the final observation.

EXERCISE 3.8 (State estimation by the Viterbi algorithm (see p. 249)).– Consider a

discrete HMM with S states. Under the state s, the observation is Gaussian distributed

with mean μs and variance σ2
s . We denote P as the transition matrix and logG the

matrix of the log-likelihoods associated with each hidden state. Write a program, in

Python®, to generate a sequence of N observations, compute their associated log-

likelihood matrix of size N ×S and extract the sequence of states using algorithm 11.



4

Monte-Carlo Methods

4.1. Fundamental theorems

As we saw in section 1.6, theorems 1.8 and 1.9 form the basis for statistical

methods and are crucial to the validity of Monte-Carlo methods. These theorems set

out the way in which empirical means converge toward statistical moments. Noting

that a statistical moment is defined as the integral of a certain function, this statement

says, in some ways, that you can approximate this integral using a mean based on

random (or pseudo-random) sequences. Using these two theorems, we see that the

convergence as a function of the number N of samples is of the order of N−1/2. It is

therefore interesting to compare this value to those obtained using deterministic

numerical methods, such as the trapezoid method or Simpson’s method. The

deterministic method can be seen to have a convergence speed of the order of N−2/d,

where d is the dimension of the space over which the function to integrate is defined.

Consequently, Monte-Carlo methods present two advantages compared to

deterministic methods, which are as follows: (i) the convergence speed does not

depend on the dimension d, and (ii) their use does not depend on the regularity of the

function being integrated.

In a less formal manner, the trapezoidal method can be seen as using a grid with

a large number of points; many of them have a negligible effect on the calculated

value of the integral; following the Monte-Carlo method, only the significant values

are used. There is, however, one major drawback, in that the numerical result depends

on the realization: the error is therefore random.

4.2. Stating the problem

The aim of Monte-Carlo methods is to calculate an integral using a random

generator rather than a deterministic value set. The term Monte-Carlo refers to the
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role of chance in games played in the world-famous casino in Monaco. Let us

consider an integral over R, which is written as follows:

I(g) =

∫ +∞

−∞
g(x)dx [4.1]

If the integral is defined over S ⊂ R, it may be written using the indicative function

of S in the following form:∫
S
f(x)dx =

∫ +∞

−∞
f(x) S(x)︸ ︷︷ ︸

g(x)

dx

where g(x) = f(x) S(x) and where S(x) has a value of 1 if x ∈ S , and 0 in all

other cases. It therefore takes the form of expression [4.1].

In many applications, the integral for calculation is associated with the

mathematical expectation of a function f , i.e. an integral of the following form:

I(g) =

∫ +∞

−∞
f(x) pX(x)︸ ︷︷ ︸

g(x)

dx [4.2]

where pX(x) is the density of a probability distribution. Sometimes, the function to

integrate does not have an explicit form and can only be calculated by using an

algorithm.

The central idea behind the Monte-Carlo method is to use a random generator with

a distribution characterized by a probability density μ, and then to use the law of large

numbers to calculate the integral. We may write:

I(g) =

∫ +∞

−∞
g(x)dx =

∫ +∞

−∞

g(x)

μ(x)
μ(x)dx =

∫ +∞

−∞
h(x)μ(x)dx [4.3]

where h(x) = g(x)/μ(x). If we have a realization of N random variables

X0, . . . , XN1 that are independent and identically distributed following distribution

μ, we may arrive at the following expression:

I(g) ≈ 1

N

N−1∑
n=0

h(Xn) =
1

N

N−1∑
n=0

g(Xn)

μ(Xn)
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More precisely, the law of large numbers states that:

1

N

N−1∑
n=0

g(Xn)

μ(Xn)
−→

N→+∞
I(g)

where the convergence is in probability. Note that when the integral I(g) is associated

with a mathematical expectation as in expression [4.2], it is not, a priori, necessary to

draw the sample using the distribution pX(x). As we shall see, the choice of a different

distribution can even lead to a better approximation in these cases.

Note that a real random variable is a measurable function from a sample space Ω
into R, written X : ω ∈ Ω �→ x ∈ R. Each outcome (or experiment) is associated with

a real value x known as the realization. In the context of a statistical simulation, stating

that N independent draws will be used signifies that N distinct random variables

X0, . . . , XN−1 will be considered, and that for each outcome ω ∈ Ω, we obtain N
realizations x0, . . . , xN1 , and not N realizations of a single random variable! In more

general terms, we consider an infinite series of random variables, i.e. a family {Xn} of

r.v. indexed by N. The practical applications of statistical methods are thus essentially

linked to the properties obtained when N tends toward infinity. These properties are

often easier to establish when the random variables in the series are considered as

independent.

This approach is easily extended to the integral of a function defined over Rd and

with values in R. Let g : (x1, . . . , xd) ∈ R
d �→ R be a function of this type, and

consider the following integral:

I(g) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
g(x1, . . . , xd)dx1 . . . dxd

To calculate an approximate value for I(g), we carry out N independent random

drawings, for which the probability distribution defined over R
d has a probability

density μ(x1, . . . , xd), and we write:

I(g) ≈ 1

N

N∑
n=1

h(X1
n, . . . , X

d
n)

where h(x1, . . . , xd) = g(x1, . . . , xd)/μ(x1 . . . xd).

Two types of problems should be considered when using the Monte-Carlo method

to calculate an integral:

1) how to determine the “optimum” way of choosing the drawing distribution μ in

order to calculate a given interval;

2) how to create samples following a given distribution.
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We shall begin by considering the second problem, the generation of random

variables. In this context, we shall begin by presenting distribution transformation

methods, followed by sequential methods based on Markov chains. We shall then

consider the first issue in a section on variance reduction.

First, knowledge of some history is required. The first method for calculating

integrals by using a Monte-Carlo type technique was proposed by N. Metropolis in

1947, in the context of a statistical physics problem. In 1970, K. Hastings published

an article establishing the underlying principle for general random variable

generation methods, known as the Metropolis-Hastings sampler and based on

Markov chains; in this context, we speak of Monte-Carlo Markov Chains (MCMC).

In 1984, S. Geman and D. Geman proposed the “Gibbs” sampler, a specific form of

the Metropolis-Hastings sampler, which was used by the authors in the context of

image restoration.

4.3. Generating random variables

In this section, we shall consider that we have access to a generator using uniform

distribution over the interval (0, 1), which is able to supply a given number of

independent draws. Without going into detail, note that a variety of algorithms

propose generators of this type. One example, which is no longer particularly

widespread, is the Mersenne Twister algorithm (MT) based on the Mersenne prime

19,937 [MAT 98]. It has a period of 219937 − 1 ≈ 106600 (a period of the order of

10170 would be sufficient for the majority of simulations).

Starting with a generator of a uniform distribution over (0, 1), it is theoretically

possible to build a sequence distributed with any cumulative function.

4.3.1. The cumulative function inversion method

Taking a real valued random variable, with a cumulative function F (x), this

method is based on the following result. Let,

F (−1)(u) = inf{t, F (t) ≥ u} [4.4]

the inverse of the cumulative function F , the random variable X = F (−1)(U) follows

a distribution with the cumulative function F if, and only if, U is a random variable

which is uniformly distributed over the interval (0, 1).

Firstly, note that, by definition, the cumulative function of a real r.v. is the

probability that it belongs to the interval (−∞, x]. A cumulative function is a

monotonously increasing function which may contain jumps and may be constant

over certain intervals. A typical form is shown in Figure 4.1.
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−3 −2 −1 0 1 2 3
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u

Figure 4.1. Typical form of a cumulative function. We choose
a value in a uniform manner between 0 and 1, and then deduce the

realization t = F (−1)(u)

Take Y = F (X). Using the fact that F (x) is monotone, we may arrive at the

following expression successively:

F (x) = P {X ≤ x} = P
{
F−1(Y ) ≤ x

}
= P {Y ≤ F (x)}

Finally, denoting F (x) = y, we have P {Y ≤ y} = y× (y ∈ (0, 1)) which is, by

definition, the cumulative function of the uniform law.

EXAMPLE 4.1 (Rayleigh law generation).– A probability distribution is said to follow

the Rayleigh law if its density is expressed as follows:

p(x) =
x

σ2
e−x2/2σ2

(x ≥ 0)

where σ2 > 0. From this, we may deduce the cumulative function and its inverse.

u = F (x) = 1− e−x2/2σ2 ⇔ F (−1)(u) = σ
√

−2 log(1− u)

Write a program to create a sequence of length N following a Rayleigh law with

parameter σ = 1. Compare with the theoretical probability density.

HINTS: Type the program:

# -*- coding: utf-8 -*-

"""

Created on Tue May 31 07:29:54 2016

****** rayleighsimul
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@author: maurice

"""

from numpy.random import rand

from numpy import sqrt, arange, exp, log

from matplotlib import pyplot as plt

N = 100000; sigma = 1; sigma2 = sigma**2;

U=rand(N,1); X=sigma*sqrt(-2*log(1-U)); dx=arange(0,5,0.1)

rtheo = dx * exp(-(dx ** 2)/(2*sigma2))/sigma2;

plt.clf(); plt.hist(X,dx,normed=’True’)

plt.hold(’on’); plt.plot(dx,rtheo,’k.-’); plt.hold(’off’)

�

EXERCISE 4.1 (Multinomial law).– (see p. 251) A multinomial random variable is a

random variable with values in A = {a1, . . . , aP } such that P {X = ai} = μi, where

μi ≥ 0 and
∑

i μi = 1. The associated cumulative function is written as follows:

F (x) =

P∑
i=1

μi (ai ≤ x)

and the inverse is written as follows:

F (−1)(u) = min{aj ∈ A :
∑j

i=1 μi ≥ u}

Write a program which creates a sequence of length N following a multinomial

law with values in {1, 2, 3, 4, 5}, for which the probabilities are 0.1, 0.2, 0.3, 0.2, and

0.2 respectively.

EXERCISE 4.2 (Homogeneous Markov chain).– (see p. 252) Consider a sequence

{Xn} where n ∈ N and which has values in the finite discrete set S = {1, . . . ,K}.

By definition (for more details, see the section p. 151), a sequence {Xn} is said to be

a Markov chain if P {Xn+1 = xn+1|{Xs = xs, s ≤ n}} coincides with

P {Xn+1 = xn+1|Xn = xn}. The chain is said to be homogeneous if, in addition,

the transition probabilities P {Xn+1 = xn+1|Xn = xn} do not depend on n.

Consider a Markov chain with K = 3 states, the initial distribution and the

transition distribution of the states are shown in Table 4.1. Write a program to create

a sequence of N values from this Markov chain. Hint: exercise 4.1 may be used.

Check that the estimated transition probabilities correspond to those given in

Table 4.1.
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P {X0 = 1} = 0.5

P {X0 = 2} = 0.2

P {X0 = 3} = 0.3

pij i = 1 i = 2 i = 3

j = 1 0.3 0 0.7

j = 2 0.1 0.4 0.5

j = 3 0.4 0.2 0.4

Table 4.1. The initial probabilities P {X0 = i} and the transition
probabilities P {Xn+1 = j|Xn = i} of a three-state homogeneous

Markov chain. We verify that, for all i,
∑3

j=1 P {Xn+1 = j|Xn = i} = 1

4.3.2. The variable transformation method

4.3.2.1. Linear transformation

Let X be a random vector with probability density pX(x). The random vector

Y = AX + B, where A is a square matrix taken to be invertible and B is a vector of

ad hoc dimension, follows a probability distribution of density given by the expression

[1.47] that can be written as follows:

pY (y) =
pX(A−1(y −B))

|det {A} | [4.5]

Thus, to simulate a random vector with a vector mean M and covariance matrix

C, we must simply apply the following:

X = AW +M

where, W is a random vector of vector mean 0 and covariance matrix I and where A
is a square root of C. Remember that if W is Gaussian, then X will also be Gaussian.

EXERCISE 4.3 (Linear transformation of 2D Gaussian).– (see p. 252) Write a

program:

1) which uses a centered Gaussian generator of variance 1 to generate a sequence

of length N of a centered Gaussian random variable, of dimension 2, with the

following covariance matrix;

R =

[
2 0.95

0.95 0.5

]

2) which displays the obtained points and plots the two principal components.
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4.3.2.2. The nonlinear case

If X follows a distribution of density pX(x) and if f is a derivable monotone

function, then the random variable Y = f(X) follows a distribution of density such

that:

pY (y) =
1

|f ′(f (−1)(y))|pX
(
f (−1)(y)

)
where, f (−1)(y) denotes the inverse function of f and f ′ its derivative. This result

can be extended to a bijective transformation for variables with multiple dimensions,

replacing the derivative by using the determinant of the Jacobian. The example shown

below concerns a function with two variables.

EXERCISE 4.4 (Box-Muller method).– (see p. 253) Using the results of example 1.1,

determine an algorithm to create two centered, Gaussian random variables, of the

same variance σ2, from two independent uniform random variables in (0, 1). Create a

program which uses this algorithm, which is known as the Box-Muller algorithm.

EXERCISE 4.5 (The Cauchy distribution).– (see p. 254) A Cauchy random variable

may be obtained in the following two ways:

1) consider a random variable U which is uniform over (0, 1). Note that Z =
z0 + a tan(π(U − 1/2)). Determine the distribution of Z.

The distribution of Z is a Cauchy distribution of parameters (a, z0) and is noted to

be C(z0, a). It has no moment;

2) consider two centered, independent Gaussian variables X and Y of variance 1.

We then construct Z = z0 + aY/X where, a > 0;

3) write a program which creates a sample following the Cauchy distribution

of parameters a = 0.8 and z0 = 10, using both methods. Compare the obtained

histograms to the probability density of the Cauchy distribution. Plot QQplots of both

sample sets.

4.3.2.3. Sequence of correlated variables

It may be useful to produce a sequence of correlated random variables.

ARMA(P,Q) processes, see [BLA 14], are a key way. They are defined by the

following recurrence equation:

Xn + a1Xn−1 + · · ·+ aPXn−P = Wn + · · ·+ bQWn−Q

where, Wn is a centered white noise of variance σ2 and where all of the roots of the

polynomial (as shown in the following expression)

A(z) = zP + a1z
P−1 + · · ·+ aP
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are strictly within the unit circle. In theory, it is easy to determine a closed form

expression of the series of covariances, but the calculation can be done recursively

using the function arma2ACF provided in exercise 5.3.4.

4.3.3. Acceptance-rejection method

In the acceptance-rejection method, we use an auxiliary distribution q(x) which

is known to be “easy” to generate in order to construct samples with a distribution

p(x) that is considered as “difficult”. Moreover, we consider that a value M exists

such that, for any x, Mq(x) ≥ p(x). The acceptance-rejection algorithm consists of:

Data: p(x), q(x) distributions s.t. ∃M ≥ 0 s.t. ∀x : Mq(x) ≥ p(x)
draw X under q distribution;

emphindependently, draw U under U(0, 1);
if UMq(X) ≤ p(X) then

accept Y = X;

else
reject

end
Algorithm 12: Acceptance-rejection algorithm

−3 −2 −1 0 1 2 3
0

0.5

1

Figure 4.2. The greater the value of M , the more samples are required to be drawn
before accepting a value. The curve noted MUq(x) in the figure corresponds to a draw
of the r.v. U from the interval 0 to 1. For this draw, the only accepted values of Y are
those for which p(x) ≥ MUq(x)
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Let us show that Y is distributed with a probability density p.

PROOF.– Let Z be the random variable which takes a value of 0 if the draw is rejected

and a value of 1 otherwise. The probability that Z = 1 is written as follows:

P {Z = 1} = P

{
U ≤ p(X)

Mq(X)

}
Taking account of the fact that U and X are independent, we can arrive at the

following expression:

P {Z = 1} =

∫∫
{(u,t):u≤ p(t)

Mq(t)
}

(u ∈ (0, 1))du× q(t)dt

=

∫ +∞

−∞

p(t)

Mq(t)
× q(t)dt =

1

M

To obtain this equation, we begin by integrating with respect to u then with respect

to t. Now, let us calculate the conditional probability.

P {Y ≤ x|Z = 1} =
P {Y ≤ x, Z = 1}

P {Z = 1} =
P

{
X ≤ x, U ≤ p(X)

Mq(X)

}
P {Z = 1}

= M

∫∫
{t≤x,u≤ p(t)

Mq(t)
}

(u ∈ (0, 1))du× q(t)dt

= M

∫ x

−∞

∫ p(t)
Mq(t)

0

du× q(t)dt

= M

∫ x

−∞

p(t)

Mq(t)
× q(t)dt =

∫ x

−∞
p(t)dt

Carrying out a derivation with respect to x, we see that the density of Y conditional

on Z = 1 is expressed as follows:

pY |Z=1(x) = p(x)

which concludes the proof. �

This method has two main drawbacks, which are as follows:

– when M is large, the acceptation rate is low;

– it is not possible to know in advance how many draws will be necessary to obtain

a series of N samples.
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To illustrate, if p(x) is the Gaussian distribution N (0, σ2) and q(x) is the Gaussian

distribution N (0, 1), then M is equal to 1/σ. If σ = 0.01, then M = 100 and hence

the mean acceptance rate will be 1/100.

4.3.4. Sequential methods

Sequential methods implement algorithms with value distributions which

converge toward the distribution that we wish to simulate. Two of the most

commonly used approaches are the Metropolis-Hastings sampler and the Gibbs
sampler. These techniques, which are both based on the construction of a Markov

chain, will be presented below. The acronym MCMC, Monte-Carlo Markov Chain, is

used to refer to both samplers.

The structure of these algorithms means that they require a burn-in period, leading

to the removal of a certain number of initial values. However, it is often difficult to

evaluate this burn-in period. We expect that, asymptotically, the random variables are

identically distributed and simultaneously and approximately independent. The main

interest of these methods lies in the fact that the samples they produce may be used

for high dimensional random vectors.

We shall begin by noting a number of properties of Markov chains.

4.3.4.1. Markov chain

A Markov chain is a discrete-time random process with values in X and such

that the conditional distribution of Xn with respect to the algebra spanned by all past

events {Xs; s < n} coincides with the conditional distribution of Xn given only

Xn−1 = x′. The conditional probability measure of Xn knowing Xn−1 is denoted

Qn(dx;x
′). Qn(dx;x

′) is known as the transition law. A Markov chain is said to be

homogeneous if the transition law Qn(dx;x
′) does not depend on n.

In cases where the set of possible values of Xn is finite and denoted as

X = {1, . . . ,K}, the transition law Q is characterized by the probabilities

q(x|x′) = P {Xn = x|Xn−1 = x′} for any pair (x, x′) ∈ X × X . In this case, for

any x′ ∈ X , we have:∑
x∈X

q(x|x′) = 1

In cases where transition law Q has a density, noted q(x|x′), we can write that, for

any A ⊂ X and for any x′ ∈ X :

P {Xn ∈ A|Xn−1 = x′} =

∫
A

q(x|x′)dx
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In this case, for any x′ ∈ X , we have:∫
X
q(x|x′)dx = 1

In what follows, unless stated otherwise, we will only use the notation associated

with cases where the transition law possesses a density.

Let us determine a recurrence equation for the probability distribution of Xn. By

using the Bayes’ rule pXnXn−1
(x, x′) = pXn|Xn−1

(x, x′)pXn−1
(x′) = q(x|x′)

pXn−1(x
′), we deduce that:

pXn(x) =

∫
q(x|x′)pXn−1(x

′)dx′ [4.6]

A chain is said to be stationary if pXn(x) is not dependent on n. This means that a

density p(x) exists such that:

p(x) =

∫
q(x|x′)p(x′)dx′ [4.7]

Equation [4.7] may be seen as an equation with eigenvectors p(x) for the transition

kernel q(x|x′). The condition

p(x)q(x′|x) = p(x′)q(x|x′) [4.8]

on p(x) is sufficient to satisfy [4.7]. Indeed, by integrating the two members of [4.8]

with respect to x′, we obtain [4.7]. Expression [4.8] is known as the detailed balance
equation.

4.3.4.2. Metropolis-Hastings algorithm

We wish to carry out a draw using a distribution p(x) which is known to be

“difficult” to produce samples. Firstly, we select two conditional probability densities

r(x|x′) and a(x|x′). The draw using r(x|x′) is considered to be “easy” and the

conditional distribution a(x|x′) is chosen so that the following condition is verified:

p(x)a(x′|x)r(x′|x) = p(x′)a(x|x′)r(x|x′) [4.9]

Let us consider the following acceptance-rejection algorithm:
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Data: p(x), r(x|x′), a(x|x′) distributions, Xn−1

Result: Xn

draw a sample X following the distribution r(x|xn−1);
independently, draw B under Bernoulli distribution and such that

P {B = 1} = a(X|Xn−1);
if B = 1 then

Xn = X;

else
Xn = Xn−1;

end
Algorithm 13: Sequential acceptance-rejection algorithm

Condition [4.9] implies that p(x) verifies condition [4.8].

PROOF.– Let us denote:

PR(x) = 1−
∫

a(u′|x)r(u′|x)du′

The two steps of the algorithm mean that the conditional distribution of Xn given

Xn−1 has a density of q(x|x′) = a(x|x′)r(x|x′) + PR(x
′) (x = x′). We can thus

write, successively, that:

p(x′) (q(x|x′)− a(x|x′)r(x|x′)) = p(x′) (1− PR(x
′)) (x = x′)

= p(x)(1− PR(x)) (x = x′)

= p(x)(q(x′|x)− ρ (x′|x)r(x′|x))

Using [4.9], we obtain [4.8]. In conclusion, p(x) is the stationary distribution

associated with q(x|x′). �

In the Metropolis-Hastings algorithm, the acceptance/rejection law has the

following specific expression:

a(x|x′) = min

(
p(x)r(x′|x)
p(x′)r(x|x′)

, 1

)
[4.10]

This supposes that r(x|x′) 
= 0 for any pair (x, x′). Expression [4.10] must

be shown to verify the condition [4.9]. One important property is that the target

distribution p(x) only needs to be known to within a multiplicative constant. The

following two specific cases arise:
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1) the chosen distribution r(x|x′) is symmetrical, and this can be writen as

r(x|x′) = r(x′|x). Subsequently [4.10] leads to the following expression:

a(x|x′) = min

(
p(x)

p(x′)
, 1

)
[4.11]

2) the chosen distribution r(x|x′) = r(x) is independent of x′. Then [4.10] leads

to the following expression:

a(x|x′) = min

(
p(x)r(x′)
p(x′)r(x)

, 1

)
[4.12]

Data: p(x), r(x|x′) distributions

Result: X0:N−1

Initialization: X0 = 0;

for n = 1 to N − 1 do
draw a sample X following the distribution r(x|Xn−1);
perform a(X|Xn−1) following [4.11] or [4.12];

if a(X|Xn−1) 
= 1 then
independently, draw B under Bernoulli distribution with

P {B = 1} = a(X|Xn−1) if B = 0 then
Xn = Xn−1;

else
Xn = X;

end
else

Xn = X;

end
end

Algorithm 14: Metropolis-Hastings algorithm

EXERCISE 4.6 (Metropolis-Hastings algorithm).– (see p. 255) We wish to calculate

I =
∫
x2p(x)dx, where p(x) ∝ e−x2/2σ2

. It is worth noting that p(x) is given up

to an unknown multiplicative factor (even if we know that this factor is 1/σ
√
2π).

For r(x|x′), we select a uniform distribution over the interval [−5σ, 5σ], and hence

r(xt−1)/r(x) = 1. Write a program implementing the Metropolis-Hastings algorithm

to calculate the value of the integral I , which has a theoretical value of σ2. You may

test a few values of the burn-in period.

4.3.4.3. Gibbs sampler

When simulating multivariate samples, it is sometimes interesting to change

single components individually. The Gibbs sampler, a specific case of the
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Metropolis-Hastings algorithm, fulfills this function. Consider a distribution with a

joint probability of pX1,...,Xd
(x1, . . . , xd); let us use the Metropolis-Hastings

algorithm, where the proposition law r(x|x′) is the conditional distribution

pXk|X−k
(x1, . . . , xd), with X−k being the set of variables excluding Xk. The

probability of acceptance/rejection, given by expression [4.10], is therefore equal to 1
for each pair (x, x′), indicating that the sample is always accepted.

Data: pX1,...,Xd
(x1, . . . , xd) distribution

Result: X0:N−1

Initialization: X0 = 0;

for n = 1 to N − 1 do
for k = 1 to d do

draw a sample X following the distribution pXk|X−k
(x1, . . . , xd);

Xn,k = X;

end
end

Algorithm 15: Gibbs sampler

EXERCISE 4.7 (Gibbs sampler).– (see p. 256) Consider a bivariate Gaussian

distribution of mean μ =
[
μ1 μ2

]T
and the following covariance matrix:

C =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

1) Determine the expression of the conditional distribution pX2|X1
(x1, x2).

2) Using the Gibbs sampler, write a program which simulates a bivariate Gaussian

distribution of mean (0, 0) and covariance matrix C. You may test a few values of the

burn-in period.

4.3.4.4. Gibbs sampler in a Bayesian context

The Gibbs sampler is used in a Bayesian context. By using a statistical model

characterized by a probability density of pX(x; θ), we consider that θ ∈ T is a random

vector, of which the distribution has a probability density pΘ(θ). Considering pX(x; θ)
as the conditional probability of X given Θ, it is possible to deduce the following

conditional distribution of Θ given X:

pΘ|X(x, θ) =
pX(x; θ)pΘ(θ)∫

T
pX(x; t)pΘ(t)dt

∝ pX(x; θ)pΘ(θ) [4.13]
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This expression can be used to generate samples of θ, given X , with the Gibbs

sampler.

4.4. Variance reduction

4.4.1. Importance sampling

Consider the calculation of the following integral:

I =

∫ +∞

−∞
f(x)p(x)dx [4.14]

Without loss of generality, we may consider that f(x) ≥ 0. This is possible as

f(x) = f+(x)−f−(x), where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)
are both positive, and to note that, by linearity,

∫
f(x)dx =

∫
f+(x)dx−∫ f−(x)dx.

Direct application of the Monte-Carlo method consists of drawing N independent

samples X0, . . ., XN−1 following distribution p(x) and approximating the integral

using the following expression:

Î1 =
1

N

N−1∑
n=0

f(Xn) [4.15]

Based on the hypothesis that the N variables are independent and identically

distributed, the law of large numbers ensures that Î1 converges in probability toward

I . As the mean is E
{
Î1

}
= E {f(X0)} = I , the estimator is unbiased. Its variance

is given by the following expression:

var
(
Î1

)
=

1

N
var (f(X0)) =

1

N

(∫ +∞

−∞
f2(x)p(x)dx− I2

)
[4.16]

Now, consider a situation where instead of drawing N samples following the

distribution associated to p(x), the draw is carried out using an auxiliary distribution

of density q, known as the instrumental or proposition distribution. The use of an

auxiliary distribution may appear surprising, but, as we shall see, improves the results

of the calculation. Let us return to expression [4.14], which may be rewritten:

I =

∫ +∞

−∞
f(x)

p(x)

q(x)
q(x)dx [4.17]
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We may now apply the previous approach to function f(x)p(x)/q(x) and consider

the following estimation of I:

Î2 =
1

N

N−1∑
n=0

f(Xn)h(Xn) [4.18]

where the values of function h(x) = p(x)/q(x) for the values of x = Xn are known

as importance weights and the technique is called importance sampling. The law of

large numbers implies that Î2 converges in probability toward I . By using the fact that

the random variables X0, . . ., XN−1 are independent and identically distributed, we

may deduce the mean, such that

E

{
Î2

}
= E {f(X0)h(X0)} =

∫ +∞

−∞
f(x)h(x)q(x)dx = I

indicating that the estimator is unbiased. The variance can be written as follows:

var
(
Î2

)
= E

{
Î22

}
− I2

From [4.17], the term I2 does not depend on the choice of q. Consider the first

term E

{
Î22

}
. Based on the Schwarz inequality, we have the following expression:

E

{
Î22

}
=

∫
f2(x)

p2(x)

q(x)
dx×

∫
q(x)dx︸ ︷︷ ︸
=1

≥
(∫

f(x)p(x)dx

)2

in which equality occurs if and only if q(x) ∝ f(x)p(x) and, by normalization,

μ(x) =
1∫

f(u)p(u)du
× f(x)p(x)

Notably, the variance of Î2 has a value of 0! However, this result is pointless, as it

presumes knowledge of
∫
f(u)p(u)du, the quantity which we wish to calculate.

Nevertheless, it shows that the “optimum” distribution needs to be as close as

possible to the function being integrated. Specifically, if f is the indicator of the

interval (α,+∞), it is better to use an auxiliary law with a large number of values

greater than α; this would not be the case while using a centered Gaussian

distribution of variance 1 for high values of α.

The importance sampling method may be modified by using the following quantity

as the estimator of the integral I:

Î3 =
N−1

∑N−1
n=0 f(Xn)h(Xn)

N−1
∑N−1

n=0 h(Xn)
[4.19]
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The law of large numbers states that

N−1
N−1∑
n=0

h(Xn) −→ E {h(X0)} = 1

using the fact that E {h(X0)} =
∫ p(x)

q(x)q(x)dx = 1. From this, it can be seen that Î3
tends in probability toward I . The interest of expression [4.19] in relation to

expression [4.17] may therefore be questioned. The response to this query is that, in

certain situations, distribution p is only known within an unknown multiplicative

coefficient λ. Let the available expression be noted as p̃(x) = λp(x). Substituting

this expression into h(x), we obtain h(x) = p̃(x)/λq(x) and then, by applying the

result to [4.19], the unknown constant λ disappears: the knowledge of this constant is

therefore not required. Introducing the normalized importance weights:

w(Xn) =
h(Xn)∑N−1

j=0 h(Xj)
[4.20]

expression [4.19] may be rewritten as follows:

Î3 =
N−1∑
n=0

f(Xn)w(Xn) [4.21]

Note that, following expression [4.20], the w(Xn) values are positive and their sum

has a value of 1. We may therefore begin by calculating h(Xn) for all values of Xn

and then calculate the values of w(Xn) by normalization.

The normalized importance sampling algorithm is summarized below:

Data: p(x), q(x) distributions, f(x) fonction to be integrated

Result: Î ≈ ∫
f(x)p(x)dx

begin
draw X0:N−1 under q(x)-distribution;

perform h(Xn) = p(Xn)/q(Xn);

perform w(Xn) =
h(Xn)∑N−1

j=0
h(Xj)

;

perform Î =
∑N−1

n=0 f(Xn)w(Xn);

end
/* p(x) and q(x) do not need to be normalized */

Algorithm 16: Normalized importance sampling calculation
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EXAMPLE 4.2 (Theoretical results of the Monte-Carlo approach).– Consider a

centered Gaussian random variable of variance 1. We wish to calculate the

probability of this variable being greater than a given value α. This probability can be

written as the following expectation:

I = P {X > α} =

∫ +∞

α

p(x)dx =

∫ +∞

−∞
(x > α)p(x)dx [4.22]

where p(x) =
1√
2π

e−x2/2

1) The direct MC approach consists of drawing N independent, centered Gaussian

samples of variance 1 and approximates I by the value:

Î1 = N−1
N−1∑
n=0

Yn, where Yn = (Xn > α)

Applying the central limit theorem to Î1, determine a confidence interval at 100α%
of I .

2) Consider an approach by using the importance sampling technique with the

Cauchy distribution C(0, 1) as the proposition distribution. This leads to the following

approximate value:

Î2 = N−1
N−1∑
n=0

Zn,

where Zn = (Xn > α)h(Xn) and h(x) =

√
π

2
e−x2/2(1 + x2).

Applying the central limit theorem to Î1, determine a confidence interval at 100α%
of I .

HINTS:

The random variables Yn have values in {0, 1} with P {Yn} =
P { (Xn > α)} = I . Consequently, E {Yn} = I and var (Yn) = I(1 − I).
Moreover, the independence of the variables Xn implies that the variables
Yn will also be independent. Hence, Î1 is a random variable of mean I and
variance N−1var (Y1) = N−1I(1 − I). By applying the central limit theorem
to the sequence Yn, we obtain the following expression:

1)
√
N(Î1 − I) → N (0, I(1− I))
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Hence, we deduce a confidence interval of 95% of the value of I using this
method, as follows:

I95% =

[
Î1 − 1.96

√
Î1(Î1 − 1)/N, Î1 + 1.96

√
Î1(Î1 − 1)/N

]

2) E
{
Î2

}
= I . By applying the central limit theorem to the sequence Zn,

we obtain the following expression:

√
N(Î2 − I) → N (0, var (Z0))

where,

var (Z0) =
π

2

∫ +∞

α

e−x2

(1 + x2)2dx− I2

which may be compared to the variance var
(
Î1

)
= I(1− I). Numerically we

can show that, for large values of α, Î2 will be better than Î1.

�

EXERCISE 4.8 (Importance sampling).– (see p. 257) We want to conduct a

simulation to compare the dispersion of the estimators of I with the theoretical

values. The integral to perform is P {X > α} where X is Gaussian, centered, and of

variance 1, as in example 4.2. Let us consider three cases. In the first case, samples

are produced following the Gaussian distribution, in the second case, samples are

produced following the Cauchy distribution, and in the third case, samples are

produced following the Cauchy distribution, but considering that we only know that

the probability density of X is proportional to e−x2/2.

The program will perform the theoretical and the empirical quadratic errors of the

3 estimators.

4.4.2. Stratification

Returning to the calculation of the integral:

I =

∫
R

f(x)pX(x)dx [4.23]

To reduce the variance of the estimator associated with a drawing of N i.i.d.

samples, following a distribution characterized by the probability density pX(x), the
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stratification method involves splitting R into “strata” and optimizing the number of

points to draw in each of these strata. As we shall see, this technique requires fulfilling

the following criteria:

– the ability to calculate P {X ∈ A} for any segment A;

– the ability to carry out a random draw conditional on X ∈ A.

Let A1, . . ., AS be a partition of R and

ps = P {X ∈ As} =

∫
As

pX(x)dx [4.24]

with
∑S

s=1 ps = 1.

We deduce the conditional probability density of X given X ∈ As:

pX|X∈As
(x) =

1

ps
pX(x) As(x) [4.25]

It follows that the integral I may be rewritten as follows:

I =
S∑

s=1

ps

∫
R

f(x)pX|X∈As
(x)dx [4.26]

By substituting [4.25], the following equation is obtained:

∫
R

f(x)pX(x)dx =
S∑

s=1

ps

∫
R

f(x)
1

ps
pX(x) As(x)︸ ︷︷ ︸
pX|X∈As (x)

dx

Hence, the idea of carrying out independent draws from the S strata under

conditional distributions was born. Let X
(s)
ks

be the Ns variables of stratum s
distributed following pX|X∈As

(x). An approximate value of I may be obtained from

the following expression:

Îst =
S∑

s=1

ps
1

Ns

Ns∑
ks=1

f(X
(s)
ks

)
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From this result, we can see that E

{
Îst

}
= I and estimator Îst is therefore

unbiased. Let us now determine the variance. Using the hypothesis of independent

drawings in the S strata, we have:

var
(
Îst

)
=

S∑
s=1

p2s
N2

s

Ns∑
ks

var (f(X)|X ∈ As) =
S∑

s=1

1

Ns
p2sσ

2
s [4.27]

where,

σ2
s = var (f(X)|X ∈ As) =

∫
R

(f(x)− Is)
2pX|X∈As

(x)dx

=
1

ps

∫
As

f2(x)pX(x)dx− I2s [4.28]

It is interesting to note that, in expression [4.26], the integral∫
R

f(x)pX|X∈As
(x)dx [4.29]

is interpreted as the conditional expectation of f(X) given Ys = (X ∈ As).
Following property 5 of the properties 1.10, var (E {f(X)|Ys}) ≤ var (f(X)) and

therefore, var
(
Î
)
≤ var

(
Î1

)
where, Î1 is given by [4.15], i.e. an approximation of

I by using a single stratum.

It is now possible to minimize [4.27] under the constraint N =
∑S

s=1 Ns.

Canceling the derivative of the Lagrangian L (Ns) =
∑S

s=1 N
−1
s p2sσ

2
s+

λ(N −∑S
s=1 Ns), we obtain the following expression:

Ns =

⌊
N

psσs∑S
s=1 psσs

⌋

This solution is unusable, as it requires knowledge of σs and thus, of the value of

the integral I . One solution (not ideal) is to take Ns = �Nps�, yielding the following

variance:

var
(
Îst

)
=

1

N

S∑
s=1

psσ
2
s
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To use this method, we now need to carry out a random draw following the

conditional distribution pX|X∈As
(x). One simple approach would be to carry out a

random draw by using the distribution pX(x) and then to conserve only those values

situated within the interval As. The problem with this approach is that the number of

values to draw is random. This drawback may be overcome if (i) we use the property

of inversion of the cumulative function (see section 4.3.1), which uses the uniform

distribution over (0, 1) and if (ii) we note that for a uniform random variable U , the

conditional distribution of U given that U belongs to an interval B is itself uniform,

and is written as pU |U∈B(u) = (u ∈ B)/	, where 	 denotes the length of B.

In summary, to calculate [4.23]:

– we choose S intervals (a0, a1], ]a1, a2], . . ., ]aS−1, aS), where a0 = −∞ and

aS = +∞;

– we calculate the S integer values,

N1 = �Np1� ,
...

Ns =
⌊
N
∑s

j=1 pj

⌋
−
⌊
N
∑s−1

j=1 pj

⌋
,

...

NS =
⌊
N
∑S

j=1 pj

⌋
−
⌊
N
∑S−1

j=1 pj

⌋
where, ps = FX(as) − FX(as−1) and FX(x) denotes the cumulative function

associated with pX(x);

– we calculate [b0, b1], ]b1, b2], . . ., ]bS−1, bS ] where bs = FX(as) with b0 = 0
and bS = 1;

– for each value of s, we draw Ns values Us
1 , . . ., Us

Ns
, independently and

following a uniform distribution U(bs−1, bs)/(bs − bs−1);

– for each value of s, we calculate X
(s)
1 = F

[−1]
X (Us

1 ), . . ., X
(s)
Ns

= F
[−1]
X (Us

Ns
);

– we calculate:

Î =
S∑

s=1

ps
1

Ns

Ns∑
ks=1

f(X
(s)
ks

)
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EXERCISE 4.9 (Stratification).– (see p. 258) In this exercise, we shall use the

Monte-Carlo method with and without stratification to compare the calculation of the

following integral:

I =

∫ ∞

−∞
cos(ux)

1√
2π

e−x2/2dx

1) By using the characteristic function E
{
ejuX

}
, determine the analytical

expression of I .

2) Write a program which compares the calculation with and without stratification.

4.4.3. Antithetic variates

We wish to estimate the following integral:

I =

∫
R

f(x)pX(x)dx [4.30]

The antithetic variates method consists of finding a pair of random variables

(X, X̃) such that functions f(X) and f(X̃) have the same expectation, the same

variance, and satisfy the condition as in the following expression:

cov
(
f(X), f(X̃)

)
< 0 [4.31]

Using an i.i.d. series of random variables Xn distributed following the law pX(x),
we consider the following estimator of I:

Îa =
1

N

N/2−1∑
n=0

(
f(Xn) + f(X̃n)

)
[4.32]

Hence,

var
(
Îa

)
=

1

N

(
var (f(X)) + cov

(
f(X), f(X̃)

))
<

1

N
var (f(X)) [4.33]

EXERCISE 4.10 (Antithetic variates approach).– (see p. 259) We wish to calculate the

following integral:

I =

∫ 1

0

1

1 + x
dx = log(2)

Integral I may be seen as the expectation of f(X) = 1/(1+X) under the uniform

distribution U(0, 1). Take X̃ = 1−X . Hence, if X ∼ U(0, 1), then X̃ ∼ U(0, 1).
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Let Î and Îa be the estimators given by [4.14] and [4.32] respectively.

1) Determine the values of var (f(X)); cov
(
f(X), f(X̃)

)
; var

(
Î
)

; and

var
(
Îa

)
for N = 100.

2) Write a program to compare the direct calculation with the antithetic variate

method.



5

Hints and Solutions

5.1. Useful Maths

5.1.1.– (Module and phase joint law of a 2D Gaussian r.v.) (see p. 20) As this

substitution is bijective and its Jacobian is equal to r, which is positive, the joint

distribution of the pair (R,Θ) has a density of:

pRΘ(r, θ) = r pXY (r cos(θ), r sin(θ)) (r ≥ 0) (θ ∈ (0, 2π))

=
r

2πσ2
e−r2/2σ2

(r ≥ 0) (θ ∈ (0, 2π))

Following property [1.3] we derive from pRΘ(r, θ) = g(r)h(θ), where g(r) =
r
σ2 e

−r2/2σ2

(r ≥ 0) and h(θ) = (2π)−1 (θ ∈ (0, 2π)), that the random variables

R and Θ are independent. Therefore, Θ is uniform on (0, 2π) and R has a Rayleigh

distribution.

5.1.2.– (δ-method) (see p. 21) We shall use the hypothesis cov (X0, X1) = σ2I2. The

Jacobian, here noted ∂g, of g : (X0, X0) → (R, θ) is deduced from the Jacobian ∂h
of h : (R, θ) → (X0, X1) following:

∂h =

[
cos(θ) −R sin(θ)

sin(θ) R cos(θ)

]
⇒ ∂g = ∂h−1 =

1

R

[
R cos(θ) R sin(θ)

− sin(θ) cos(θ)

]

We have:

cov

([
R

θ

])
=

[
cov (R,R) cov (R, θ)

cov (R, θ) cov (θ, θ)

]
=

[
var (R) cov (R, θ)

cov (R, θ) cov (θ, θ)

]
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and, from [1.49]:

cov
([

R
])

≈ ∂g cov (X0, X1) ∂
T g = σ2I2

We deduce:

var (R) =
[
1 0
]
σ2

[
1

0

]
= σ2 [5.1]

This result is therefore correct on the condition that (μ2
0 + μ2

1)/σ
2 is large. This

result may appear weak; note, however, that the δ-method allows us to calculate an

approximation even in cases where cov (X0, X1) is different from σ2I2.

Let ν =
√

μ2
0 + μ2

1. Program deltaMethodRice.m estimates the variance of R
by carrying out a simulation using 100000 draws. If ν/σ > 4, then the approximation

is acceptable. Note that the function g under consideration is not differentiable at point

(0, 0), associated with the case where μ0 = μ1 = 0. Type the program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 07:47:37 2016

****** deltaMethodRice

@author: maurice

"""

from numpy.random import rand, randn

from numpy import sin, cos,sqrt,pi,std,sum

Lruns = 10000;

nu = 8.0; sigma = 2.0; a = 2*rand()*pi;

mu = [nu*cos(a),nu*sin(a)];

X = mu + sigma * randn(Lruns,2);

R = sqrt(sum(X ** 2, axis=1));

print(’true value = %4.2f, simulation = %4.2f’%(sigma,std(R)))

5.1.3.– (Asymptotic confidence interval from the CLT) (see p. 23)

1) From the hypotheses, we deduce that, for any k, E {Xk} = p and var (Xk) =
p(1 − p). According to the central limit theorem 1.9, when N tends toward infinity,

we have:

√
N (p̂− p)

d−→ N (0, p(1− p))

2) From this, we deduce:

P

{
−ε ≤

√
N(p̂− p) ≤ ε

}
≈
∫ ε

−ε

1√
2πp(1− p)

e−
u2

2p(1−p) du
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Taking w = u/
√
p(1− p) and δ = ε/

√
p(1− p), we obtain:

P

{
−δ
√

p(1− p) ≤
√
N(p̂− p) ≤ δ

√
p(1− p)

}
≈
∫ δ

−δ

1√
2π

e−w2/2dw

3) Solving the double inequality in terms of p, we deduce the confidence interval

at 100α%:

CI100α% =

(
p̂+ δ2

2N −√
Δ

1 + δ2

N

,
p̂+ δ2

2N +
√
Δ

1 + δ2

N

)
[5.2]

where Δ = p̂(1− p̂) δ
2

N + δ4

4N2 and where δ is linked to the value α by:∫ δ

−δ

1√
2π

e−w2/2dw = α

Typically, for α = 0.95, δ = 1.96.

4) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 08:26:42 2016

******** ICpercent

@author: maurice

"""

from numpy import zeros, sum, mean, sqrt

from scipy.stats import norm

from numpy.random import rand

Lruns = 1000; N = 300; alpha = 0.9;

delta = norm.isf(1.0-(1.0-alpha)/2.0);

p = 0.2; CI = zeros([2,Lruns]);

for ir in range(Lruns):

X = rand(N) < p;

hatp = mean(X);

Delta = hatp*(1-hatp)*(delta**2)/N+(delta**4)/4/N/N;

CI[0,ir] = (hatp+(delta**2)/2/N-sqrt(Delta))/(1+delta**2/N);

CI[1,ir] = (hatp+(delta**2)/2/N+sqrt(Delta))/(1+delta**2/N);

# percent of the true value inside the confidence interval

aux = (CI[0,:]<p) & (CI[1,:]>p)

percentinCI=100.0*sum(aux)/Lruns;

print(’*****Percent in the confidence interval:%3.2f’%percentinCI)
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5.2. Statistical inferences

5.2.1.– (Iris classification) (see p. 40) First, type the following module:

# -*- coding: utf-8 -*-

"""

Created on Sun Aug 14 16:28:28 2016

****** pcaldatoolbox

@author: maurice

"""

from numpy import zeros, mean, size, unique, sum

from numpy import matrix as mat

from scipy.linalg import eig

#===============================

def LDA(X,y,k):

"""

# SYNOPSIS: LDA(X,y,k)

# inputs:

# X: explanatory variables, array N x d

# y: class indexes, array N x 1

# k: integer (less than d)

# outputs:

# Xtilde: (N x k) matrix of reduced variables

# V: d x k array

"""

N = size(X,0);

d = size(X,1)

labely = unique(y); g = len(labely);

meanell = zeros([g,d]); Nell = zeros(g)

for ig in range(g):

meanell[ig,:] = mean(X[y==labely[ig],:],0)

Nell[ig] = sum(y==labely[ig])

Xc = zeros([N,d])

for ig in range(g):

Xc[y==labely[ig],:]=X[y==labely[ig],:]-meanell[ig,:]

RI = mat(zeros([d,d]));

meanG = mat(zeros(d));

for ig in range(g):

Xc_ig = mat(Xc[y==labely[ig],:])

mataux = Xc_ig.T*Xc_ig

X_ig = mat(X[y==labely[ig],:])

meanG = meanG + sum(X_ig,0)

RI = RI+mataux;

RI = RI/N
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meanG = meanG/N;

RE = mat(zeros([d,d]));

for ig in range(g):

vaux = mat(meanell[ig,:]-meanG);

RE = RE+Nell[ig]*(vaux.T*vaux);

RE = RE/N;

#===== [V,D] = eig(RE,RI) solves RE*V = lambda*RI*V

generaleigdecompo = eig(RE,RI);

eigvectors = generaleigdecompo[1]

eigvalues = generaleigdecompo[0].real

eigvectorssort = eigvectors[:,eigvalues.argsort()]

V = mat(eigvectorssort[:,d-k:d]);

Xc = mat(Xc)

Xtilde = X * V;

return Xtilde, V

#===============================

def PCA(X,k):

"""

# SYNOPSIS: LDA(X,k)

# inputs:

# X: observations, array N x d

# k: integer (less than d)

# outputs:

# Xtilde: (N x k) matrix of reduced variables

# V: d x k array

"""

Xmat = mat(X);

N = size(Xmat,0)

d = size(Xmat,1)

meanX = mean(Xmat,0)

Xc = mat(zeros([N,d]))

for indd in range(d):

Xc[:,indd] = Xmat[:,indd] - meanX[0,indd]

covX = Xc.transpose()*Xc/N

eigdecompo = eig(covX)

eigvectors = eigdecompo[1]

eigvalues = eigdecompo[0]

eigvectorssort = eigvectors[:,eigvalues.argsort()]

V = mat(eigvectorssort[:,range(d-k,d)])

Xtilde = Xc * V

return Xtilde, V
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Type and run the below program. We see that the class Setosa is linearly separable

from the other two. Note that in the LDA, we use the iris categories, while in the PCA,

the reduction is applied in “blind” using the data, all together.

# -*- coding: utf-8 -*-

"""

Created on Mon Jul 4 16:05:14 2016

****** irispcalda

@author: maurice

"""

from sklearn import datasets

from matplotlib import pyplot as plt

from pcaldatoolbox import LDA, PCA

from numpy import unique

#============ main program

iris = datasets.load_iris(); #print(datasets.load_iris().DESCR)

X = iris.data; y = iris.target; t_names = iris.target_names

k = 2; labely = unique(y); g = len(labely)

XPCA, VPCA = PCA(X,k); XLDA, VLDA = LDA(X,y,k);

plt.clf(); plt.subplot(121)

for col, ig, target_name in zip("rgb", range(g), t_names):

plt.scatter(XPCA[y==labely[ig],0], XPCA[y==labely[ig],1], \

c=col, label=target_name)

plt.hold(’on’)

plt.hold(’off’); plt.legend(); plt.title(’PCA on IRIS dataset’)

plt.subplot(122)

for col, ig, target_name in zip("rgb", range(g), t_names):

plt.scatter(XLDA[y==labely[ig],0], XLDA[y==labely[ig],1], \

c=col, label=target_name)

plt.hold(’on’)

plt.hold(’off’); plt.legend(); plt.title(’LDA on IRIS dataset’);

plt.show()

5.2.2.– (Empirical ROC curve and AUCl) (see p. 50)

1) The significance level α represents the probability that, under H0, the statistic

Φ(X) will be higher than the threshold ζ. Consequently, to estimate α for the threshold

ζ, we need to count how many values of Φ(x) are greater than ζ in the database H0.

The same approach should be taken for the power; to obtain the ROC curve, we alter

ζ across a range dependent on the minimum and maximum values of Φ(X). One

simple approach is to rank the set of values of Φ(X) in decreasing order, and then
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calculate the cumulative sum of the indicators associated with the two hypotheses.

This is written as:⎧⎪⎨⎪⎩
α̂j =

1

N0

∑N0−1
i0=0 (Φ0,i0 > Tj)

β̂j =
1

N1

∑N1−1
i1=0 (Φ1,i1 > Tj)

where Tj is the sequence of values ranked in decreasing order of the set {T0,i0} ∪
{T1,i1}, where j = 1 to N0 +N1.

2) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Mon Jun 6 22:22:25 2016

****** roccurve2gaussians

@author: maurice

"""

from numpy.random import randn

from numpy import zeros, cumsum, sqrt, mean, linspace, concatenate

from scipy.stats import norm

from matplotlib import pyplot as plt

N0 = 1000; N1 = 1200; Nt = N0+N1; n = 10; m0 = 0; m1 = 0.5;

#===== data bases H0 and H1

X0 = m0+randn(N0,n); X1 = m1+randn(N1,n);

#===== statistics Phi(X)

Phi0 = mean(X0,1); Phi1 = mean(X1,1);

#===== Experimental ROC curve estimate

c0 = zeros(Nt); c1 = zeros(Nt);

idx = concatenate((Phi0,Phi1)).argsort();

c0[idx<=N0] = 1; hatalpha = cumsum(c0)/N0;

c1[idx>N0] = 1; hatbeta = cumsum(c1)/N1;

hatalpha = concatenate((zeros(1),hatalpha));

hatbeta = concatenate((zeros(1),hatbeta));

zeta = linspace(0,10,200);

#===== theoretical ROC curve

alpha = 1-norm.cdf(zeta,m0,1/sqrt(n));

beta = 1-norm.cdf(zeta,m1,1/sqrt(n));

plt.clf(); plt.plot(1.0-hatalpha,1.0-hatbeta)

plt.hold(’on’); plt.plot(alpha,beta,’.--’);

plt.hold(’off’); plt.xlim([0,1]); plt.ylim([0,1])

#===== EAUC

W = 0;

for i0 in range(N0):
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for i1 in range(N1):

W = W+(Phi1[i1]>Phi0[i0])+0.5*(Phi1[i1]==Phi0[i0]);

eauc = W/(N0*N1);

print(’Experimental AUC = %5.2f’%eauc);

5.2.3.– (Student distribution for H0) (see p. 53) In the following program, the

variance and the mean have been chosen at random, and we see that they have no

effect on the distribution of V (X).

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Tue Jun 7 05:33:10 2016

****** studentlawmdiffm0

@author: maurice

"""

from numpy.random import rand, randn

from numpy import mean, ones, sqrt, dot, sum

from scipy.stats import t

from matplotlib import pyplot as plt

sigma = rand()*100; L = 10000; n = 100; m0 = 10*randn();

X = randn(n,L)+m0; mhat = mean(X,axis=0)

num = (mhat-m0)*sqrt(n);

Xc = X - dot(ones([n,1]),mhat.reshape(1,L))

denum = sqrt(sum(Xc **2,axis=0)/(n-1));

V = num / denum;

plt.clf(); aux = plt.hist(V,bins=100,normed=’True’)

ttheo = t.pdf(aux[1],n-2);

plt.hold(’on’); plt.plot(aux[1], ttheo,’.-r’)

plt.hold(’off’); plt.show()

5.2.4.– (Unilateral mean testing) (see p. 54) The log-likelihood is written as:

L(θ) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
k=1

(Xk −m)2

First, maximizing with respect to σ2, we obtain:

L̃(m) = −n

2
log(2π)− n

2
log

n∑
k=1

(Xk −m)2
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The maximum on the subset H0 is obtained for m = n−1
∑n

k=1 Xk on the

condition that n−1
∑n

k=1 Xk ≥ m0, otherwise it is obtained for m0. The maximum

for H0 is therefore written as:

−n

2
log(2π)− n

2
log

n∑
k=1

(Xk − m̂)2 (m̂ ≥ m0)− n

2
log

n∑
k=1

(Xk −m0)
2 (m̂ < m0)

The maximum on the full set Θ is expressed −n
2 log(2π)−n

2 log
∑n

k=1(Xk−m̂)2.

The log-GLRT, noted A, is written as:

A = −n

2
log

n∑
k=1

(Xk − m̂)2 ( (m̂ ≥ m0) + (m̂ < m0))

+
n

2
log

n∑
k=1

(Xk − m̂)2 (m̂ ≥ m0)

+
n

2
log

n∑
k=1

(Xk −m0)
2 (m̂ < m0)

A = −n

2

(
log

∑n
k=1(Xk − m̂)2∑n
k=1(Xk −m0)2

)
(m̂ < m0)

= −n

2

(
log

∑n
k=1(Xk − m̂)2∑n

k=1(Xk − m̂+ (m̂−m0))2

)
(m̂ < m0)

= −n

2

(
log

∑n
k=1(Xk − m̂)2∑n

k=1(Xk − m̂)2 + n(m̂−m0)2

)
(m̂ < m0)

A =
n

2
log(1 + T (X)) (m̂ < m0) [5.3]

taking:

T (X) =
(m̂−m0)

2

n−1
∑n

k=1(Xk − m̂)2

Taking the exponential of the two members with n 
= 0, we obtain:

GLRT
2
n = (1 + T (X)) (m̂ < m0) + (m̂ ≥ m0) = T (X) (m̂ < m0)
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and the test:

V (X) = T (X) (m̂ < m0)
H1
>
<
H0

η

If η < 0, we always decide in favor of H1 and the significance level is α = 1. We

shall therefore use η > 0. Let:

U(X) =

√
n(m0 − m̂)

(n− 1)−1/2
√∑n

k=1(Xk − m̂)2

We then verify that V is an increasing monotone function of U . Comparing V to

a threshold is therefore equivalent to comparing U to a threshold. We know that, for

H0, the statistic U(X) follows a Student distribution with (n−1) degrees of freedom.

The test is therefore written as:

√
n(m0 − m̂)

(n− 1)−1/2
√∑n

k=1(Xk − m̂)2

H1
>
<
H0

T
[−1]
n−1 (1− α)

5.2.5.– (Mean equality test) (see p. 56)

1) The model is constituted by the two independent distributions

{ i.i.d. N (n0;m0, σ
2)} and { i.i.d. N (n1;m1, σ

2)}. We let θ = (m0,m1, σ) ∈ Θ =
R × R× R

+. Hypothesis H0 = {θ ∈ Θ : s.t. m0 = m1}.

2) Let n = n0+n1. The maximization of the probability density for Θ leads us to

take m̂0 = n−1
0

∑n0−1
k=0 X0,k, m̂1 = n−1

1

∑n1−1
k=0 X1,k and σ̂2

0 = n−1
∑n0−1

k=0 (X0,k −
m̂0)

2 + n−1
∑n0

k=0(X1,k − m̂1)
2.

Maximization of the probability density for H0 leads us to take m̃ =
n−1

∑n0−1
k=0 X0,k + n−1

∑n1−1
k=0 X1,k and σ̃2 = n−1

∑n0−1
k=0 (X0,k − m̃)2 +

n−1
∑n1−1

k=0 (X1,k − m̃)2. From this, we deduce:

σ̃2 = σ̂2
0 +

n0

n
(m̃− m̂0)

2 +
n1

n
(m̃− m̂1)

2

and the GLRT:

Λ(X) ∝ σ̃2

σ̂2
0

= 1 +
n0

n (m̃− m̂0)
2 + n1

n (m̃− m̂1)
2

n−1
∑n0−1

k=0 (X0,k − m̂0)2 + n−1
∑n1−1

k=0 (X1,k − m̂1)2
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Comparing the GLRT to a threshold can be shown to be equivalent to comparing

the following statistic W (X) to a threshold:

W (X) =

√
nH |m̂0 − m̂1|
S/

√
n− 2

where n−1
H = n−1

0 + n−1
1 and S2 =

∑n0−1
k=0 (X0,k − m̂0)

2 +
∑n1−1

k=0 (X1,k − m̂1)
2.

3) Based on property 2.3 (section 2.6.3), we deduce that m̂0, m̂1, e0 = X0 − m̂0

and e1 = X1 − m̂1 are jointly independent and Gaussian. Hence, for H0:

U

σ
=

√
nH(m̂0 − m̂1)

σ
∼ N (0, 1)

We also deduce that S2/σ2 ∼ χ2
n−2 and that S2 is independent of U . Hence, in

accordance with [1.61]:

V (X) =
U(X)/σ

S(X)/σ
√
n− 2

∼ N (0, 1)√
χ2
n−2/(n− 2)

= Tn−2

where Tn−2 is a Student variable with (n − 2) degrees of freedom. This distribution

is symmetrical around the value 0. The test therefore takes the form:

W (X)
H1
>
<
H0

η

where η = T
[−1]
n−2 (1− α/2) and where α is the confidence level.

4) The p -value is written as:

p -value = 2

∫ +∞

T (X1,X2)

Tn−2(t)dt

5) The below program provides a p -value of 0.63, so the hypothesis of mean

equality is accepted.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 23:20:30 2016

****** Ttest

@author: maurice

"""

from numpy import array, mean, sqrt

from scipy.stats import t
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data = array([[1, 1, 1, 1, 2, 2, 2],\

[51.0,53.3,55.6,51.0,55.5,53.0,52.1]]);

d1 = data[1,data[0,:]==1]; d2 = data[1,data[0,:]==2];

N1=len(d1); N2=len(d2); N=N1+N2;

m1=mean(d1); m1c = d1-m1; m2=mean(d2); m2c = d2-m2;

NH = 1.0/(1.0/N1+1.0/N2); U = abs(m1-m2)* sqrt(NH);

S2 = sum(m1c*m1c)+sum(m2c*m2c); W = U/sqrt(S2/(N-2));

pvalue = 2*(1-t.cdf(W,N-2));

if pvalue<0.05:

dec=’H0 false’

else:

dec=’H0 true’

print(’\tp-value of H0={m1=m2} = %4.2f ==> %s\n’%(pvalue,dec))

Program studentlawdiffm0m1.py shows by simulation that W follows a

Student distribution with n− 2 degrees of freedom.

# -*- coding: utf-8 -*-

"""

Created on Tue Jun 7 05:22:19 2016

****** studentlawdiffm0m1

@author: maurice

"""

from numpy.random import rand, randn

from numpy import mean, ones, sqrt, dot, sum

from scipy.stats import t

from matplotlib import pyplot as plt

sigma = rand()*100; L = 10000;

n0 = 100; n1 = 150; n = n0+n1;

nh = 1.0 /(1.0/n0+1.0/n1); m0 = 10*randn();

X0 = randn(n0,L)+m0; X1 = randn(n1,L)+m0;

m0 = mean(X0,0); m1 = mean(X1,0);

Xc1 = X0 - dot(ones([n0,1]),m0.reshape(1,L));

Xc2 = X1 - dot(ones([n1,1]),m1.reshape(1,L));

S2 = sum(Xc1 **2,axis=0)+sum(Xc2 **2,axis=0);

U = (m0-m1)*sqrt(nh); W = U / sqrt(S2/(n-1));

plt.clf(); aux = plt.hist(W, bins=100, normed=’True’);

ttheo = t.pdf(aux[1],n-2);

plt.hold(’on’); plt.plot(aux[1], ttheo,’.-r’)

plt.hold(’off’); plt.show()
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5.2.6.– (CUSUM algorithm) (see p. 56)

1) The statistical model is a family of probability distributions dependent on the

parameter m with values in {0, . . . , n− 1} and a log-density which is written as:

�(x;m) = {{ 1.6

m−1∑
k=0

log p(xk;μ0) +
n−1∑
k=m

log p(xk;μ1) if m ∈ {0, . . . , n− 2}
n−1∑
k=0

log p(xk;μ0) if m = n− 1

Using this notation, the hypothesis to test is H0 = {n − 1}, meaning there is no

change.

2) For the sample of length n, the test function of the GLRT is written as:

Tn(X) = max
0≤m≤n−2

�(X;m)− �(X;n− 1)

=

n−1∑
k=0

sk − min
1≤m≤n

m−1∑
k=0

sk [5.4]

taking sk = log p(xk;μ1)/p(xk;μ0). Hence, Tn(X) ≥ 0.

3) Presuming that we know the test function for a sample of size n −
1 and that we are observing a new value sn, C(n) is either greater or

less than min0≤m≤n−2

∑m−1
k=0 sk. If C(n) > min0≤m≤n−2

∑m−1
k=0 sk, then

min0≤m≤n−1

∑m−1
k=0 sk = min0≤m≤n−2

∑m−1
k=0 sk and Tn = C(n) −

min0≤m≤n−2

∑m−1
k=0 sk = Tn−1 + sn. If C(n) ≤ min0≤m≤n−2

∑m−1
k=0 sk, then

Tn = C(n)− C(n) = 0. As Tn ≥ 0, we deduce that:

Tn = max{Tn−1 + sn, 0} [5.5]

The following program verifies that the direct formula [5.4] gives the same values

as the recursive expression of the CUSUM, i.e. [5.5].

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 12:22:50 2016

****** CUSUMrecursiveformula

@author: maurice

"""

from numpy.random import randn

from numpy import cumsum, max, zeros, min

from matplotlib import pyplot as plt

n=160; s=randn(n); C=cumsum(s);
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plt.clf()

Tdirect = zeros(n); Trecursive = zeros(n);

for ii in range(1,n):

Tdirect[ii]=C[ii]-min(C[0:ii+1]);

Trecursive[ii]=max([Trecursive[ii-1]+s[ii],0.0]);

plt.plot(Tdirect,’.-’)

plt.hold(’on’); plt.plot(Trecursive,’.-’)

plt.hold(’off’); plt.show()

4) The following program implements the CUSUM test for a change in the means

of two Gaussians with the same variables. The test works better as the difference

between the means increases in relation to the standard deviation. We can also verify

that the shape of the CUSUM does not depend on the sense of the inequality between

μ0 and μ1.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 13:07:23 2016

****** CUSUMtest

@author: maurice

"""

from numpy.random import randn

from numpy import max, zeros, sum

from matplotlib import pyplot as plt

n = 120; m = 32; mu0lessthanmu1 = 0;

if mu0lessthanmu1:

mu0 = 1.0; mu1 = 8.0;

else:

mu1 = 1.0; mu0 = 8.0;

x=zeros(n);T=zeros(n); x[0:m]=randn(m)+mu0; x[m:n]=randn(n-m)+mu1;

for nn in range(1,n):

sn=(x[nn]-mu0)**2-(x[nn]-mu1)**2;

T[nn]=max([T[nn-1]+sn,0]);

hatm = sum(T==0)

plt.clf(); plt.subplot(211); plt.plot(x)

plt.subplot(212); plt.plot(T,’.-’); plt.hold(’on’)

plt.plot(hatm,T[hatm],’or’); plt.hold(’off’); plt.show()

5.2.7.– (Proof of [2.37]) (see p. 58)

1) E {Nj} = Npj , using the fact that

E { (Xk ∈ Δj)} = P {Xk ∈ Δj}
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In the same way, E {NjNm} = Npjδ(j,m) +N(N − 1)pjpm. Therefore:

C = D − PPT

where D = diag (P ).

2) We have:

C = D −D1/2D−1/2PPTD−1/2D1/2

= D −D1/2V V TD1/2

= D1/2(I − V V T )D1/2

where V = D−1/2P =
[√

p0 . . .
√
pg−1

]T
. Thus:

Γ = D−1/2CD−1/2 = I − V V T

We note that V TV = 1 and that V V T is the projector onto V which is of rank 1.

Γ is therefore a projector of rank (g − 1). A unit matrix U therefore exists, such that:

Γ = U

[
Ig−1 0

0 0

]
UT [5.6]

3) Let:

P̂ =

[
N0

N
· · · Ng−1

N

]T
The central limit theorem 1.9 states that the random variable

Y =
√
N
(
P̂ − P

)
d−→ N (0, C)

converges in distribution toward a Gaussian of mean vector 0 and covariance matrix

C. The random vector Z = D−1/2Y therefore converges in distribution following:

Z = D−1/2Y
d−→ N (0,Γ)

Using equation [5.6], ZTZ appears asymptotically as the sum of the squares of

(g − 1) Gaussian, independent, centered random variables with variance 1. ZTZ
therefore converges in distribution toward a variable of χ2 with (g − 1) degrees of

freedom. This demonstrates expression [2.37].

5.2.8.– (Chi2 fitting test) (see p. 58) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 09:42:51 2016
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****** chi2test

@author: maurice

"""

from numpy import zeros, std, sort, inf, nansum, diff

from numpy.random import rand, randn

from scipy.stats import norm, chi2

from matplotlib import pyplot as plt

nbgroups = 8; nbvalpergroup = 30; N = nbgroups*nbvalpergroup;

Lruns = 30000; Tchi2 = zeros(Lruns);

for irun in range(Lruns):

sigma = 3*rand(); x = sigma*randn(N);

hatsigma = std(x); xsort = sort(x);

intervbounds = zeros(nbgroups+1); intervbounds[0] = -inf;

for ig in range(nbgroups):

aux_bound = (ig+1)*nbvalpergroup;

intervbounds[ig+1] = xsort[aux_bound-1];

cdfj = norm.cdf(intervbounds,0,hatsigma); npj = diff(cdfj)*

float(N);

X2 = nansum(((nbvalpergroup-npj)**2) / npj); Tchi2[irun] = X2;

bins = 50; plt.clf()

auxhist = plt.hist(Tchi2,bins=bins,normed=’True’,histtype=

’stepfilled’);

plt.hold(’on’)

xvallin = auxhist[1][0:bins]+(auxhist[1][1]-auxhist[1][0])/2.0;

plt.plot(xvallin,chi2.pdf(xvallin,nbgroups-1),’.-m’)

plt.hold(’off’); plt.grid(’on’); plt.show()

5.2.9.– (CRB expression using symbolic calculus) (see p. 61)

m=

[
m1

m2

]
and C =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

Hence, ∂ρm = 0 and

∂Cσ1 =

[
2σ1 ρσ2

ρσ2 0

]
∂Cσ2 =

[
0 ρσ1

ρσ1 2σ2

]
∂Cρ =

[
0 σ1σ2

σ1σ2 0

]

Because the mean and the covariance depend on different parameters, the FIM is

2-block diagonal, one of size 2×2 associated with the mean and the other of size 3×3
associated with σ1, σ2 and ρ.
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The following program performs the CRB. The coefficient of ρ has the very simple

form (1− ρ2)2/N . Type and run the program:

# -*- coding: utf-8 -*-

"""

Created on Sun Aug 7 16:16:55 2016

****** symbolicforCRBGaussian

@author: maurice

"""

from numpy import zeros

import sympy as sp

m1=sp.Symbol(’m1’); m2=sp.Symbol(’m2’); m=sp.Matrix([[m1],[m2]])

dm1 = sp.diff(m,m1); dm2 = sp.diff(m,m2)

s1 = sp.Symbol(’s1’); s2 = sp.Symbol(’s2’); r = sp.Symbol(’r’)

C = sp.Matrix([[s1**2, r*s1*s2],[r*s1*s2, s2**2]])

dCs1 = sp.diff(C,s1); dCs2 = sp.diff(C,s2); dCr = sp.diff(C,r)

iC = sp.Inverse(C)

F00m=(dm1.T*iC*dm1)[0];F01m=(dm1.T*iC*dm2)[0];F11m=(dm2.T*iC*dm2)[0]

Fmean = sp.Matrix([[F00m,F01m],[F01m,F11m]])

iCdCs1 = iC*dCs1; iCdCs2 = iC*dCs2; iCdCr = iC*dCr

F00c=sp.trace((iCdCs1*iCdCs1)/2); F01c=sp.trace((iCdCs1*iCdCs2)/2)

F02c=sp.trace((iCdCs1*iCdCr)/2); F11c=sp.trace((iCdCs2*iCdCs2)/2)

F12c=sp.trace((iCdCs2*iCdCr)/2); F22c=sp.trace((iCdCr*iCdCr)/2)

Fcovar=sp.Matrix([[F00c,F01c,F02c],[F01c,F11c,F12c],[F02c,F12c,F22c]])

F=sp.Matrix(zeros([5,5])); F[0:2,0:2]=Fmean; F[2:5,2:5] = Fcovar

CRB = sp.Inverse(F)

print(sp.simplify(CRB[0,0])); print(sp.simplify(CRB[1,1]))

print(sp.simplify(CRB[2,2])); print(sp.simplify(CRB[3,3]))

print(sp.simplify(CRB[4,4]))

5.2.10.– (Decomposition of the design matrix) (see p. 68)

1) As Π and ΠXc are orthogonal projectors, (Π + ΠXc) is a projector. To show

that ΠZ = Π + ΠXc , we must simply demonstrate that (Π + ΠXc)Z = Z. Using

the fact that Z =
[

N X
]

we obtain successively:

(Π + ΠXc)Z = (Π + ΠXc)
[

N X
]

=
[
Π N Π X

]
+
[
ΠXc N ΠXcX

]
=
[

N Π X
]
+
[
0 Xc

]
= Z

where, following equations [2.63] and [2.64], we use the fact that Xc = ΠXcXc =
ΠXcX + 0.
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2) As Π , ΠXc and ΠZ are projectors and ΠZ = Π + ΠXc , we have, for any

v ∈ C
N :

vHv ≥ vHΠZv = vHΠ v + vHΠXcv ≥ vHΠ v

In other words, IN ≥ ΠZ ≥ Π .

3) We have uT
nΠ un = 1/N , uT

nun = 1 and uT
nΠZun = hn,n.

4) Type and run the program leverageeffect.py. Changing the test value, 0 or

1, we observe the effect of significant leverage.

# -*- coding: utf-8 -*-

"""

Created on Fri Jun 3 13:21:35 2016

****** leverageeffect

@author: maurice

"""

from numpy import mean, ones, zeros, dot

from numpy.random import randn

from numpy.linalg import inv

from matplotlib import pyplot as plt

N=100; P=2; X = randn(N,P);

if 0:

X[N-1,:] = mean(X[range(N-1),:],axis=0);

else:

X[N-1,:] = 100.0*mean(X[range(N-1),:],axis=0);

Z = zeros([N,P+1])

Z[:,0] = ones(N); Z[:,1:P+1]=X;

PiZ = dot(dot(Z,inv(dot(Z.transpose(),Z))),Z.transpose())

plt.clf(); plt.plot(X[:,0],X[:,1],’x’); plt.hold(’on’)

plt.plot(X[N-1,0],X[N-1,1],’or’); plt.hold(’off’)

plt.title(’%4.2f<h_N=%4.2f =<1’%(1.0/N,PiZ[N-1,N-1]));plt.show()

5.2.11.– (Atmospheric CO2 concentration) (see p. 68)

# -*- coding: utf-8 -*-

"""

Created on Mon Jun 20 17:18:19 2016

****** co2linmod

@author: maurice

"""

from numpy import zeros, arange, pi, cos, sin

from numpy import isnan, array, sqrt

import statsmodels.api as sm
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from numpy import matrix as mat

from numpy.linalg import pinv

from matplotlib import pyplot as plt

dataCO2 = sm.datasets.co2.load(); y = dataCO2.data[’co2’]

date = dataCO2.data[’date’]; N = len(y)

# determine nan value indices

listindex=list([])

for ip in range(N):

if not isnan(y[ip]):

listindex.append(ip)

t=arange(N); tprime=t[listindex]; tmat = mat(tprime).transpose()

yprime = y[listindex]; Nmat = len(yprime); ymat = mat(yprime).

transpose()

q=3; p=2; f0 = 7.0/365.0; H = mat(zeros([Nmat,2*p+q]))

theta = 2*pi*f0*tmat*mat(arange(1,p+1))

H[:,0:p] = cos(theta); H[:,p:2*p] = sin(theta)

for iq in range(q):

H[:,2*p+iq] = mat(tprime**iq).transpose()

pinvH = pinv(H); alpha = pinvH*ymat; ymatpred = H*alpha

e = ymat-ymatpred; stde = sqrt(e.transpose()*e/Nmat)

plt.clf()

plt.subplot(211); plt.plot(array(ymat)); plt.plot(array(ymatpred))

plt.subplot(212); plt.plot(array(e));

plt.title(’std of the residue std = %4.2f’%(stde)); plt.show()

5.2.12.– (Change-point detection of Nile flow) (see p. 69) Type the program

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 22 22:38:57 2016

****** modlinchangeNILE

@author: maurice

"""

from numpy import zeros, mean, arange, ones, array

from numpy import matrix as mat

from scipy.linalg import pinv

import statsmodels.api as sm

from matplotlib import pyplot as plt

datanile = sm.datasets.nile.load(); x = datanile.data[’volume’];

year = datanile.data[’year’]

N=len(x); err = zeros(N-1); alpha0 = mat(zeros([2,N-1])); alpha1

= mat(zeros([2,N-1]))

for n in range(1,N):

H0 = mat(zeros([n,2])); H0[:,0]=ones([n,1]);
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H0[:,1] = arange(n).reshape(n,1); pinvH0 = pinv(H0);

x0 = mat(x[range(n)]); alpha0[:,n-1] = pinvH0*x0.transpose()

err0 = x0*x0.transpose()-x0*H0*alpha0[:,n-1]

H1 = mat(zeros([N-n,2])); H1[:,0]=ones([N-n,1]);

H1[:,1] = arange(n,N).reshape(N-n,1); pinvH1 = pinv(H1)

x1 = mat(x[range(n,N)]); alpha1[:,n-1] = pinvH1*x1.transpose()

err1 = x1*x1.transpose() - x1*H1*alpha1[:,n-1]; err[n-1] =

err0+err1

nopt = err.argmin()+1

alpha0opt = array(alpha0[:,nopt-1]); alpha1opt = array(alpha1

[:,nopt-1])

mu0opt = mean(x[0:nopt]); mu1opt = mean(x[nopt:N])

plt.clf(); plt.subplot(211); plt.plot(year,x)

plt.hold(’on’); plt.plot((year[0], year[nopt]),\

(alpha0opt[0], alpha0opt[0]+alpha0opt[1]*nopt),’--’)

plt.plot((year[nopt], year[N-1]),\

(alpha1opt[0], alpha1opt[0]+alpha1opt[1]*nopt),’--’)

plt.hold(’off’)

plt.xlim([year[0],year[N-1]])

plt.xticks(fontsize = 8); plt.yticks(fontsize = 8)

plt.subplot(212); plt.plot(year[range(1,N)], err,’.-’)

plt.hold(’on’); plt.xlim([year[0],year[N-1]])

plt.plot(year[nopt], err[nopt-1],’or’); plt.hold(’off’)

plt.yticks([]); plt.xticks(fontsize = 8); plt.yticks(fontsize = 8)

plt.title(’change in %i, mu0 = %4.2f, mu1 = %4.2f’%(year[nopt],

alpha0opt[0],\

alpha1opt[0]), fontsize = 8)

plt.show()

5.2.13.– (Confidence intervals on linear model features) (see p. 79) Type and run

the following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jul 27 11:28:56 2016

****** regagediabetes

@author: maurice

"""

from numpy import zeros, ones, sqrt, diag, dot

from numpy import min, max, linspace

from numpy.linalg import pinv

from scipy.stats import t

from sklearn import datasets as ds

import matplotlib.pyplot as plt
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diabetes = ds.load_diabetes();

expl = diabetes[’data’]; target = diabetes[’target’][0:30]

N = len(target); X = expl[0:N,0].reshape(N); y = target.reshape(N)

Xsort = X[X.argsort()]; ysort = y[X.argsort()]

Z = zeros([N,2]); Z[:,0] = ones(N); Z[:,1] = Xsort

iZTZ=pinv(dot(Z.transpose(),Z)); pinvZ = dot(iZTZ,Z.transpose());

hatbeta=dot(pinvZ, ysort); haty = dot(Z,hatbeta); e = ysort-haty;

hatsigma2=(e.transpose()*e)/(N-2); hatsigma2 = dot(e.transpose(),

e)/(N-2)

alphaIC = 0.05; STDhatbeta=sqrt(hatsigma2*diag(iZTZ));

ICZbeta = zeros(N); hi = zeros(N);

for ii in range(N):

hi[ii] = dot(Z[ii,:],pinvZ[:,ii]);

ICZbeta[ii] = t.isf(alphaIC/2.0,N-2)*sqrt(hatsigma2*hi[ii]);

plt.clf(); plt.plot(Xsort,ysort,’go’,label=’true data’)

plt.hold(’on’); plt.plot(Xsort,haty-ICZbeta,’r.-’, \

label=’prediction on learning observations’);

plt.plot(Xsort,haty,’r.--’); plt.plot(Xsort,haty+ICZbeta,’r.-’);

nbnewvalues = 12; listZ2o = linspace(min(X),max(X),nbnewvalues)

hatyo = zeros(nbnewvalues); IChatyo = zeros(nbnewvalues)

for iZ2o in range(nbnewvalues):

Zo = [1.0,listZ2o[iZ2o]]; hatyo[iZ2o] = dot(Zo,hatbeta);

h0 = dot(Zo,dot(iZTZ,Zo));

IChatyo[iZ2o] = t.isf(alphaIC/2,N-2)*sqrt(hatsigma2*(1+h0));

plt.plot(listZ2o,hatyo-IChatyo,’b.-’,label=’prediction on new

observations’);

plt.plot(listZ2o,hatyo,’b.--’);plt.plot(listZ2o,hatyo+IChatyo,’b.-’)

plt.hold(’off’);plt.legend(loc=’best’,fontsize=12);

plt.xlabel(’observation’); plt.ylabel(’target’); plt.show()

5.2.14.– (Hypothesis test on H0 = {β1:p = 0}) (see p. 79) Type and run the

following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 15 06:53:26 2016

****** regboston

@author: maurice

"""

from sklearn import datasets

from numpy import sqrt, zeros, ones, mean, array

from numpy import matrix as mat

from numpy.linalg import pinv

from scipy.stats import f
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bostondata = datasets.load_boston()

print(bostondata.DESCR[:1200])

Y = bostondata.target; X = bostondata.data; C = bostondata.feature

_names

ourselection = array([’RM’,’LSTAT’,’CRIM’,’ZN’,’CHAS’,’DIS’])

N=len(Y); P=len(ourselection); selectedC=zeros(len(ourselection))

Xselect = zeros([N,P]); cp = 0;

for ip in range(len(C)):

if (ourselection==C[ip]).any():

Xselect[:,cp] = X[:,ip]; cp = cp+1;

Z = mat(zeros([N,P+1])); Z[:,0] = ones([N,1]); Z[:,range(1,P+1)] =

Xselect

y = mat(Y).reshape(N,1); iZTZ = pinv(Z.transpose()*Z); pinvZ =

iZTZ * Z.transpose();

hatbeta = pinvZ * y; haty = Z*hatbeta; e = y-haty;

hatsigma2 = (e.transpose()*e)/(N-P-1); hatsigma = sqrt(hatsigma2);

#===== test on beta_1=...=beta_P=0

RSS = (e.transpose()*e); ycentered = (y-mean(y))

TSS = ycentered.transpose()*ycentered

ESS = TSS-RSS; F = (N-P-1)*ESS/(P*RSS)

pvalueF = 1.0-f.cdf(F,P,N-P-1)

print(’******* our selection %s’%ourselection)

print(’******* pvalueF = %4.2e’%pvalueF)

5.2.15.– (Model selection based on Z-score) (see p. 79) Type and run the following

program:

# -*- coding: utf-8 -*-

"""

Created on Sun Jul 31 22:23:34 2016

****** diabetesZscore

@author: maurice

"""

from numpy import zeros, ones, dot, diag, loadtxt, sqrt, mean, std

from numpy import argwhere

from numpy.linalg import pinv

from scipy.stats import t

from sklearn import datasets as ds

if 0:

diabetes = ds.load_diabetes();

Xnonstandard = diabetes[’data’]; y = diabetes[’target’]

N,p = Xnonstandard.shape; r = p+1;

else:

P = loadtxt(’prost.txt’); # page 63 Tibshirani
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N,q = P.shape; p = q-1; r = p+1;

Xnonstandard = P[:,0:p]; y = P[:,p]

standardizatioflag = False

if standardizatioflag:

Xc = Xnonstandard-dot(ones([N,1]),mean(Xnonstandard,0).reshape

(1,p))

X = Xc / dot(ones([N,1]),std(Xc,0).reshape(1,p))

else:

X = Xnonstandard

Z = zeros([N,r]); Z[:,0] = ones(N); Z[:,1:r] = X;

diZTZ = diag(pinv(dot(Z.T,Z))); pinvZ = pinv(Z); hatbeta = dot

(pinvZ, y);

haty = dot(Z,hatbeta); e = haty-y; hatsigma2 = sum(e**2)/(N-r);

Zscore = hatbeta/sqrt(diZTZ)/sqrt(hatsigma2)

Zscoreintercept = Zscore[0]; Zscoreexplanatory = Zscore[1:]

alphaIC = 0.05; threshold = t.isf(alphaIC/2,N-r)

print(argwhere(abs(Zscoreexplanatory)>threshold))

5.2.16.– (Model selection based on adjusted R2, AIC and BIC) (see p. 81)

# -*- coding: utf-8 -*-

"""

Created on Wed Jul 27 11:28:56 2016

****** diabetesvalidationmodel

@author: maurice

"""

from numpy import zeros, ones, dot, setdiff1d, mean, log

from numpy.linalg import pinv

from sklearn import datasets as ds

import matplotlib.pyplot as plt

def validationfeatures(X,y):

N,p = X.shape; r = p+1;

H =zeros([N,r]); H[:,0] = ones(N); H[:,1:r] = X;

invH = pinv(H); hatbeta = dot(invH,y);

haty = dot(H,hatbeta);

ESS = sum((haty-mean(y)) **2); TSS = sum((y-mean(y)) **2);

RSS = TSS-ESS; adjR2 = 1.0-(RSS/(N-r)/(TSS/(N-1)))

AIC = N*log(RSS/N)+2.0*r; BIC = N*log(RSS/N)+r*log(N);

return adjR2, BIC, AIC

def residue_norm(X,y):

N,p = X.shape; r = p+1;

Z = zeros([N,r]); Z[:,0] = ones(N); Z[:,1:r] = X;

pinvZ = pinv(Z); hatbeta = dot(pinvZ, y);

haty = dot(Z,hatbeta); T = sum((haty-y) **2)
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return T

#========= main program ====

diabetes = ds.load_diabetes(); explanatoryVars = diabetes[’data’]

target = diabetes[’target’]; N,p = explanatoryVars.shape;

X = explanatoryVars.reshape(N,p); y = target.reshape(N,1)

aR2 = zeros(p+1); BIC = zeros(p+1); AIC = zeros(p+1);

aR2[p], BIC[p], AIC[p] = validationfeatures(X,y)

T = zeros(p+1); T[p] = residue_norm(X,y)

suppressedVarindex = zeros(p);

model_k = X; colmodel_kindex = range(p)

for k in range(p,0,-1):

T_k = zeros(k); rangek = range(k);

for j in rangek:

testmodel_jk = model_k[:,setdiff1d(rangek,j)]

T_k[j] = residue_norm(testmodel_jk,y)

jo = T_k.argmin()

T[k-1] = T_k.min()

suppressedVarindex[k-1] = colmodel_kindex[jo]

colmodel_kindex=setdiff1d(colmodel_kindex,colmodel_kindex[jo])

model_k = model_k[:,setdiff1d(rangek,jo)]

aR2[k-1], BIC[k-1], AIC[k-1] = validationfeatures(model_k,y)

plt.clf();

plt.subplot(3,1,1); plt.plot(aR2,’.-’); plt.show()

plt.subplot(3,1,2); plt.plot(BIC,’.-’); plt.show()

plt.subplot(3,1,3); plt.plot(AIC,’.-’); plt.show()

selectedcolumnsaR2 = setdiff1d(range(p),suppressedVarindex[aR2.

argmax():p])

print(’***** The optimal model consists of the %i explanatory

features : %s’ \

%(len(selectedcolumnsaR2),selectedcolumnsaR2))

selectedcolumnsBIC = setdiff1d(range(p),suppressedVarindex[BIC.

argmin():p])

print(’***** The optimal model consists of the %i explanatory

features : %s’ \

%(len(selectedcolumnsBIC),selectedcolumnsBIC))

selectedcolumnsAIC = setdiff1d(range(p),suppressedVarindex[AIC.

argmin():p])

print(’***** The optimal model consists of the %i explanatory

features : %s’ \

%(len(selectedcolumnsAIC),selectedcolumnsAIC))
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5.2.17.– (Moment estimator: central limit theorem) (see p. 82) Let

m̂1 = N−1
∑N−1

n=0 Xn and m̂2 = N−1
∑N−1

n=0 X2
n. Expression [2.100] may be

rewritten
[
k̂ λ̂

]T
= g(m̂1, m̂2), where:

g :

⎡⎢⎢⎣m1

m2

⎤⎥⎥⎦ −→

⎡⎢⎢⎣k
λ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
m2

1

m2 −m2
1

m2 −m2
1

m1

⎤⎥⎥⎦ [5.7]

⇔ g−1 :

⎡⎢⎢⎣k
λ

⎤⎥⎥⎦ −→

⎡⎢⎢⎣m1

m2

⎤⎥⎥⎦ =

⎡⎢⎢⎣ k λ

k(1 + k)

λ2

⎤⎥⎥⎦
The central limit theorem 1.9 states that when N tends toward infinity:

√
N

[
m̂1 − kλ

m̂2 − k(1 + k)k2

]
→ N (0, C(α, λ))

where:

C(k, λ) = 2

[
cov (Xn, Xn) cov

(
Xn, X

2
n

)
cov

(
Xn, X

2
n

)
cov

(
X2

n, X
2
n

)]

Readers may wish to determine the expression of C(k, λ) as a function of k and λ.

The continuity theorem 1.10, applied to function g, states that when N tends toward

infinity:

√
N

⎡⎢⎢⎣k̂ − k

λ̂− λ

⎤⎥⎥⎦→ N (0,Γ(α, λ))

where Γ(k, λ) = JCJT with:

J =

⎡⎢⎢⎣
∂g1
m1

∂g1
m2

∂g2
m1

∂g2
m2

⎤⎥⎥⎦
This may be calculated in terms of (k, λ) using [5.7]. Clearly, the performance

depends on the parameter values. In the context of a practical problem, if we wish to
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calculate a confidence interval, the values of the parameter (k, λ) may be replaced by

an estimate.

5.2.18.– (Moment estimators of mixture proportion) (see p. 83)

1) The statistical model has a density of:

p(x0, . . . , xN−1) =
N−1∏
n=0

(
α

σ0

√
2π

e−(xn−m0)
2/2σ2

0 +
1− α

σ1

√
2π

e−(xn−m1)
2/2σ2

1

)
where the parameter α ∈ (0, 1). We deduce that E {Xn} = αm0 + (1 − α)m1 and

E
{
X2

n

}
= α(m2

0 + σ2
0) + (1− α)(m2

1 + σ2
1).

2) We have S(α) = E {S(X)} = αm0+(1−α)m1 ⇒ α = (S(α)−m1)/(m0−
m1). Hence, α̂1 = (S(X)−m1)/(m0 −m1).

3) S(α) = E {S(X)}. Therefore:

S(α) =

[
αm0 + (1− α)m1

α(m2
0 + σ2

0) + (1− α)(m2
1 + σ2

1)

]

Let Ŝ(X) =
[
Ŝ0(X) Ŝ1(X)

]
and J(α) = ‖S(α) − Ŝ(X)‖1. From this, we

deduce the value α̂2 that minimizes J(α), canceling the derivative of J(α).

4) Using the fact that for a Gaussian, centered, random variable U of variance σ2,

we have E
{
U3
}
= 0 and E

{
U4
}
= 3σ4, we obtain:

C(α) = α

[
σ2
0 0

0 3σ4
0

]
+ (1− α)

[
σ2
1 0

0 3σ4
1

]

We obtain the estimator α̂3 by minimizing the function K(α) = (Ŝ(X) −
S(α))TC−1(α)(Ŝ(X)− S(α)) in relation to α.

5) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Fri Jun 3 06:32:09 2016

****** MMmixture

@author: maurice

"""

from numpy import linspace, zeros, dot, sum, mean, std, array

from numpy.linalg import pinv

from numpy.random import randn, rand

from matplotlib import pyplot as plt #======

#======
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def fgmm(S,m0,m1,s0,s1,La):

"""

Estimation of the mixture proportion alpha,

using the two first 2 moments

and by an exhaustive research on a grid of values of alpha.

Rk: m0,m1,s0,s1 are assumed to be known

synopsis:

fgmm(S,m0,m1,s0,s1,La) inputs:

S = data

m0, m1 = means of the 2 components

s0, s1 = standard deviation of the 2 components

La = number of values on the alpha grid

output:

alphaopt = optimal proportion

"""

F0=array([m0,m0**2+s0**2]);W0=array([[s0**2,0],[0, 3*s0**4]]);

F1=array([m1,m1**2+s1**2]);W2=array([[s1**2,0],[0, 3*s1**4]]);

alphalist=linspace(0,1,La);

valt = zeros(La);

for ia in range(La):

alpha = alphalist[ia];

W = alpha*W0+(1.0-alpha)*W2;

M = alpha*F0+(1.0-alpha)*F1;

PiW = pinv(W)

valt[ia] = dot(dot((S-M).transpose(),PiW),(S-M));

iamin = valt.argmin(); alphaopt=alphalist[iamin];

return alphaopt

#============== main program ===============

alpha=0.5; m0=10; m1=10.1; s0=0.2; s1=0.5; N=100;

Lruns=1000; hatalpha=zeros([Lruns,3]);

La = 100;

for ir in range(Lruns):

U=rand(N)<alpha;

X=(m0+s0*randn(N))*U + (m1+s1*randn(N))*(1-U);

#===== we use only the mean statistic

S0=mean(X); F00=m0; F01=m1; hatalpha[ir,0]=(S0-F01)/(F00-F01);

#===== we use the two first statistics

S1=sum(X**2)/N; S=array([S0,S1]); F0=array([F00,m0**2+s0**2]);

F1=array([F01,m1**2+s1**2]);

H = F0-F1; pH = 1.0 / (H[0]**2+H[1]**2)

hatalpha[ir,1] = ((S[0]-F1[0])*H[0]+ (S[1]-F1[1])*H[1])*pH;

hatalpha[ir,2] = fgmm(S,m0,m1,s0,s1,La);

print(std(hatalpha-alpha,axis=0))
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plt.clf(); plt.hold(’off’); plt.boxplot(hatalpha); plt.show()

In this case, the minimization applies to the scalar variable α ∈ (0, 1). The

minimization operation may therefore be carried out using a value grid. Modifying

the parameters mi, σi, we see that the reduction of the mean squares error obtained

with α̂2 and α̂3 in relation to α̂1 depends to a significant extent on the choice of these

values.

5.2.19.– (MLE for the linear model) (see p. 88) The model consists of N Gaussian

random variables with respective means Znθ and same variance σ2. Then, the log-

likelihood writes:

� = −N

2
log(2π)− N

2
log σ2 − 1

2σ2

N−1∑
n=0

(yn − Znθ)
2

= −N

2
log(2π)− N

2
log σ2 − ‖y − Zθ‖2

The cancellation of the first derivative with respect to θ gives

θ̂MLE = (ZTZ)−1ZT y and leads to the maximum:

�̃ = −N

2
log(2π)− N

2
log(σ2)− RSS

2σ2

where RSS is given by [2.88]. Then, the cancellation of the first derivative with respect

to σ2 gives:

∂σ2 �̃ = −N

2
σ2 +

1

2
σ4RSS = 0 ⇒ σ̂2

MLE = RSS/N

Hence, the MLE of θ is equal to the least square estimator [2.71], but σ̂2
MLE is different

from the unbiased least square estimator [2.76].

5.2.20.– (Iris classification) (see p. 88) From section 2.6.5.1, we derive the

expressions of the respective estimates of mean and covariance of the three models.

We denote �(x; θi) the log-likelihood associated with class i. It follows that the

maximum likelihood class associated with the observation xo is given by:

k̂ = argmax
i

(− log det {Ci} − trace
{
C−1

i Ri

})
where Ri = N−1

∑N−1
n=0 (xo − mi)(xo − mi)

T and mi and Ci have been obtained

from the training dataset with an LDA pre-processing with k = 2.
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Type and run the following program where you can change the values of k, the

respective sizes of the training and testing datasets and replace the log-likelihood by

the Mahalanobis distance [2.119].

# -*- coding: utf-8 -*-

"""

Created on Mon Jul 4 16:05:14 2016

****** irisclassification

@author: maurice

"""

from numpy import zeros, log, mean, size, unique

from scipy.linalg import det, inv

from sklearn import datasets

from pcaldatoolbox import LDA

iris = datasets.load_iris()

X = iris.data; y = iris.target; t_names = iris.target_names

N = size(X,0); d = size(X,1); g = len(unique(y));

Ntrain = 35; Ntest = 50-Ntrain;

Xtrain = zeros([g*Ntrain,d]); ytrain = zeros([g*Ntrain])

Xtest = zeros([g*Ntest,d]); ytest = zeros([g*Ntest])

k = 2; cpError = zeros(g); ell = zeros(g); cp = 0;

detC = zeros(g); ihatCtrain = zeros([k,k,g]); hatmtrain = zeros

([k,g])

for ig in range(g):

Xi = X[y==ig]; yi = y[y==ig]

Xtrain[Ntrain*ig:Ntrain*(ig+1),:] = Xi[0:Ntrain,:];

Xtest[Ntest*ig:Ntest*(ig+1),:] = Xi[Ntrain:N,:];

ytrain[Ntrain*ig:Ntrain*(ig+1)] = yi[0:Ntrain];

ytest[Ntest*ig:Ntest*(ig+1)] = yi[Ntrain:N];

XLDAtrain, VLDAtrain = LDA(Xtrain,ytrain,k);

for ig in range(g):

XLDAtrain_ig = XLDAtrain[ytrain==ig,:]

hatmtrain[:,ig] = mean(XLDAtrain_ig,0)

Xigc = XLDAtrain_ig - hatmtrain[:,ig]

hatC = Xigc.T*Xigc/Ntrain

detC[ig] = det(hatC)

ihatCtrain[:,:,ig] = inv(hatC)

for itest in range(g*Ntest):

for ig in range(g):

Xit = Xtest[itest,:]*VLDAtrain-hatmtrain[:,ig]

ell[ig] = -log(detC[ig])-(Xit*ihatCtrain[:,:,ig])*Xit.T

if not(ell.argmax()==ytest[itest]):

cp = cp + 1

print(’***** Prediction error number = %i’%cp)
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5.2.21.– (Asymptotic distribution of a correlation MLE) (see p. 88)

1) ρ = C0,1/
√
C0,0C1,1 appears as a function f(C). Therefore, a MLE of ρ is

given by f(Ĉ) that writes:

ρ̂ =
Ĉ0,1√
Ĉ0,0Ĉ1,1

2) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun Aug 7 18:32:07 2016

****** verifyCRBrho

@author: maurice

"""

from numpy.random import randn

from numpy import array, zeros, mean, std, matrix as mat, sqrt

from scipy.linalg import sqrtm

N=100; d=2; Lruns=500; m0 = 2; m1 = 4; s0 = 2; s1 = 5; rho = 0.7;

C = array([[s0**2, rho*s0*s1],[rho*s0*s1, s1**2]])

m = array([m0,m1]); sqrtC = mat(sqrtm(C))

hats0 = zeros(Lruns); hats1 = zeros(Lruns); hatrho = zeros(Lruns)

for ell in range(Lruns):

W = mat(randn(N,2)); X = W*sqrtC+m; meanX = mat(mean(X,0));

hatC = (X-meanX).T*(X-meanX)/N;

hats0[ell] = sqrt(hatC[0,0]); hats1[ell] = sqrt(hatC[1,1])

hatrho[ell] = hatC[0,1]/(hats0[ell]*hats1[ell])

print(’** s1: \tempirical std = %4.4e\n\ttheoretical std = %4.4e’\

%(std(hats0),s0/sqrt(2*N)))

print(’** s2: \tempirical std = %4.4e\n\ttheoretical std = %4.4e’\

%(std(hats1),s1/sqrt(2*N)))

print(’** r:\tempirical std = %4.4e\n\ttheoretical std = %4.4e’\

%(std(hatrho),(1-rho**2)/sqrt(N)))

5.2.22.– (MM versus MLE of the correlation) (see p. 89)

1) The model writes { i.i.d. N (N ; 0, C)} and the parameter is ρ in (−1,+1). This

model is different from the model described by [2.110] for d = 2. Indeed here, the

two means and the two variances are assumed to be known. The log-likelihood writes:

� = −N log(2π)− N

2
log(1− ρ2)− 1

2(1− ρ2)

N−1∑
n=0

(X2
n,0 +X2

n,1 − 2ρXn,0Xn,1)
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2) From ρ = C0,1/
√
C0,0C1,1, we derive an MM estimator ρ̂MM =

S01/
√
S00S11, where S00 = N−1

∑N−1
n=0 X2

n,0, S11 = N−1
∑N−1

n=0 X2
n,1 and S01 =

N−1
∑N−1

n=0 Xn,0Xn,1.

3) Canceling the derivative of the log-likelihood with respect to ρ yields the cubic

equation1:

ρ̂3MLE − S01ρ̂
2
MLE + (S00 + S11 − 1)ρ̂MLE − S01 = 0 [5.8]

Therefore, usually ρ̂MLE 
= ρ̂MM.

4) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun Aug 7 18:32:07 2016

****** MMversusMLEcorrelation

@author: maurice

"""

from numpy.random import randn

from numpy import array, zeros, nan, roots, nanstd, matrix as mat

from numpy import sqrt, isreal, isnan

from scipy.linalg import sqrtm

d=2; rho = 0.8; N = 200; Lruns = 500;

C = array([[1, rho],[rho, 1]]); sqrtC = mat(sqrtm(C))

hatrhoMM = zeros(Lruns); hatrhoMLE = zeros(Lruns)

for ell in range(Lruns):

W = mat(randn(N,2)); X = W*sqrtC; hatC = X.T*X;

S01 = hatC[0,1]/N; S00 = hatC[0,0]/N; S11 = hatC[1,1]/N;

hatrhoMM[ell] = S01/sqrt(S00*S11)

coeffpoly3nd = array([1.0, -S01, (S00+S11-1.0), -S01])

rootsMLE = roots(coeffpoly3nd)

realroots = rootsMLE[isreal(rootsMLE)].real

if realroots.ndim==1:

hatrhoMLE[ell] = realroots;

else:

hatrhoMLE[ell] = nan;

1 If the discriminant Δ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 of the cubic equation

ax3 + bx2 + cx + d = 0 is strictly less than 0, then the cubic equation has one real root and

two non-real conjugate roots.
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print(’\tstd of MM estimator=%4.3f\n\tstd of MLE estimator=%4.3f’\

%(nanstd(hatrhoMM),nanstd(hatrhoMLE)))

print(’\tnumber of real multiple roots=%i’%sum(isnan(hatrhoMLE)))

5.2.23.– (Correlation GLRT) (see p. 89)

1) We denote Xk =
[
Xk,0 Xk,1

]T
. Then, we can apply the results of section

2.6.5.1 with d = 2. The parameter of interest is θ = (m0,m1, σ0, σ1, ρ) ∈ Θ =

R×R×R
+×R

+× (−1, 1) and an MLE estimator of ρ writes ρ̂ = Ĉ0,1/
√
Ĉ0,0Ĉ1,1,

where

Ĉ =
1

n

n−1∑
k=0

(Xn − m̂)(Xn − m̂)T with m̂=
1

n

n−1∑
k=0

Xn

It is easy to show that the log-likelihood maximum, given by [2.113], is an

increasing function of the statistic |ρ̂|2. Therefore, the GLRT statistic of H0 = {θ :
|ρ| ≤ ρ0} writes |ρ̂|/ρ0, leading to the test:

|ρ̂|
H1
>
<
H0

ηρ0, where |ρ| = |Ĉ01|√
Ĉ00Ĉ11

2) Since that the Fisher transform is monotonic, the test is equivalent to a test

based on the statistic f̂ = 0.5 log((1 + ρ̂)/(1− ρ̂)). The threshold can be determined

using that, under H0, f̂ is approximately distributed as a Gaussian with mean f0 and

variance (n− 3)−1.

3) The following program gives a p -value of 0.0176. We can therefore reject H0.

This indicates that the correlation is likely to have a modulus greater than 0.7.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 08:53:20 2016

****** testcorrelationWH

@author: maurice

"""

from numpy import mean, sqrt, log, sum

from scipy.stats import norm

Hcm = [162,167,167,159,172,172,168]; N = len(Hcm);

Wkg = [48.3,50.3,50.8,47.5,51.2,51.7,50.1];

Xc = Hcm-mean(Hcm);Yc = Wkg-mean(Wkg);
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hatcorr = abs(sum(Xc*Yc)) / sqrt(sum(Xc*Xc)*sum(Yc*Yc));

hatf = 0.5*log((1.0+hatcorr)/(1.0-hatcorr));

rho0 = 0.7; f0 = 0.5*log((1+rho0)/(1-rho0));

pvalue = 2*(1-norm.cdf(hatf,f0,1/sqrt(N-3)));

print(’***** p-value = %4.4f’%pvalue)

As an additional note, the following program shows that the distribution of the

Fisher transformation of ρ̂ approximately follows a Gaussian distribution of mean f0
and variance 1/(N − 3). We also compare to the asymptotic distribution derived from

the CRB, see exercie 2.21.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 12:01:38 2016

****** correlationdistribution

@author: maurice

"""

from numpy import mean, log, sqrt, zeros, matrix as mat

from numpy.random import randn

from scipy.stats import norm

from scipy.linalg import sqrtm

from matplotlib import pyplot as plt

m = mat([1,2]); s0 = 5; s1 = 2; rho = -0.9; N = 20;

Lruns=10000; hatrho=zeros(Lruns); hatf=zeros(Lruns);

C = mat([[s0*s0, rho*s0*s1],[rho*s0*s1, s1*s1]]);

racC = sqrtm(C);

for ir in range(Lruns):

Z = mat(randn(N,2)); X = Z*racC+m;

Xc = X-mean(X,0); hatC = Xc.T*Xc/N

hatrho[ir] = hatC[1,0] / sqrt(hatC[0,0]*hatC[1,1])

hatf[ir] = 0.5*log((1.0+hatrho[ir])/(1.0-hatrho[ir]));

f0 = 0.5*log((1+rho)/(1-rho));

plt.clf(); bins = 30;

plt.subplot(121)

aux=plt.hist(hatrho,bins,normed=’True’);

plt.hold(’on’)

xtheo = aux[1][0:bins]+(aux[1][1]-aux[1][0])/2.0

plt.plot(xtheo,norm.pdf(xtheo,rho,(1-rho*rho)/sqrt(N)),’.-r’)

plt.hold(’off’); plt.show(); plt.title(’asymptotic distribution’)

plt.subplot(122)

aux=plt.hist(hatf,bins,normed=’True’);
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plt.hold(’on’)

xtheo = aux[1][0:bins]+(aux[1][1]-aux[1][0])/2.0

plt.plot(xtheo,norm.pdf(xtheo,f0,1/sqrt(N-3)),’.-r’)

plt.hold(’off’); plt.show(); plt.title(’fisher transform’)

5.2.24.– (MLE with Γ(k, λ) distribution) (see p. 90)

1) The Γ(1, λ) distribution is an exponential distribution of parameter λ. The

log-likelihood is expressed L(λ) = −N log(λ) − 1
λ

∑N−1
n=0 Xn. Canceling the

derivative in relation to λ, we obtain:

λ̂ =
1

N

N−1∑
n=0

Xn [5.9]

The Fisher information is written as:

F = −E
{
N/λ2 − 2S/λ3

}
= N/λ2

Hence, following [2.108]:

√
N(λ̂− λ)

d−→ N (0, λ2)

Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 5 07:24:22 2016

****** MLEexponential

@author: maurice

"""

from numpy import zeros, log, sqrt, std, mean

from numpy.random import rand

lamb=2; N=100; Lruns=300;

hatlamb=zeros(Lruns);

for ir in range(Lruns):

Y = -lamb*log(rand(N));

hatlamb[ir] = mean(Y);

print(’**** std = %4.2f, theo-value = %4.2f’\

%(std(hatlamb-lamb), lamb/sqrt(N)))

This program uses the property of inversion of the cumulative distribution function

F (x) = 1−e−x/λ, and thus x = −λ log(1−F ), as presented in section 4.3.1. Finally,

if F is a uniform r.v., then (1− F ) is also a uniform r.v. This explains the generation

of an exponential law generation using Y=-lamb*log(rand(N));.
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2) The log-likelihood is written as:

L(θ) = −Nk log λ−N log Γ(k) +
N−1∑
n=0

(k − 1) logXn −
N−1∑
n=0

Xn

λ

Canceling the Jacobian with respect to (k, λ), we obtain:⎧⎪⎨⎪⎩
−Nk

λ
+

1

λ2

∑N−1
n=0 Xn = 0

−N log(λ)−N
Γ′(k)
Γ(k)

+
∑N−1

n=0 log Xn = 0

From the first equation, let λ̂ = 1
Nk

∑N−1
n=0 Xn = S/k. Applying this to the second

equation gives us:

k − Γ′(k)
Γ(k)

= logS − T

where S = N−1
∑N−1

n=0 Xn and T = N−1
∑N−1

n=0 logXn. Function
Γ′(k)
Γ(k) is known

as the “digamma” function, denoted as ψ. We have:

k − ψ(k) = logS − T [5.10]

The solution to [5.10] has no simple analytic expression, but may be calculated

using a numerical procedure such as the Newton-Raphson algorithm.

5.2.25.– (Singularity in the MLE approach) (see p. 90) We can assume, without loss

of generality, that the observations verify xn 
= x0 for any n ≥ 1. The log-likelihood

is expressed as �(θ) =
∑N−1

n=0 log pXn(xn; θ). Choosing m̂0 = x0, the log-likelihood

is written as:

�(θ) = log

(
1

2
√
2πσ0

+
1

2
√
2πσ1

e−(x0−m1)
2/2σ2

1

)

+

N−1∑
n=1

log

(
1

2
√
2πσ0

e−(xn−x0)
2/2σ2

0 +
1

2
√
2πσ1

e−(xn−m1)
2/2σ2

1

)

Choosing any m1 ∈ R and any σ1 ∈ R
+, let us make σ0 tend toward 0. The first

term goes to +∞ and the second term, as xn − x0 
= 0, tends toward a finite value.

Therefore, � tends toward infinity. This means that the maximum of � as a function of

θ is infinite. To avoid this situation, a constraint must be introduced:
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– either by requiring the variances to be above a certain threshold, which is

equivalent to restricting the domain by replacing Θ with Θ̃ ⊂ Θ, and writing

θ̂ = argmax
Θ̃
�(θ),

– or, using a Bayesian approach, considering a probability distribution for θ with

density f(θ) and writing:

θ̂ = argmax
Θ

�(θ) + log f(θ)

– or by imposing any other form of constraint as, for example, computing the

means with at least two unequal observations.

5.2.26.– (Parameters of a homogeneous Markov chain) (see p. 90)

1) Using the Bayes rule and the Markov property, we have:

L = P {X0 = x0, . . . , XN−1 = xN−1}
= P {XN−1 = xN−1|XN−2 = xN−2, . . . , X0 = x0}

P {XN−2 = xN−2, . . . , X0 = x0}
= P {XN−1 = xN−1|XN−2 = xN−2}P {XN−2 = xN−2, . . . , X0 = x0}

Iterating, we obtain:

L =
N−1∑
n=1

S−1∑
s=0

S−1∑
s′=0

ps|s′ (xn = s, xn−1 = s′)
S−1∑
s=0

αs (x0 = s)

Taking the log, we have:

logP {X0 = x0, · · · , XN−1 = xN−1} =

N−1∑
n=1

S−1∑
s=0

S−1∑
s′=0

log ps|s′ (xn = s, xn−1 = s′) +
S−1∑
s=0

logαs (x0 = s)

2) The estimator of the maximum likelihood of αs is the solution to

{{ 1.6max
∑S−1

s=0 logαs (x1 = s)∑
s αs = 1

Hence αs =
∑S−1

s=0 (x0 = s). To clarify, the values of αs are all null, except for

that for which the position is the observed value of X.
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The estimator of the maximum likelihood of ps|s′ is the solution to⎧⎪⎪⎨⎪⎪⎩
max

∑N−1
n=1

∑S−1
s=0

∑S−1
s′=0 log ps|s′ (xn = s, xn−1 = s′)

∀s′, ∑S−1
s=0 ps|s′ = 1

The Lagrangian is written as
∑N−1

n=1

∑S−1
s=0

∑S−1
s′=0 log ps|s′ (xn = s, xn−1 =

s′) +
∑S−1

s′=0 λs′(
∑S−1

s=0 ps|s′ − 1). Canceling the derivative of the Lagrangian in

relation to ps|s′ , we obtain:

1

ps|s′

N−1∑
n=1

(xn = s, xn−1 = s′) + λs′ = 0

and

p̂s|s′ =
∑N−1

n=1 (xn = s, xn−1 = s′)∑S−1
s=0

∑N−1
n=1 (xn = s, xn−1 = s′)

The meaning of this expression is evident: we count the number of ordered pairs

of form (s′, s) and divide the result by the total number of pairs beginning with s′. In

practice, we simply need to calculate the numerator for every (s′, s) and then apply∑S
s=1 p̂s|s′ = 1.

3) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 19 08:05:14 2016

****** estimMarkovchain

@author: maurice

"""

from numpy.random import rand

from numpy import sum, ones, cumsum, zeros

from numpy import matrix as mat

S = 3; Prand = rand(S,S);

mataux = (mat(ones([S,1])) * mat(ones([1,S])))*Prand

P = Prand / mataux; alpha = rand(S); alpha = alpha/sum(alpha);

cumsumalpha = cumsum(alpha); cumsumP = cumsum(P, axis=0);

N = 10000; X = zeros(N); U = rand(); X[0] = S-sum(cumsumalpha>=U);

for n in range(1,N):

ind=int(X[n-1]); Pn=cumsumP[:,ind]; U = rand();X[n] = S-sum

(Pn>=U)

hatP = zeros([S,S]);



204 Digital Signal Processing with Python Programming

for n in range(1,N):

ind1 = int(X[n]); ind2=int(X[n-1]); hatP[ind1,ind2] = hatP

[ind1,ind2]+1;

mataux = (mat(ones([S,1])) * mat(ones([1,S])))*hatP

hatP = hatP / mataux; print(P) ; print(’*****’) ; print(hatP)

5.2.27.– (GMM generation) (see p. 97)

– Type the following module toolGMM, which will also be used in exercise 5.2.28:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 2 07:58:07 2016

****** toolGMM

@author: maurice

"""

from numpy import zeros, sqrt, sum, size, inf

from numpy.random import rand, randn

from numpy import log, sort, ones, pi, mean, std, abs, dot, exp

def geneGMM(N,alphas,mus,sigma2s):

"""

Generate a mixture of K gaussians

SYNOPSIS

[x,states]=GENEGMM(N,alphas,mus,sigma2s)

N = length of the sequence

alphas = ponderation array (K x 1)

mus = mean array (K x 1)

sigma2s = variance array (K x 1)

x = data array N x 1

states = state array N x 1

"""

sigma = sqrt(sigma2s);

K = len(mus);

cumalphas = zeros(K+1);

for ii in range(K):

cumalphas[ii+1] = cumalphas[ii]+alphas[ii];

x = zeros(N); states = zeros(N);

for ii in range(N):

mm = K-sum(cumalphas>rand());

states[ii] = mm;

x[ii] = mus[mm]+ sigma[mm]*randn();

return x,states

#=========================================

def estimState_GMM_EM(y,alphas,mus,sigma2s):
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"""

EM algorithm for GMM

with S components and dimension D

SYNOPSIS

[S,PS]=estimState_GMM_EM(y,alphas,mus,sigma2s)

Inputs

y = data (Nx1)

alphas = (Kx1) vector of proportion

mus = (Kx1) vector of means

sigma2s = (Kx1) vector of variances

Outputs

S = Nx1 state sequence, valued in (1,...,K)

PS = probability of S

"""

logfact2pi = log(sqrt(2*pi));

K = len(alphas);

N = len(y);

logdet = log(sigma2s);

bkn = zeros([K,N]);

for k in range(K):

difference = y-mus[k];

aux1 = (difference **2) / sigma2s[k];

logbns = -0.5*(aux1+logdet[k])-logfact2pi;

bkn[k,:] = exp(logbns)*alphas[k];

cnp = sum(bkn,axis=0);

gamma = bkn / dot(ones([K,1]),cnp.reshape(1,N));

# [PS, S] = max(gamma,[],1);

PS = gamma.max(axis=0);

S = gamma.argmax(axis=0)

return S, PS

#=========================================

def estimparamGMM_EM(y,K,tol=1e-5,ITERMAX=1000):

"""

EM algorithm for GMM with S components and

dimension D

SYNOPSIS

[alphas,mus,sigma2s,llike]=...

ESTIMGMM_EM(y,K,tol,ITERMAX)

Inputs

y = data N x 1

K =

tol = tolerance

ITERMAX = maximal number of iterations
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Outputs

alphas = final proportion

mus = final means

sigma2s = final variances

llike = log-likelihood

"""

N = size(y,0);

llike = zeros(ITERMAX);

likely_old = -inf; relativediff = +inf;

kEM = 0; logfact2pi = log(sqrt(2*pi));

# initialization

alphas = ones(K)/float(K);

ysort = sort(y);

NK = int(N/K)*K;

ysort = ysort[range(NK)]

yK = ysort.reshape(K,int(NK/K));

mus = mean(yK,axis=1); sigma2s = 2.0*std(yK,axis=1)**2;

while (relativediff>tol) & (kEM<ITERMAX):

logdet = log(sigma2s);

bkn = zeros([K,N]);

for k in range(K):

difference = y-mus[k];

aux1 = (difference **2) / sigma2s[k];

logbns = -0.5*(aux1+logdet[k])-logfact2pi;

bkn[k,:] = exp(logbns)*alphas[k];

cnp = sum(bkn,axis=0);

gamma = bkn / dot(ones([K,1]),cnp.reshape(1,N));

llike[kEM] = sum(log(cnp));

sum_gamma_nn = sum(gamma,axis=1);

alphas = sum_gamma_nn/float(N);

#===== mean re-estimation

mus = dot(gamma,y.reshape(N)) / sum_gamma_nn.reshape(K);

#===== variance re-estimation

aux20 = dot(y.reshape(N,1),ones(K).reshape(1,K))

aux21 = dot(ones([N,1]),mus.reshape(1,K))

aux2 = (aux20-aux21)**2;

aux3 = gamma * aux2.transpose();

sigma2s = sum(aux3,axis=1) / sum_gamma_nn;

relativediff = abs((llike[kEM]/likely_old)-1.0);

likely_old = llike[kEM];

kEM = kEM+1;

llike = llike[range(1,kEM)];

alphas = sort(alphas)
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mus = sort(mus)

sigma2s = sort(sigma2s)

return alphas,mus,sigma2s,llike

– Type the program:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 2 08:41:35 2016

****** estimparamGMM

@author: maurice

"""

from toolGMM import geneGMM, estimparamGMM_EM

from numpy import array, sort

from matplotlib import pyplot as plt

alphas=array([0.2,0.3,0.1,0.4])

N=2000; mus = array([1.0,-1.0,3.0,-2.0]);

sigma2s=array([0.1,0.2,0.1,0.4])

aux = geneGMM(N,alphas,mus,sigma2s)

y = aux[0]; N = len(y); K=4;

alphashat,mushat,sigma2shat,llike = \

estimparamGMM_EM(y,K,tol=1e-6,ITERMAX=1000)

print(’***** ’)

print(’***** alpha’)

alphassort = sort(alphas)

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(alphassort[0],alphassort[1],\

alphassort[2],alphassort[3]))

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(alphashat[0],alphashat[1],\

alphashat[2],alphashat[3]))

print(’***** mu’)

mussort = sort(mus); mushatsort = sort(mushat);

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(mussort[0],mussort[1],\

mussort[2],mussort[3]))

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(mushatsort[0],mushatsort[1],\

mushatsort[2],mushatsort[3]))

print(’***** sigma2’)

sigma2sort = sort(sigma2s); sigma2shatsort = sort(sigma2shat);

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(sigma2shat[0],\

sigma2sort[1],sigma2sort[2],sigma2sort[3]))

print(’%4.2f,%4.2f,%4.2f,%4.2f’%(sigma2shat[0],\

sigma2shatsort[1],sigma2shatsort[2],sigma2shatsort[3]))

plt.clf(); plt.plot(llike,’.-r’); plt.show()
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5.2.28.– (Estimation of states of a GMM) (see p. 97)

1) Equation [2.128] gives the probability of state Sn at instant n, conditional on

the observation Yn. Knowing parameter θ, we can therefore use the EM algorithm to

calculate:

Ŝ = arg max
k∈{1,...,K}

Pθ {S = k|Y } .

2) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 2 14:59:42 2016

****** estimStateGMM

@author: maurice

"""

from toolGMM import geneGMM, estimState_GMM_EM, estimparamGMM_EM

mus= [1,5,8]; sigma2s = [1.0,0.5,1.2]; alphas = [0.5,0.3,0.2];

K = len(alphas); Nlearn = 10000;

xlearn=geneGMM(Nlearn,alphas,mus,sigma2s); tol=1e-8; ITERMAX=180;

#===== learning

[hatalphas,hatmus,hatsigma2s,llike]= \

estimparamGMM_EM(xlearn[0],K,tol,ITERMAX);

#===== testing data

Ntest = 400; xtest = geneGMM(Ntest,hatalphas,hatmus,hatsigma2s);

Strue = xtest[1];

[hatS,PS]=estimState_GMM_EM(xtest[0],hatalphas,hatmus,hatsigma2s);

errorrate = 1.0-sum((Strue==hatS))/float(Ntest);

print(’Error rate %4.4f’%errorrate)

5.2.29.– (MLE on censored data) (see p. 99)

1) We have FX(x; θ) = 1− e−θx (x ≥ 0). Using expression [2.132], we have:

Q(θ, θ′) = N log(θ)− θ
N−1∑
n=0

Yn − θ

θ′

N−1∑
n=0

(cn = 1)

2) Canceling the derivative with respect to θ, we obtain the recursion of the EM

algorithm:

1

θ(p)
= mY + ρ1

1

θ(p−1)
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where ρ1 = N−1
∑N−1

n=0 (cn = 1) and mY = N−1
∑N−1

n=0 Yn. This equation

converges, because ρ1 < 1. The limit therefore verifies the equation, giving:

θlim =
1− ρ1
mY

[5.11]

Using expression [2.130], we obtain a likelihood expressed as Llim =
N0 logN0/S −N0

3) Program censoredsimul.py carries out a simulation with N = 30. A total

of 10 censored data points are obtained by random reduction of the “true” values. We

see that the mean square error is better for the estimator [5.11] than for the estimator

that considers that none of the data points are censored, and than for the estimator that

only takes account of the uncensored data.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 09:35:41 2016

***** censoredsimul

@author: maurice

"""

from numpy import zeros, mean, log, std

from numpy.random import rand

theta0=2; N=20; nc=10;

Lruns=300; tt=zeros([Lruns,3]);

for ir in range(Lruns):

Y = -log(rand(N))/theta0; c = zeros(N); c[range(nc)]=1;

Y[range(nc)] = 0.2*(rand(nc) * Y[range(nc)]);

meany = mean(Y); rho0 = mean(c==0); tt[ir,0] = rho0/meany;

tt[ir,1] = 1/mean(Y); tt[ir,2] = 1/mean(Y[nc:N]);

print(std(tt-theta0,axis=0))

4) Program censoredHT.py estimates the expectation of life after a heard implant.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 09:15:12 2016

****** censoredHT

@author: maurice

"""

from numpy import mean

import statsmodels.api as sm

heart = sm.datasets.heart.load()

survival = heart.endog/365.0; c = heart.censors



210 Digital Signal Processing with Python Programming

meany = mean(survival); rho0 = mean(c==0); thetalim = rho0/meany

print(’***** the life expectation is %4.2f years’%(1.0/thetalim))

5.2.30.– (Heart implant, model with exogenous variable) (see p. 100) Starting with

the probability density of the non-censored data:

log p(x; θ(a)) = log θ(a)− θ(a)x

the expression [2.132] writes:

Q(θ, θ′) =
N−1∑
n=0

log(α0 + α1an)−
N−1∑
n=0

Yn(α0 + α1an)

−
N∑

n=1

(cn = 1)
α0 + α1an
α′
0 + α′

1an

Maximization with respect to α0 and α1 is given by canceling the respective

derivatives:

∂α0Q(θ, θ′) =
N−1∑
n=0

1

α0 + α1an
−

N−1∑
n=0

Yn −
N−1∑
n=0

(cn = 1)
1

α′
0 + α′

1an
= 0

∂α1Q(θ, θ′) =
N−1∑
n=0

an
α0 + α1an

−
N−1∑
n=0

Ynan −
N−1∑
n=0

(cn = 1)
an

α′
0 + α′

1an
= 0

This can be rewritten as:

N−1∑
n=0

1

α0 + α1an
= A, where A =

N−1∑
n=0

Yn +
N∑

n=1

(cn = 1)
1

α′
0 + α′

1an
[5.12]

N−1∑
n=0

an
α0 + α1an

= B, where B =
N−1∑
n=0

Ynan +
N−1∑
n=0

(cn = 1)
an

α′
0 + α′

1an

Let us note that α0A+ α1B = N ; therefore, α0 = (N − α1B)/A. Carrying this

expression in [5.12], we obtain:

f(α1) =
N−1∑
n=0

1

α1(an −B/A) +N/A
−A [5.13]

and look for the zero-crossing of f . We can note the Hessian is always negative,

leading to a unique maximum. Therefore, the zero-crossing exists if the derivative in
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0 is negative, i.e.
∑

n an < NB/A. Also, very large f values occur when the

denominators are close to 0. Then, if
∑

n an < NB/A, we can restrict the range of

value of α1 to −N/(Amin an − B). For the recorded value of ages, we find that

α1 = 0. Try the random age values proposed in the following program:

# -*- coding: utf-8 -*-

"""

Created on Sat Jun 25 05:48:11 2016

****** censoredHTwithexogenous

@author: maurice

"""

from numpy import mean, sum, zeros, linspace, log, exp

import statsmodels.api as sm

from matplotlib import pyplot as plt

heart = sm.datasets.heart.load()

survival_year = heart.endog/365.0

age = heart.exog; c = heart.censors; n = len(c)

# uncomment to test with random age values

# ss=8939; seed(ss); age = 50.0*rand(n)

sumY = sum(survival_year); sumYa = sum(survival_year*age)

meanY = sumY/n; sumcensored = sum(c==1)

alpha0 = (1.0-sumcensored/float(n))/mean(survival_year)

alpha1 = 1.0; alpha0prime = alpha0; alpha1prime = alpha1

thetanprime = alpha0prime+alpha1prime*

age

La1=1000; f = zeros(La1); Lruns = 100; loglikely=zeros(Lruns)

for it in range(Lruns):

sumcensoredprime = sum( (c==1)/(alpha0prime+alpha1prime*age))

A = sumY+sumcensoredprime

sumcensoredaprime=sum((c==1)*(age/(alpha0prime+alpha1prime*age)))

B = sumYa+sumcensoredaprime

if sum(age)>n*B/A:

listmin= -float(n)/(A*age.min()-B)

gamman = age-B/A; gamma0=n/A; lista1 = linspace(0.0001,

listmin,La1)

for ia1 in range(La1):

a1=lista1[ia1]; f[ia1]=(sum(1.0/(a1*gamman+gamma0))-A)

alpha1prime = lista1[abs(f).argmin()]; alpha0prime =

(n-alpha1prime*B)/A

thetanprime = alpha0prime+alpha1prime*age

else:

alpha1prime = 0.0; alpha0prime = float(n)/A
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logp0 = sum((log(thetanprime)-sum(survival_year*thetanprime))*

(c==0))

logp1 = sum(log(1.0-exp(-thetanprime))*(c==1)); loglikely[it]

=logp0+logp1

plt.clf(); plt.subplot(211); plt.plot(f,’.-’)

plt.ylim([-10,100]); plt.subplot(212); plt.plot(loglikely,’.-’)

plt.title(’$\\alpha_0$ = %4.2e, $\\alpha_1$ = %4.2e’\

%(alpha0prime, alpha1prime))

plt.show()

5.2.31.– (Logistic regression) (see p. 102) The following function toollogisticNR

of the module toollogistic estimates the parameters of a logistic model, and is

based on the Newton-Raphson algorithm.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 16:10:06 2016

****** toollogistic

@author: maurice

"""

from numpy import size, inf, exp, array, log, zeros

from numpy.linalg import inv

from scipy import cosh

from numpy import matrix as mat

#============================================

def logisticNR(Z,S,tol,ITERMAX):

"""

Newton-Raphson algorithm

SYNOPSIS

logisticNR(Z,S,tol,ITERMAX)

Inputs:

Z=array Nx(p+1),explicative variables (first column of 1s)

S = array N x 1, response in {0,1}

tol = relative gap, typically 1e-8

ITERMAX = maximal iteration number, typically 100

Outputs:

alpha = regression coefficients (p+1) x 1

loglike = log-likelihood

Covalpha = covariance of the alpha estimates

likp = 1/(1+exp(Z*alpha))

"""

p = size(Z,1); N = size(Z,0);

Zmat = mat(Z)

sumZS = sum(Zmat[S==1,:], 0)
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relativediff = +inf; ell_old = -inf;

alpha = zeros(p);# alpha[0]=1;

alpha = mat(alpha)

alpha = alpha.transpose()

loglike = zeros(ITERMAX);

kNR = 0;

while (relativediff>tol) & (kNR<ITERMAX):

linkp = 1.0 / (1.0+exp(Zmat*alpha));

aux2 = linkp.transpose()*Zmat

dell = -sumZS+aux2;

d2ell = zeros([p,p]);

for nn in range(N):

aux31 = Zmat[nn,:]*alpha

aux3 = exp(aux31[0,0])/(1.0+exp(aux31[0,0]))**2

d2ell = d2ell + aux3 * (Zmat[nn,:].transpose()*

Zmat[nn,:]);

invd2ell = inv(d2ell)

alpha = alpha + invd2ell*dell.transpose();

aux = Zmat*alpha

loglike[kNR] = sum(aux[S==0])-\

sum(log(1.0+exp(Zmat*alpha)));

relativediff = abs(loglike[kNR]/ell_old-1);

ell_old = loglike[kNR];

ell_old

kNR = kNR+1;

loglike = loglike[1:kNR];

aux4 = 1.0 / (2.0*cosh(Zmat*alpha/2.0))

Ztilde = mat(zeros([N,p]))

for ip in range(p):

Ztilde[:,ip]=array(Zmat[:,ip])*array(aux4)

Covalpha = inv(Ztilde.transpose()*Ztilde);

return [alpha, loglike, Covalpha, linkp]

The program logisticORing.py estimates the parameters of the data provided

in Table 2.4, along with the associated confidence intervals, given by expression

[2.138]. It calculates the p -value of the log-GLRT, expression [2.29], associated with

the hypothesis H0 = {α2 = 0}.

We see that the p -value of the log-GLRT associated with hypothesis H0 is 0.01,

leading us to reject H0. Furthermore, the confidence interval at 95%, 0.01 ≤ α2 ≤
0.34, does not contain the value 0, which also leads us to reject H0.
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Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Fri Jun 3 23:28:15 2016

****** logisticORing

@author: maurice

"""

from numpy import array,ones, zeros

from numpy import diag, sqrt

from scipy.stats import chi2

from toollogistic import logisticNR

dataK = ([53,56,57,63,66,67,67,67,68,69,70,70,70,70,72,73,

75,75,75,76,78,79,80,81]);

dataS = ([1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0]);

LK = len(dataK); Z = zeros([LK,2]); Z[:,0] = ones(LK);

Z[:,1] = array(dataK,dtype=’float’) #dataK;

S = array(dataS); tol=1e-10; ITERMAX = 100;

result = logisticNR(Z,S,tol,ITERMAX);

alpha = result[0]; ell = result[1]; Covalpha = result[2]; Nell=len

(ell)-1

#===== test H0 = {alpha[1]=0}

result0 = logisticNR(ones([LK,1]),S,tol,ITERMAX);

alpha0 = result0[0]; ell0 = result0[1]; Covalpha0 = result0[2]

Nell0 = len(ell0)-1; T = 2.0*(ell[Nell]-ell0[Nell0]); pvalue =

1-chi2.cdf(T,1);

if pvalue<0.05:

decision=’H0 false’

else:

decision=’H0 true’

DC = diag(Covalpha);

Ib0i = alpha[0] - 1.96*sqrt(DC[0]); Ib0s = alpha[0] + 1.96*sqrt

(DC[0]);

Ib1i = alpha[1] - 1.96*sqrt(DC[1]); Ib1s = alpha[1] + 1.96*sqrt

(DC[1]);

print(’****************’)

print(’\t%5.2f \t< alpha[0] =%5.2f < %5.2f’\

%(Ib0i,alpha[0],Ib0s))

print(’\t%5.2f \t< alpha[1] =%5.2f < %5.2f’\

%(Ib1i,alpha[1],Ib1s))

print(’\tp-value of H0={alpha2=0} = %4.2f==>%s’%(pvalue,decision))
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5.2.32.– (GLRT for the logistic model) (see p. 102) The program

logistictestGLRT.py verifies the distribution of the GLRT under H0. It uses the

function logisticNR proposed in exercise 5.2.31.

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 8 09:22:45 2016

****** logistictestGLRT

@author: maurice

"""

from numpy import ones, dot, array, exp, zeros,linspace

from numpy.random import randn, rand

from scipy.stats import chi2

from matplotlib import pyplot as plt

from toollogistic import logisticNR

#=====================================

tol=1e-8; ITERMAX = 100; N = 100;

alpha_true0 = array([0.3,0.5,1.0,0.0,0.0,0.0]); p = len(alpha_

true0);

#===== design matrix randomly selected

X = randn(N,p-1); Z = zeros([N,p]); Z[:,0] = ones(N); Z[:,range

(1,p)] = X

r = 1; Z0 = zeros([N,p-r]); Z0[:,0] = ones(N);

Z0[:,range(1,p-r)] = X[:,range(p-r-1)]

Za = dot(Z,alpha_true0); proba1 = 1.0 / (1.0+exp(Za));

Lruns = 500; GLRT = zeros(Lruns);

for irun in range(Lruns):

Y = rand(N) < proba1; results1 = logisticNR(Z,Y,tol,ITERMAX);

alphaaux1 = results1[0]; ell1 = results1[1]

C1 = results1[2]; results0 = logisticNR(Z0,Y,tol,ITERMAX);

alphaaux0 = results0[0]; ell0 = results0[1]

C0 = results0[2]; GLRT[irun] = 2.0*(ell1[len(ell1)-1]-ell0[len

(ell0)-1]);

bins=50;

plt.clf(); auxhist = plt.hist(GLRT,bins,normed=’True’);

plt.hold(’on’); xtheo = linspace(0,10,200)

plt.plot(xtheo,chi2.pdf(xtheo,r),’-r’);plt.hold(’off’);plt.show()

5.2.33.– (Logistic regression on home owner/rent) (see p. 102) Type and run the

following program:

# -*- coding: utf-8 -*-
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"""

Created on Fri Jun 3 23:28:15 2016

****** logisticOwner

@author: maurice

"""

from numpy import ones, zeros

from numpy import diag, sqrt

from scipy.stats import chi2

from toollogistic import logisticNR

import statsmodels.api as sm

data = sm.datasets.ccard.load(); age = data.data[’AGE’]

income = data.data[’INCOME’]; S = data.data[’OWNRENT’]

N = len(S); p = 2; Z = zeros([N,p+1]); Z[:,0] = ones(N);

Z[:,1] = age ; Z[:,2] = income; tol=1e-10; ITERMAX = 100;

result = logisticNR(Z,S,tol,ITERMAX);

alpha = result[0]; ell = result[1]; Covalpha = result[2]

Nell=len(ell)-1

#===== under H0={alpha[1]=alpha[2]=0}

result0 = logisticNR(ones([N,1]),S,tol,ITERMAX);

alpha0 = result0[0]; ell0 = result0[1]; Covalpha0 = result0[2]

Nell0 = len(ell0)-1

T = 2.0*(ell[Nell]-ell0[Nell0]); pvalue = 1-chi2.cdf(T,1);

if pvalue<0.05:

decision=’H0 false’

else:

decision=’H0 true’

DC = diag(Covalpha); Ibi = zeros(p+1); Ibs = zeros(p+1)

for ip in range(p+1):

Ibi[ip] = alpha[ip] - 1.96*sqrt(DC[ip]);

Ibs[ip] = alpha[ip] + 1.96*sqrt(DC[ip]);

print(’****************’)

for ip in range(p+1):

print(’\t%5.2f \t< alpha[%i] =%5.2f < %5.2f’\

%(Ibi[ip],ip,alpha[ip],Ibs[ip]))

print(’\tp-value of H0 = {alpha[1]=alpha[2]=0} = %4.2e\

==> %s’%(pvalue,decision))

5.2.34.– (Cumulative function estimation) (see p. 106) Type and run the following

program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 17:56:03 2016

****** cumulEstimate
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@author: maurice

"""

from scipy.stats import norm

from numpy.random import rand, randn

from numpy import cumsum, sort, zeros, arange

from matplotlib import pyplot as plt

N=1000; XGauss=randn(N); XGausssort = sort(XGauss);

Xmulti = zeros(N); pi0 = [0.5, 0.25, 0.125, 0.125];

Lp = len(pi0); trueCF = cumsum(pi0);

for n in range(N):

Xmulti[n] = sum(trueCF<rand())

Xmultisort = sort(Xmulti); rangeY=arange(float(N))/N

plt.clf(); plt.subplot(211)

plt.plot(XGausssort,arange(float(N))/N,’r’); plt.hold(’on’)

plt.plot(XGausssort,norm.cdf(XGausssort,0.0,1.0))

plt.hold(’off’); plt.title(’Gaussian case’)

plt.subplot(212); plt.plot(Xmultisort,rangeY); plt.hold(’on’)

plt.plot(range(Lp),trueCF,’o’)

plt.hold(’off’); plt.xlim([0,3.1]); plt.ylim([0,1.1])

plt.xticks(range(Lp)); plt.grid(’on’)

plt.title(’Multinomial case’); plt.show()

5.2.35.– (Estimation of a quantile) (see p. 106)

1) An estimator is given by:

ŝN = X(�cN�)

where X(n) is the nth value of the series arranged in increasing order, known as

the order statistic. This estimator may be refined by approximating the cumulative

function locally around X(�cN�) by a polynomial.

2) Applying the δ-method to expression [2.141], we can deduce the asymptotic

distribution of ŝN :

√
N(ŝN − s) → N(0, η) where η =

F (s)(1− F (s))(
dF
ds

)2
3) From this, we deduce an approximate confidence interval at 95%:

I =

(
ŝN − 1.96

√
γ̂

p(ŝN )
√
N

, ŝN +
1.96

√
γ̂

p(ŝN )
√
N

)

4) Type the following program:
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# -*- coding: utf-8 -*-

"""

Created on Mon May 30 06:54:23 2016

******** CumulInverseEstimate

@author: maurice

"""

from numpy.random import randn

from numpy import sqrt, zeros, log, sort, dot, array, ones

from numpy.linalg import inv

from scipy.stats import norm, t

Lruns = 1000; val = zeros(Lruns); ICval = zeros(Lruns);

CIpercent = 0.95; N = 10000;

#===== a few percent of the values are taken into

# account when calculating the value of pdf

# around the value of interest

dxis = 0.08; xinf = 1.0-dxis/2.0; xsup = 1.0+dxis/2.0;

alphapercent = 0.9; calpha = norm.isf((1.0-alphapercent)/2.0) /

sqrt(N);

goodchoice = ’True’

#======== choose ’G’ or ’R’ or ’T’

case = ’G’

if case ==’G’:

Xa = randn(N,Lruns);

valtrue = norm.isf(1.0-CIpercent);

elif (case ==’R’):

Xa = sqrt(randn(N,Lruns)**2 + randn(N,Lruns)**2);

valtrue = sqrt(-2*log(1.0-CIpercent));

elif (case ==’T’):

Xa = randn(N,Lruns) / randn(N,Lruns);

valtrue = t.isf(CIpercent,1);

else:

goodchoice == ’False’

#=========

if goodchoice:

VV = array([1.0,CIpercent,CIpercent**2])

indp = int(N*CIpercent);

seqm1to1 = indp+array([-1,0,1])

xxss = seqm1to1/float(N);

MM = array([ones(3),xxss,xxss**2]).transpose()

invMM = inv(MM)

for ir in range(Lruns):

X = Xa[:,ir]; Xsort = sort(X); yyss = Xsort[seqm1to1];

alphass = dot(invMM,yyss); val_ir = dot(VV, alphass);
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pdf_select = sum((X> val_ir*xinf)&(X<val_ir*xsup)) \

/float(N)/(val_ir*dxis);

val[ir] = val_ir;

ICval[ir] = calpha * sqrt((1.0-CIpercent) * CIpercent)/

pdf_select;

outofIC = sum((val-ICval>valtrue)|(val+ICval<valtrue))

print(’* Percent of values outside : %4.1f’%(100.0*outofIC/

float(Lruns)))

5.2.36.– (Image equalization) (see p. 106) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 1 21:41:46 2016

****** egalizeimage

@author: maurice

"""

from numpy import size, zeros, sum, cumsum

import scipy.misc as misc

from matplotlib import pyplot as plt

staircase = misc.ascent()

NX = size(staircase,0); NY = size(staircase,1); N = NX*NY;

hatp = zeros(256);

for it in range(256):

hatp[it]=sum(staircase==it)/float(N);

cdfimg = cumsum(hatp); imgequal = zeros([NX,NY]);

for iX in range(NX):

for iY in range(NY):

itx = cdfimg[staircase[iX,iY]];

imgequal[iX,iY] = int(255*itx);

hatpequal = zeros(256);

for it in range(256):

hatpequal[it]=sum(imgequal==(it-1))/float(N);

cdfimgequal = cumsum(hatpequal);

plt.clf(); plt.subplot(221); plt.imshow(256-staircase,cmap=’Greys’);

plt.show()

plt.subplot(222); plt.imshow(256-imgequal,cmap=’Greys’)

plt.subplot(223); plt.plot(range(256),cdfimg); plt.grid(’on’)

plt.subplot(224); plt.plot(range(256),cdfimgequal); plt.grid(’on’)

5.2.37.– (Bootstrap for a regression model) (see p. 110) Type and run the following

program:

# -*- coding: utf-8 -*-
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"""

Created on Wed Jun 1 08:34:29 2016

****** bootstraponregression

@author: maurice

"""

from numpy import zeros,ones, dot, cov, mean

from numpy.linalg import pinv, inv

from numpy.random import randn, randint

N = 30; mu = [3,2]; p = len(mu);

Z = zeros([N,2]); Z[:,0] = ones(N); Z[:,1] = range(N)

Zmu = dot(Z,mu); B = 200; mub = zeros(B);

Lruns = 1000; sigma2b = zeros([p,p,Lruns]);

for irun in range(Lruns):

X = Zmu + randn(N); U = randint(N,size=[N,B]); mub = zeros

([p,B]);

for ib in range(B):

ZU = Z[U[:,ib],:]; HH = pinv(ZU); mub[:,ib] = dot(HH,X

[U[:,ib]]);

sigma2b[:,:,irun] = cov(mub);

theosigma2b = inv(dot(Z.transpose(),Z)); msq2b00=sigma2b[0,0,:];

m00 = mean(msq2b00);

msq2b01=sigma2b[0,1,:];m01=mean(msq2b01); msq2b11=sigma2b[1,1,:];

m11 = mean(msq2b11);

print(’******* estimation of mu[0] and mu[1] ******’)

print(’theoretical variance on mu[0] estimate = \

%5.3e\nboot-value estimate = %5.3e\n’%(theosigma2b[0,0],m00))

print(’theoretical variance on mu[1] estimate = \

%5.3e\nboot-value estimate = %5.3e\n’%(theosigma2b[1,1],m11))

print(’theoretical covariance on the couple estimate = \

%5.3e\nboot-value estimate = %5.3e\n’%(theosigma2b[0,1],m01))

5.2.38.– (Model selection based on cross-validation) (see p. 112) Type and run the

program orderEstimCV.py:

# -*- coding: utf-8 -*-

"""

Created on Fri Jun 3 07:16:04 2016

****** orderEstimCV

@author: maurice

"""

from numpy.random import randn

from numpy.linalg import norm, pinv

from numpy import ones, zeros, sum, dot, setdiff1d

from matplotlib import pyplot as plt
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N = 300; K = 10; L = int(N/K); sigma = 2;

Ptrue = 10; Pmax = 20; X = randn(N,Pmax);

Z = X[:,range(Ptrue)]; beta = ones(Ptrue);

y = sum(Z, axis=1) + sigma*randn(N);

errT = zeros([Pmax,K]); errL = zeros([Pmax,K]);

for ik in range(K):

id1 = int(ik*L); id2 = id1+L-1;

#===== testing DB

Ty = y[range(id1,id2+1)]; TX = X[range(id1,id2+1),:];

#===== learning DB

rg = setdiff1d(range(N),range(id1,id2+1))

Ly = y[rg]; LX = X[rg,:];

for ip in range(1,Pmax):

rgip = range(ip); LH = LX[:,rgip]; TH = TX[:,rgip];

W = pinv(LH); hbeta = dot(W,Ly);

errT[ip,ik] = norm(Ty-dot(TH,hbeta))**2 /(L-ip);

errL[ip,ik] = norm(Ly-dot(LH,hbeta))**2 /((K-1)*L-ip);

errT_p = sum(errT,axis=1)/K;

errL_p = sum(errL,axis=1)/K;

#=====

plt.clf(); plt.plot(errL_p[1:],’x-’); plt.hold(’on’)

plt.plot(errT_p[1:],’o-’); plt.hold(’off’); plt.grid(’on’);

plt.show()

0 5 10 15 20
2

4

6

8

10

12

14

Figure 5.1. Prediction errors as a function of the supposed order of the model: ‘x’ for
the learning base; ‘o’ for the test base. The observation model is of the form y = Zβ +
σε, where Z includes p = 10 column vectors. As the number of predictors increases
above and beyond the true value, we “learn” noise; this is known as overtraining
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Figure 5.1 shows the results of a simulation. The curve marked as ‘x’ represents the

prediction error calculated over the learning base. The mean decreases as the number

of predictors increases. The curve marked as ‘o’, which represents the prediction error

calculated using the test base, passes through a minimum for the true value p = 10.

Thus, when the number of predictors is increased above the true value, we “learn”

noise. This is known as overtraining. Furthermore, note that the error for the test base

is greater than that for the learning base, as predicted by equation [2.82].

5.2.39.– (Cross-validation on CO2 concentration) (see p. 112) Type the following

program:

# -*- coding: utf-8 -*-

"""

Created on Mon Jun 20 17:18:19 2016

****** co2CV

@author: maurice

"""

from numpy import zeros, arange, pi, cos, sin

from numpy import isnan, array, sqrt, size, unravel_index

import statsmodels.api as sm

from numpy import matrix as mat

from numpy.linalg import pinv

from sklearn import cross_validation as CV

dataCO2 = sm.datasets.co2.load(); y = dataCO2.data[’co2’]; N =

len(y)

date = dataCO2.data[’date’]

# determine the nan value indices

listindex=list([])

for ip in range(N):

if not isnan(y[ip]):

listindex.append(ip)

t = arange(N); tprime = t[listindex]; tmat = mat(tprime).

transpose()

yprime = y[listindex]; Nmat = len(yprime); ymat = mat(yprime).

transpose()

f0 = 7.0/365.0; Lp = 7; Lq = 7; Lruns = 100; stde = array(zeros

([Lp,Lq-1]))

for q in range(1,Lq):

for p in range(Lp):

# learning

for ir in range(Lruns):

t_train, t_test, y_train, y_test = \

CV.train_test_split(tprime,yprime,test_size=0.2)

N_train = size(t_train,0); N_test = size(t_test,0)
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H_train = mat(zeros([N_train,2*p+q]));

theta_train = 2*pi*f0*mat(t_train).transpose()*mat

(arange(1,p+1))

H_train[:,0:p] = cos(theta_train); H_train[:,p:2*p] =

sin(theta_train)

for iq in range(q):

H_train[:,2*p+iq] = mat(t_train**iq).transpose()

pinvH_train = pinv(H_train)

alpha_train = pinvH_train*mat(y_train).transpose()

# testing

H_test = mat(zeros([N_test,2*p+q]))

theta_test = 2*pi*f0*mat(t_test).transpose()*mat

(arange(1,p+1))

H_test[:,0:p] = cos(theta_test); H_test[:,p:2*p] =

sin(theta_test)

for iq in range(q):

H_test[:,2*p+iq] = mat(t_test**iq).transpose()

y_pred = H_test*alpha_train; e_pred = mat(y_test).

transpose()-y_pred

stde_pq = sqrt(e_pred.transpose()*e_pred/N_test)

stde[p,q-1] = stde[p,q-1]+stde_pq

stde[p,q-1] = stde[p,q-1]/float(Lruns)

pop,qop = unravel_index(stde.argmin(), stde.shape)

print(’********** p = %i, q = %i’%(pop, qop))

5.2.40.– (Cross-validation for home owner/rent) (see p. 112) Type the following

program:

# -*- coding: utf-8 -*-

"""

Created on Tue Jun 21 07:31:58 2016

****** logisticOwnerCV

@author: maurice

"""

from numpy import ones, zeros, size, exp, array, mean

from numpy import matrix as mat

from toollogistic import logisticNR

import statsmodels.api as sm

from sklearn import cross_validation as CV

data = sm.datasets.ccard.load(); age = data.data[’AGE’]

income = data.data[’INCOME’]; avgexp = data.data[’AVGEXP’]

incomesq = data.data[’INCOMESQ’]; XT=array([age,income,incomesq])

X = XT.transpose(); p = size(X,1); N = size(X,0); Y = data.data

[’OWNRENT’]
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tol=1e-16; ITERMAX = 100; Lruns = 500; gp = zeros(Lruns); percent

_testbase = 0.2;

for ir in range(Lruns):

X_train, X_test, y_train, y_test = \

CV.train_test_split\

(X,Y,test_size=percent_testbase)

N_train = size(X_train,0); N_test = size(X_test,0)

# learning

Z_train = zeros([N_train,p+1]); Z_train[:,0] = ones(N_train);

Z_train[:,1:p+1] = X_train;

result = logisticNR(Z_train,y_train,tol,ITERMAX); alpha_train

= result[0];

# testing

Z_test = zeros([N_test,p+1]); Z_test[:,0] = ones(N_test);

Z_test[:,1:p+1] = X_test; matZ_test = mat(Z_test)

sumZS = sum(matZ_test[y_test==1,:], 0)

loglike = zeros(ITERMAX); linkp = 1.0 / (1.0+exp(matZ_test*

alpha_train));

y_pred = array(linkp>0.5, dtype=’float’).reshape(N_test)

gp[ir] = sum(y_pred == y_test)/float(N_test)

print(’\tGood prediction rate = %4.1f%s’%(100.0*mean(gp),’%’) )

5.2.41.– (Model selection with cross-validation) (see p. 112)

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Wed Jul 27 11:28:56 2016

****** BSSdiabetes

@author: maurice

"""

from numpy import zeros, ones, dot, setdiff1d

from numpy.linalg import pinv

from sklearn import datasets as ds

import matplotlib.pyplot as plt

def residue_norm_CV(X,y,k):

N,p = X.shape; r = p+1; L = int(N/k)

rangeN = range(N); cve = 0.0;

for ik in range(k):

id1 = ik*L; id2 = id1+L-1;

idTest = range(id1,id2+1); NTest = len(idTest)

idLearn = setdiff1d(rangeN,idTest); NLearn = len(idLearn)

ZLearn = zeros([NLearn,r]); ZLearn[:,0] = ones(NLearn);
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ZLearn[:,1:r] = X[idLearn,:]; yLearn = y[idLearn]

pinvZLearn = pinv(ZLearn);

hatbetaLearn = dot(pinvZLearn,yLearn);

ZTest = zeros([NTest,r]); ZTest[:,0] = ones(NTest);

ZTest[:,1:r] = X[idTest,:]; yTest = y[idTest]

hatyTest = dot(ZTest,hatbetaLearn)

eTest = (hatyTest-yTest);

cve = cve + sum(eTest**2)

cve = cve/NTest

return cve

def residue_norm(X,y):

N,p = X.shape; r = p+1;

Z = zeros([N,r]); Z[:,0] = ones(N); Z[:,1:r] = X;

pinvZ = pinv(Z); hatbeta = dot(pinvZ, y);

haty = dot(Z,hatbeta); T = sum((haty-y) **2)

return T

#========= main program ====

diabetes = ds.load_diabetes();

explanatoryVars = diabetes[’data’]; target = diabetes[’target’]

N,p = explanatoryVars.shape; X = explanatoryVars.reshape(N,p);

y = target.reshape(N,1); T_CV = zeros(p+1); kCV = 5;

T_CV[p] = residue_norm_CV(X,y,kCV); T = zeros(p+1); T[p]=residue

_norm(X,y)

suppressedVarindex = zeros(p); model_k = X; colmodel_kindex =

range(p)

for k in range(p,0,-1):

T_k = zeros(k); rangek = range(k);

for j in rangek:

testmodel_jk = model_k[:,setdiff1d(rangek,j)]

T_k[j] = residue_norm(testmodel_jk,y)

jo = T_k.argmin()

T[k-1] = T_k.min()

suppressedVarindex[k-1] = colmodel_kindex[jo]

colmodel_kindex = setdiff1d(colmodel_kindex,colmodel_

kindex[jo])

model_k = model_k[:,setdiff1d(rangek,jo)]

T_CV[k-1] = residue_norm_CV(model_k,y,kCV)

plt.clf(); plt.plot(T_CV,’.-’); plt.show()

selectedcolumns = setdiff1d(range(p),suppressedVarindex[T_CV.

argmin():p])

print(’***** The optimal model consists of the %i explanatory

features : %s’ \

%(len(selectedcolumns),selectedcolumns))



226 Digital Signal Processing with Python Programming

5.3. Inferences on HMM

5.3.1.– (Kalman filter derivation, scalar case) (see p. 123)

1) Using the linearity of the expectation in the evolution equation, we have:

Xn+1|n = anXn|n + E {Bn|Y0:n}
Noting that Bn is independent of Y0:n and is centered, we deduce:

Xn+1|n = anXn|n

2) If we replace Yn+1 with (cn+1Xn+1 + Un+1) and use the hypothesis stating

that Un+1 and Bn+1 are orthogonal to Y0, . . . , Yn, we obtain:

(Yn+1|Y0:n) = cn+1(Xn+1|Y0:n)

= cn+1Xn+1|n [5.14]

3) Using the property [1.34], we write:

Xn+1|n+1 = (Xn+1|Y0:n, Yn+1)

= (Xn+1|Y0:n) +Kn+1in+1

where Kn+1 = (Xn+1, in)/(in, in) and in+1 = Yn+1 − (Yn+1|Y0:n).

Using [5.14], we also get in = Yn+1 − cn+1Xn+1|n. Therefore:

Xn+1|n+1 = Xn+1|n +Kn+1(Yn+1 − cn+1Xn+1|n) [5.15]

4) We have:

in+1 = cn+1Xn+1 + Un+1︸ ︷︷ ︸
Yn+1

−cn+1Xn+1|n

= cn+1(Xn+1 −Xn+1|n) + Un+1

Let Pn+1|n = (Xn+1 − Xn+1|n, Xn+1 − Xn+1|n). Because (Xn+1 − Xn+1|n)
and Un+1 are orthogonal, we can write:

‖in+1‖2 = var (in+1) = c2n+1Pn+1|n + σ2
U (n+ 1)

5) The process

in = Yn − (Yn|Y0:n−1)
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is known as the innovation process. We verify that E {in} = 0. By definition,

in belongs to the linear space spanned by Y0:n. In accordance with the projection

theorem, in+1 is orthogonal to the linear space generated by Y0:n. Consequently,

in ⊥ in+1 and, being Gaussian, they are independent.

Moreover, the linear space spanned by Y0:n corresponds with the linear space

spanned by i0:n. The joint distribution of Y0:n is therefore equal to that of i0:n. Hence:

−2 log pY0:n(y0:n) = n log(2π) +
n∑

k=0

i2k
var (ik)

6) Furthermore:

(Xn+1, in+1) = (Xn+1, Xn+1 −Xn+1|n)cn+1 + (Xn+1, Un+1)︸ ︷︷ ︸
=0

= (Xn+1 −Xn+1|n, Xn+1 −Xn+1|n)cn+1

= Pn+1|ncn+1

And hence:

Kn+1 =
Pn+1|ncn+1

σ2
U (n+ 1) + c2n+1Pn+1|n

[5.16]

7) Let us now determine the expression of Pn+1|n. We have:

Xn+1 −Xn+1|n = (anXn +Bn)− anXn|n

This leads us to:

Pn+1|n = a2nPn|n + σ2
B(n) [5.17]

stating that Xn|n and Bn are orthogonal. Using [5.15], we obtain:

Xn+1 −Xn+1|n+1 = (Xn+1 −Xn+1|n)−Kn+1(Yn+1 − cn+1Xn+1|n)

= (Xn+1 −Xn+1|n)−Kn+1cn+1(Xn+1 −Xn+1|n) +Kn+1Un+1

Using the fact that Xn+1−Xn+1|n and Un+1 are orthogonal, the expression [5.16]

leads to:

Pn+1|n+1 = (1−Kn+1cn+1)Pn+1|n [5.18]
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If we group expressions [5.15], [5.16], [5.17] and [5.18] together, we obtain the

following algorithm in accordance with the Kalman algorithm 7:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1|n = anXn|n
Pn+1|n = a2nPn|n + σ2

B(n)

Kn+1 =
Pn+1|ncn+1

σ2
U (n+ 1) + c2n+1Pn+1|n

Xn+1|n+1 = Xn+1|n +Kn+1

(
Yn+1 − cn+1Xn+1|n

)
Pn+1|n+1 = (1−Kn+1cn+1)Pn+1|n

[5.19]

with the initial conditions x0|0 = 0 and P0|0 = E
{
X2

0

}
.

5.3.2.– (Denoising an AR-1 using Kalman) (see p. 124)

1) According to [3.14] and [3.15], we have:

Kn =
Pn|n−1

Pn|n−1 + σ2
u

[5.20]

which leads us to Pn|n−1(1−Kn) = σ2
uKn. Using [3.13] and [3.18]:

Pn|n−1 = a2(1−Kn−1)Pn−1|n−2 + σ2
b

= a2σ2
uKn−1 + σ2

b

Substituting this result in expression [5.20] gives the recursive formula:

Kn =
ρ+ a2Kn−1

1 + ρ+ a2Kn−1
[5.21]

Using the first step of algorithm 7, we have P1|0 = a2σ2
b/(1−a2)+σ2

b = σ2
b/(1−

a2), hence K1 = σ2
b/(1 − a2)/(σ2

b/(1 − a2) + σ2
u) = ρ/(ρ + (1 − a2). From the

calculation point of view, everything happens as if we started out with formula [5.21]

and the initial values X̂0|0 = 0 and K0 = ρ/(1− a2).

We can easily verify that the series Kn is an increasing monotone and bounded

by 1. It therefore converges and the limit verifies the recursive equation, giving

Klim =
−(1+ρ−a2)+

√
(1+ρ−a2)2+4ρa2

2a2 .

The Kalman algorithm can be summed up as follows:

1) Initial conditions: X̂0|0 = 0 and K0 = ρ/(1− a2).
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2) For n ≥ 1:⎧⎪⎨⎪⎩Kn =
ρ+ a2Kn−1

1 + ρ+ a2Kn−1

X̂n|n = aX̂n−1|n−1 +Kn

(
Yn − aX̂n−1|n−1

)
2) The following program is designed to test the algorithm:

# -*- coding: utf-8 -*-

"""

Created on Fri Jun 10 22:15:33 2016

****** KFnoisyAR1

@author: maurice

"""

from numpy import zeros, arange

from numpy.random import randn

from scipy.signal import lfilter

from matplotlib import pyplot as plt

def KalmanFilterAR1(Y,a,rho,K0):

T = len(Y)

a2 = a*a;

Kn = K0;

xtt = zeros(T)

for t in range(1,T):

Kn = (rho+a2*Kn)/(1+rho+a2*Kn)

xtt[t] = a*xtt[t-1]+Kn*(Y[t]-a*xtt[t-1])

return xtt

#==== main program

a = 0.8; sigmaB = 0.1; sigmaU = 0.3; N = 100;

w = randn(N); alpha = -a;

x = lfilter((sigmaB,),(1.0,alpha),w);

y = x+sigmaU*randn(N);

rho = sigmaB*sigmaB/(sigmaU*sigmaU)

K0 = rho/(1.0-a**2)

xtt = KalmanFilterAR1(y,a,rho,K0);

t = arange(N)

plt.clf(); plt.plot(t,y, label=’observation’); plt.hold(’on’);

plt.plot(t,xtt, ’x-’, label=’filtered’);

plt.plot(t,x,’o-’, label=’true data’); plt.hold(’off’);

plt.legend(loc=’best’); plt.show()
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The results are shown in Figure 5.2.
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Figure 5.2. Results for the study of the filtering

When we presented the Kalman filter, and implemented it in the previous program,

we assumed that the model as well as the characteristic features of the noise are known.

However, this is usually not the case. For example, if in our case, the signal Xn is not

an AR process, the choice of a and σ2
b requires that we compromise between the ability

of Xn to track the trajectory and the elimination of the noise. Choosing a too close

to 1 means that the model does not take into account the rapid variations of the signal

Xn. Therefore, the filter has difficulties “keeping up” with such variations. Likewise,

if we choose σ2
b too high, we assume that we expect significant variations of the signal

Xn with respect to the equation Xn ≈ aXn−1. You can check by using the previous

algorithm and changing the parameters.

5.3.3.– (Kalman filtering of a noisy 1D trajectory) (see p. 125) Type and run the

below program. Selecting C = mat([0.0, 1.0]);, we observe that the location

estimates can be very inaccurate. This is related to the aspect of non-observability of

the system, as this is shown by the rank value of the matrix W that is different from

2.

# -*- coding: utf-8 -*-

"""

Created on Sat Jun 11 17:50:17 2016

****** Kalmantraj1D

@author: maurice

"""

from numpy import zeros, size, eye, array

from numpy.linalg import matrix_rank as rk

from numpy import matrix as mat
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from numpy.linalg import inv

from numpy.random import randn

from matplotlib import pyplot as plt

#==============================================

def kalmanfilter(Y,A,RV,C,RW,mu0,R0):

"""

# Kalman filter

# SYNOPSIS

# [Xtt,Ptt,loglikeli]=kalmanfilter(Y,A,RV,C,RW,mu0,R0)

# Inputs:

# Y = observations (dimY x T)

# A = state matrix (dimX x dimX)

# RV = state covariance (dimX x dimX)

# RW = observation covariance (dimY x dimY)

# mu0 = initial state mean (dimX x 1)

# R0 = initial state covariance (dimX x dimX)

# Outputs:

# Xtt = filtered state (dimX x T)

"""

dimX = size(A,0);

T = size(Y,1);

Xtt = mat(zeros([dimX,T]));

Xttm1 = A * mu0;

Rttm1 = ((A * R0) * A.transpose()) + RV;

cov_inov = (C * Rttm1 * C.transpose()) + RW;

invcov_inov = inv(cov_inov)

Kn = (Rttm1*C.transpose())*invcov_inov;

inov_1 = Y[:,0]-C*Xttm1;

Xtt[:,0] = Xttm1+Kn*inov_1;

Ptt = Rttm1 - ((Kn*C)*Rttm1);

for k in range(1,T):

Xttm1 = A*Xtt[:,k-1];

Rttm1 = (A*Ptt)*A.transpose() + RV;

cov_inov = (C*Rttm1)*C.transpose() + RW;

invcov_inov = inv(cov_inov)

inov_k = (Y[:,k] - (C*Xttm1));

Kn = (Rttm1*C.transpose())*invcov_inov;

Xtt[:,k] = Xttm1 + Kn*inov_k;

Ptt = Rttm1 - (Kn*C)*Rttm1;

return Xtt

#==============================================

N = 150; model1 = 1; sigmab = 1.0; sigmaU = 10.0;

A = mat([[1.0, 0.1],[0, 1.0]]); dimX = size(A,0);
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D = mat([0,1]).transpose();

# select the C shape

if model1:

C = mat([1.0, 0.0]);

else:

C = mat([0.0, 1.0]);

W = mat(zeros([dimX,dimX])); Wik = C;

for ik in range(dimX):

W[ik,:] = Wik

Wik = Wik * A

print(’********* rank of W is %i’%rk(W))

#== trajectory generation

RB = sigmab*sigmab*(D*D.transpose());

Xtrue = mat(zeros([dimX,N])); Xtrue[:,0] = randn(2,1)

for n in range(1,N):

Xtrue[:,n] = A*Xtrue[:,n-1]+D*sigmab*randn()

#==== observation generation

Y = C*Xtrue + sigmaU*mat(randn(N));

#==== initial conditions

mu0 = mat([0.0,0.0]).transpose();

R0 = sigmab*sigmab*eye(2);

Xfilt = kalmanfilter(Y, A, RB, C, sigmaU**2, mu0, R0);

#====

Ya = array(Y); Xtruea = array(Xtrue); Xfilta = array(Xfilt);

plt.clf(); plt.subplot(211)

plt.plot(Xtruea[0,:],’.-g’,label=’true trajectory’)

plt.hold(’on’); plt.plot(Xfilta[0,:],’.-r’,label=’Kalman filter’);

if model1:

plt.plot(Ya[0,:],’.-’,color=[0.6,0.6,0.6]);

plt.hold(’off’); plt.legend(loc=’best’);

plt.subplot(212)

plt.plot(Xtruea[1,:],’.-g’,label=’true trajectory’)

plt.hold(’on’)

plt.plot(Xfilta[1,1:],’.-r’,label=’Kalman filter’);

if not(model1):

plt.plot(Ya[0,:],’.-’,color=[0.9,0.9,0.9]);

plt.hold(’off’);

plt.show()
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5.3.4.– (Calculating the likelihood of an ARMA) (see p. 125)

1) The first equation of expression [3.24] is written as:

1
...

z−(r−2)

z−(r−1)

×
...

×
×

⎡⎢⎢⎢⎢⎢⎣
X1,n

...

Xr−1,n

Xr,n

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−a1

...

−ar−1

−ar

⎤⎥⎥⎥⎥⎥⎦X1,n−1 +

⎡⎢⎢⎢⎢⎢⎣
Xn−1,2

...

Xn−1,r

0

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
1
...

br−2

br−1

⎤⎥⎥⎥⎥⎥⎦Zn [5.22]

Applying a series of delays such as those given in the first column of [5.22], we

obtain:

X1,n = −
r∑

k=1

akX1,n−k + Zn +

r−1∑
m=1

bmZn−m

Noting that, following [3.24], X1,n = Yn, we deduce that Yn is an ARMA-p, q.

2) For t ranging from 2 to n, the Kalman algorithm giving the log-likelihood is

written as:

Xt|t−1 = AXt−1|t−1 [5.23]

Pt|t−1 = APt−1|t−1A
T + σ2RRT [5.24]

γt = CTPt|t−1C [5.25]

Kt =
1

γt
Pt|t−1C [5.26]

It = Yt − CTXt|t−1 [5.27]

Xt|t = Xt|t−1 +KtIt [5.28]

Pt|t = Pt|t−1 −KtC
TPt|t−1 [5.29]

�t = �t−1 + log(γt) +
1

γt
I2t [5.30]

with initial values

P1|1 square matrix of size r (see remark) [5.31]

X1|1 = 0 null vector of size r [5.32]

�1 = 0 [5.33]

3) A tilde is used to indicate quantities calculated using the algorithm with σ = 1.

We consider that, on initialization, P1|1 = σ2P̃1|1. We deduce that Pt|t−1 =
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σ2P̃T |t−1, γt = σ2γ̃t, Kt = K̃t and Xt|t = X̃t|t. The log-likelihood is therefore

written as:

�n =

n∑
t=1

(
log(σ2γ̃t) +

I2t
σ2γ̃t

)
[5.34]

We must therefore simply apply the algorithm for σ = 1 and then use formula

[5.34] to calculate the likelihood. This relationship is highly useful for maximum

likelihood-based estimation problems, as maximization in relation to σ2 possesses

an analytical solution.

REMARK: the choice of P1|1 requires further explanation. According to question

3, we can consider that σ2 = 1. One choice for P1|1 is the matrix that corresponds

to the stationary form of Xt. Noting P1 = cov (Xt) and using the evolution equation

and the stationarity, we have:

P1 = AP1A
T +Q

taking Q = RRT . This is known as the Lyapunov equation. Using the identity:

vec(ABC) = (CT ⊗A)vec(B)

where the operator noted vec denotes the column vectorization operation applied to a

matrix. This last equation may be rewritten as:

vec(P1) = (A⊗A)vec(P1) + vec(Q)

where ⊗ denotes the Kronecker product. Hence:

vec(P1) = (Ir2 −A⊗A)−1vec(Q)

4) a(z)Xn = b(z)Zn, a(z)X̃n = Zn, then b(z)X̃n = Xn.

5) Type the following script that contains the functions LLarmaKalman.py and

arma2ACF.py

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 12 17:57:04 2016

****** testKarmaOnARMApq

@author: maurice

"""

from numpy import zeros, dot

from numpy import log, eye, array, kron

from numpy import matrix as mat

from scipy.linalg import inv, det
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from numpy.random import randn

from scipy.signal import lfilter

from scipy.linalg import toeplitz, hankel

#===============================================

def arma2ACF(a,b,sigma2,n):

"""

# SYNOPSIS: gamma=ARMA2ACF(a,b,sigma2,n)

# Compute ARMA autocovariance sequence

# Input:

# a = AR param with 1 [(p+1) x 1]

# b = MA param with 1 [(q+1) x 1]

# sigma2 = Innovation variance

# n = Number of autocovariances

# Outputs:

# gamma = Autocovariances 0 to (n-1) [n x 1]

# R = Autocovariance of the AR part

"""

p = len(a)-1;

q = len(b)-1;

r = max((p,q+1));

J = zeros(p+1); J[p]=1;

a1 = -a[1:p+1];

#===== first p elements of AR autocovariance

# with sigma2 = 1

A1 = toeplitz(eye(p+1,1), a);

A2 = hankel(a[p]*J,a[range(p,-1,-1)]);

A = A1+A2; invA = inv(A)

R0 = dot(invA,J);

R0 = R0[range(p,-1,-1)]; R0[0] = 2.0*R0[0];

R = zeros(n+r); R[range(p+1)] = R0

#===== following elements of AR autocovariance

# up to (n+r-1)

for ir in range (p+1,n+r):

R[ir] = dot(R[range(ir-1,ir-p-1,-1)],a1);

#===== ARMA covariance

gamma = zeros(n);

for k in range(n):

gamma[k] = 0;

for i in range(q+1):

for j in range(q+1):

gamma[k] = gamma[k] + \

b[i] * b[j] * R[abs(k - i + j)];

# just multiply by sigma2
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gamma = gamma * sigma2;

return gamma,R

#===============================================

def LLarmaKalman(Y,a,b,sigma2):

"""

# Likelihood of ARMA by Kalman filtering

# SYNOPSIS: LLARMAKALMAN(Y,a,b,sigma2)

# Inputs

# Y_n + \sum_k=1^p a_k Y_n-k =

# Z_n + \sum_k=1^q b_k Z_n-k

# a = [1,a_1,...,a_p]

# b = [1,b_1,...,b_q]

# Z_n white gaussian noise with variance sigma2

# Outputs

# L = likelihood maximized on the scale factor

"""

T = len(Y); p = len(a)-1;

q = len(b)-1; r = max([p,q+1]); r2 =r**2

A = zeros([r,r]); matC = mat(eye(r,1));

A[0:p,0] = -a[1:p+1];

A[0:r-1,1:r] = eye(r-1);

matA = mat(A)

R = mat(b);

Q = sigma2*(R.transpose()*R);

#=====

Lcurr = 0;

Xhat_tt = mat(zeros([r,1]));

# steady state

bigA = eye(r2)-kron(A,A);

invbigA = inv(bigA)

P_tt = (invbigA * Q.reshape(r2,1)).reshape(r,r);

#=====

for t in range(T):

Xhat_t1t = matA*Xhat_tt;

P_t1t = matA*P_tt*matA.transpose() + Q;

gamma_t = matC.transpose()*P_t1t*matC;

Yhat_t1t = matC.transpose()*Xhat_t1t;

K_t1 = P_t1t*matC/gamma_t;

I_t = Y[t] - Yhat_t1t;

Xhat_tt = Xhat_t1t + K_t1*I_t;

P_tt = P_t1t - K_t1*matC.transpose()*P_t1t;

s_t = I_t**2/gamma_t;

#===== current likelihood
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Lcurr = Lcurr + log(gamma_t)+s_t;

L = Lcurr/2;

return L

#======= main program

# direct calculation and Kalman approach give

# identical values for the log-likelihood

N = 12;

#===== ARMA causal and inversible

a = array([1,-0.9,0.8]); b = array([1,0.6,0.1,0.3]);

sigma = 2; sigma2 = sigma**2;

w = sigma*randn(N); x = lfilter(b,a,w); matx = mat(x)

#===== with Kalman

Y = x; L1 = LLarmaKalman(Y,a,b,sigma2);

#===== direct ACFs

gamma,Ra = arma2ACF(a,b,sigma2,N);

Rgamma = toeplitz(gamma); invR = inv(Rgamma);

kappa = (matx*invR*matx.transpose());

L2 = (log(det(Rgamma))+kappa)/2;

print (’*******’); print(L1[0,0] / L2[0,0])

5.3.5.– (Filtering and smoothing for 2D tracking) (see p. 128)

1) Using a second-order Taylor expansion, for each component i, we have:

xi(nT + T ) ≈ xi(nT ) + T ẋi(nT ) +
T 2

2
ẍi(nT ) [5.35]

ẋi(nT + T ) ≈ ẋi(nT ) + T ẍi(nT ) [5.36]

Hence:

Xn+1 ≈

⎡⎢⎢⎢⎢⎣
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦Xn +

⎡⎢⎢⎢⎢⎣
T 2/2 0

0 T 2/2

T 0

0 T

⎤⎥⎥⎥⎥⎦
[
ẍ1(nT )

ẍ2(nT )

]

Considering that the pairs (ẍ1(nT ), ẍ2(nT )) representing the acceleration form a

series of independent, centered, Gaussian random variables with a covariance matrix

σ2I2, we have:

Xn+1 = AXn +Bn
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with

RB = σ2

⎡⎢⎢⎢⎢⎣
T 4/4 0 T 3/2 0

0 T 4/4 0 T 3/2

T 3/2 0 T 2 0

0 T 3/2 0 T 2

⎤⎥⎥⎥⎥⎦
σ is expressed in m/s2.

2) Let the speed v0 be 30 m/s, and let us consider that it may vary by a quantity

proportional to v0 of the form λv0. We can therefore take σ ≈ λv0/T as the dispersion

of the acceleration.

3) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Sat Jun 11 17:50:17 2016

****** Kalmantraj2D

@author: maurice

"""

from numpy import zeros, size, cos, sin, arange

from numpy import pi, log, sqrt, eye, array, mod

from numpy import matrix as mat

from numpy.linalg import det, inv

from numpy.random import randn

from scipy.linalg import sqrtm

from matplotlib import pyplot as plt

#==============================================

def kalmanfilter(Y,A,RV,C,RW,mu0,R0):

"""

# Kalman filter

# SYNOPSIS

# [Xtt,Ptt,loglikeli] = kalmanfilter(Y,A,RV,C,RW,mu0,R0)

# Inputs:

# Y = observations (dimY x T)

# A = state matrix (dimX x dimX)

# RV = state covariance (dimX x dimX)

# RW = observation covariance (dimY x dimY)

# mu0 = initial state mean (dimX x 1)

# R0 = initial state covariance (dimX x dimX)

# Outputs:

# Xtt = filtered state (dimX x T)

# Ptt = covariance of estimate (dimX x dimX x T)
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# loglikeli = log p(Y_1:T)

"""

dimX = size(A,0);

T = size(Y,1);

Xtt = mat(zeros([dimX,T]));

Ptt = zeros([dimX,dimX,T]);

Ptt[:,:,0] = 0;

Pttm1 = zeros([dimX,dimX,T]);

Xttm1 = A * mu0;

Rttm1 = ((A * R0) * A.transpose()) + RV;

cov_inov = (C * Rttm1 * C.transpose()) + RW;

invcov_inov = inv(cov_inov)

Kn = (Rttm1*C.transpose())*invcov_inov;

inov_1 = Y[:,0]-C*Xttm1;

Xtt[:,0] = Xttm1+Kn*inov_1;

Pttm1[:,:,0] = Rttm1;

Ptt[:,:,0] = Rttm1 - ((Kn*C)*Rttm1);

loglikeli_k = array(zeros(T));

ll_k = -(log(det(cov_inov))

+ (inov_1.transpose()*invcov_inov)*inov_1)/2.0

loglikeli_k[0] = ll_k[0,0].real

for k in range(1,T):

Xttm1 = A*Xtt[:,k-1];

Rttm1 = (A*Ptt[:,:,k-1])*A.transpose() + RV;

cov_inov = (C*Rttm1)*C.transpose() + RW;

invcov_inov = inv(cov_inov)

inov_k = (Y[:,k] - (C*Xttm1));

Kn = (Rttm1*C.transpose())*invcov_inov;

Xtt[:,k] = Xttm1 + Kn*inov_k;

Pttm1[:,:,k] = Rttm1;

Ptt[:,:,k] = Rttm1 - (Kn*C)*Rttm1;

ll_k = -(log(det(cov_inov))

+ (inov_1.transpose()*invcov_inov)*inov_1)/2.0

loglikeli_k[k] = ll_k[0,0];

loglikeli = sum(loglikeli_k);

return Xtt, Ptt, loglikeli, Pttm1

#==========================================================

def rts(Y, A, RV, B, RW, mu0, R0):

"""

# Kalman’s smoother

# HMM:

# X_{k+1} = A X_k+V_k, (evolution)

# Y_{k} = B X_k+W_k, (observation)
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#

# parameters

# A, RV, B, RW, mu0, R0

#========

# Inputs:

# Y : observations

# A : state matrix

# RV : covariance of X

# B : observation matrix

# RW : covariance of Y

# mu0 : initial state mean

# R0 : initial state covariance

# Outputs:

# XtT : smooth mean estimate

# PtT : smooth covariance estimate

# Xtt : filter mean estimate

# Ptt : filter covariance estimate

"""

dimX = size(A,0);

T = size(Y,1);

XtT = mat(zeros([dimX,T]));

PtT = zeros([dimX,dimX,T]);

# call Kalman filter

Xtt, Ptt, loglikeli, Pttm1 = \

kalmanfilter(Y, A, RV, B, RW, mu0, R0);

# Backward smoothing

# initialize at time T

XtT[:,T-1] = Xtt[:,T-1];

PtT[:,:,T-1] = Ptt[:,:,T-1];

for k in range(T-2,-1,-1):

Xtt_k = (Xtt[:,k]);

Ptt_k = (Ptt[:,:,k]);

Pttm1_kp1 = (Pttm1[:,:,k+1]);

# RTS recursion

Gn = (Ptt_k * A.transpose()) * inv(Pttm1_kp1);

XtT[:,k] = Xtt_k + Gn * (XtT[:,k+1]-(A*Xtt_k));

PtT[:,:,k] = Ptt_k + Gn * (PtT[:,:,k+1] * Gn.transpose()

- A * Ptt_k);

return XtT, PtT, Xtt, Ptt, loglikeli

#==============================================

def confidenceellipse(X0,Ce,alpha, col = ’g’):

"""

# SYNOPSIS: CONFIDENCEELLIPSE(X0, E, c)
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# Ellipse equation:

# (X-X0)’*(C^-1)*(X-X0)= c(alpha)

# X0 = coordinates of the ellipse’s center (2x1)

# C = positive (2x2) matrix

# alpha = confidence level in(0,1)

"""

Ne=100; theta = 2*pi*arange(0,Ne+1)/Ne;

calpha = -2*log(1-alpha);

Y = sqrt(calpha)*mat([cos(theta),sin(theta)])

X = sqrtm(Ce)*Y

xval = array(X[0,:]+X0[0])

yval = array(X[1,:]+X0[1])

plt.plot(xval[0,:],yval[0,:],col);

#==============================================

T = 0.01; v0 = 30;

A = mat([[1.0, 0, T, 0],[0, 1.0, 0, T],\

[0, 0, 1.0, 0],[0, 0, 0, 1.0]]);

C = mat([[1.0, 0.0, 0.0, 0.0],[0.0, 1.0, 0.0, 0.0]]);

D = mat([[T**2/2, 0],[0, T**2/2],[T, 0],[0, T]]);

#== trajectory generation

M0 = 2; N = 50; th = 2*pi*arange(0,N)/N/4.0;

Xtrue = mat([cos(th),cos(th)**2+sin(th)]); sigmaUdB = 25.0;

sigma2obs = 10**(-sigmaUdB/10.0);

#==== observation generation

RU = ((v0*T)**2)*sigma2obs*eye(2); Y = Xtrue + sqrtm(RU)*mat

(randn(2,N));

#==== a priori knowledge

mu = 0.005; sigma = mu*v0/T; RB = sigma*sigma*(D*D.transpose());

#==== initial conditions

mu0 = mat([Y[0,0],Y[1,0],0,0]).transpose(); R0=sigma*sigma*eye(4);

FilterKFresults = kalmanfilter(Y, A, RB, C, RU, mu0, R0);

Xfilt = FilterKFresults[0]; Pnn = FilterKFresults[1]; LL=FilterK

Fresults[2]

SmoothKFresults = rts(Y, A, RB, C, RU, mu0, R0);

Xsmooth = SmoothKFresults[0]; Pnnsmooth = SmoothKFresults[1];

LLsmooth = SmoothKFresults[2]

#====

Ya = array(Y); Xtruea = array(Xtrue); Xfilta = array(Xfilt);

Xsmootha = array(Xsmooth); alpha = 0.90

plt.clf(); plt.subplot(211)

plt.plot(Ya[0,:],Ya[1,:],’.-’,color=[0.9,0.9,0.9]);

plt.hold(’on’)

plt.plot(Xtruea[0,:],Xtruea[1,:],’.-g’)
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plt.plot(Xtruea[0,0],Xtruea[1,0],’og’,markersize=10)

plt.plot(Xfilta[0,:],Xfilta[1,:],’.-r’);

plt.plot(Xsmootha[0,:],Xsmootha[1,:],’.-b’); plt.hold(’off’)

plt.subplot(212); plt.plot(Xfilta[0,:],Xfilta[1,:],’.-r’);

plt.hold(’on’)

#plt.plot(Xtruea[0,0],Xtruea[1,0],’og’,markersize=10)

plt.plot(Xsmootha[0,:],Xsmootha[1,:],’.-b’); plt.hold(’off’)

# we plot only a few of the confidence regions

for t in range(N):

if mod(t,5)==1:

plt.subplot(212); plt.plot(Xtruea[0,:],Xtruea[1,:],’.-g’)

plt.hold(’on’); X0 = array([Xfilta[0,t],Xfilta[1,t]])

Ce = mat(Pnn[0:2,0:2,t]); confidenceellipse(X0,Ce,alpha,col

=’r’);

X0 = array([Xsmootha[0,t],Xsmootha[1,t]]);

Ce = mat(Pnnsmooth[0:2,0:2,t])

confidenceellipse(X0,Ce,alpha,col =’b’);

plt.xlim([0.8, 1.1]); plt.grid(’on’)

plt.legend((’Kalman filter’,’true trajectory’ ,’Kalman

smoother’))

plt.hold(’off’); plt.show()

REMARKS: modifying the value of σ using λ, we modify our initial ideas

concerning the acceleration, and thus concerning the fact that the trajectory more or

less follows a straight line. Hence, if σ is small, the mobile element is easy to follow

when the trajectory is close to a straight line, but harder to follow if the trajectory

curves. If σ is large, the observation noise is difficult to remove. The Kalman filter

establishes a good compromise between prior knowledge, i.e. σ, and observations,

i.e. Yn.

5.3.6.– (Discrete HMM generation) (see p. 129)

1) Let us show that:

Xn+1 =
S−1∑
j=0

j × (Un ∈ [FXn
(j − 1), FXn

(j)])

where Un is a series of independent r.v.s with values in (0, 1). To do this,

let us determine P {Xn+1 = s|Xn = k}. As, according to our hypothesis, Un is

independent of Xn, we can write:

P {Xn+1 = s|Xn = k} = P {Un ∈ [Fk(s− 1), Fk(s)[} = pk|s
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using the fact that Un is uniform. Note that this expression may be written as:

Xn+1 = f(Xn, Un)

where Un is an i.i.d. series with uniform distribution over (0, 1). It is similar to the

expression of the state equation evolution expression [3.9], except that it is neither

linear nor Gaussian.

2) Type and run the program:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 30 05:56:00 2016

****** testHMMGgenerate

@author: maurice

"""

from numpy import zeros, array, size, cumsum, arange, pi, sqrt

from numpy import cos, sin, log

from scipy.linalg import sqrtm

from numpy.random import randn, rand

from numpy import matrix as mat

from matplotlib import pyplot as plt

#==============================================

def HMMGaussiangenerate(N,omega,P,mu,C):

"""

# Generate an HMM of S gaussians

# SYNOPSIS

# HMMGaussiangenerate(N,omega,P,mus,sigma2s)

# inputs:

# N = length of the sequence

# omega = initial distribution S x 1

# P = transition distribution S x S

# mu = mean array d x S

# C = variance array d x d x S

# outputs:

# X = state sequence 1 x N

# Y = observation array d x N

"""

d = size(C,0); S = size(P,0);

C1on2 = zeros([d,d,S]);

F = zeros([S,S]);

for si in range(S):

F[si,:]=cumsum(P[si,:]);

C1on2[:,:,si] = sqrtm(C[:,:,si]);
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Fomega = cumsum(omega);

Y = mat(zeros([d,N]));

X = zeros(N);

X[0] = S-int(sum(Fomega.flat>=rand()));

Y[:,0] = mu[:,int(X[0])]+C1on2[:,:,int(X[0])]*mat(randn(d,1));

for n in range(1,N):

c=F[int(X[n-1]),:];

X[n]= S-int(sum(c.flat>=rand()));

Y[:,n]=mu[:,int(X[n])]+C1on2[:,:,int(X[n])]*mat(randn(d,1));

return X,Y

def confidenceellipse(X0,Ce,alpha, col = ’g’):

"""

# SYNOPSIS: CONFIDENCEELLIPSE(X0, E, c)

# Ellipse equation:

# (X-X0)’*(C^-1)*(X-X0)= c(alpha)

# X0 = coordinates of the ellipse’s center (2x1)

# C = positive (2x2) matrix

# alpha = confidence level in(0,1)

"""

Ne=100; theta = 2*pi*arange(0,Ne+1.0)/Ne;

calpha = -2*log(1-alpha);

Y = sqrt(calpha)*mat([cos(theta),sin(theta)])

X = sqrtm(Ce)*Y

xval = array(X[0,:]+X0[0])

yval = array(X[1,:]+X0[1])

plt.plot(xval[0,:],yval[0,:],col);

#== main

d = 2; S = 4; N = 3000;

Sigma2s = zeros([d,d,S]);

mus = mat(zeros([d,S]))

for ids in range(S):

Maux = mat(randn(d,d))

Sigma2s[:,:,ids] = Maux*Maux.transpose()

mus[:,ids] = mat(randn(d,1));

P = mat(array([[0.4, 0.1, 0.3, 0.2], \

[0.1, 0.4, 0.3, 0.2],[0.3, 0.1, 0.4, 0.2],[0.1, 0.3, 0.1, 0.5]]))

omega = mat(array([1.0/2,1.0/4,1.0/8,1.0/8]));

X,Y = HMMGaussiangenerate(N,omega,P,mus,Sigma2s);

plt.clf(); alpha = 0.95

for ids in range(S):

Yids = array(Y[:,X==ids]); Xids = mus[:,ids]; Sids = Sigma2s

[:,:,ids]

plt.subplot(2,2,ids+1); plt.plot(Yids[0,:],Yids[1,:],’.’)
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confidenceellipse(Xids,Sids,alpha, col = ’g’)

plt.show()

5.3.7.– (EM algorithm for HMM) (see p. 136) Type the following module that

includes the functions EMforHMM, HMMGaussiangenerate and

ForwBackwGaussian:

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 30 05:40:19 2016

****** toolEM

@author: maurice

"""

from numpy import zeros, size, exp,sum

from numpy import pi, log, sqrt, ones, cumsum

from numpy import matrix as mat

from numpy.linalg import det, pinv

from numpy.random import randn, rand

from scipy.linalg import sqrtm

def EMforHMM(Y,P_old,C_old,mu_old,alpha,beta,gamma,ct):

"""

# SYNOPSIS:

# EMforHMM(Y, P_old,C_old,mu_old,alpha,beta,gamma,ct)

# Inputs

# Y = array d x N

# P_old = transition distribution S x S

# where P(j,i) = Prob(X_n = i|X_n-1 = j)

# independent of n

# C_old = observation covariance d x d x S

# mu_old = observation mean d x S

# alpha = array N x 1

# beta = array N x 1

# gamma = array N x 1

# Outputs

# omega_new,P_new,C_new,mu_new, ct

"""

log2pi = log(2*pi);

S = size(P_old,1);

d = size(Y,0)

N = size(Y,1)

omega_new = gamma[:,0];

xi = zeros([S,S,N-1]);

g = zeros([N,S]);

for si in range(S):
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for nn in range(N):

invC = pinv(C_old[:,:,si]);

auxV = (Y[:,nn]-mu_old[:,si])

aux_g = d*log2pi+log(det(C_old[:,:,si]))+ \

auxV.transpose()* invC * auxV

g[nn,si] = exp(-aux_g/2);

for nn in range(N-1):

for sf in range(S):

for si in range(S):

xi[sf,si,nn] = alpha[si,nn] * \

beta[sf,nn+1]* P_old[si,sf]*g[nn+1,sf];

xi[:,:,nn] = xi[:,:,nn] / ct[nn+1];

#=====

sumgamma = sum(gamma,1);

Paux = zeros([S,S]); P_new = zeros([S,S]);

for si in range(S):

for sf in range(S):

Paux[si,sf]=sum(xi[sf,si,:]);

P_new[si,:]=Paux[si,:]/sum(Paux[si,:]);

#=====

mu_new = mat(zeros([d,S])); C_new = zeros([d,d,S]);

for si in range(S):

mu_new[:,si]=Y*gamma[si,:].transpose()/sumgamma[si];

C_newaux=0;

for nn in range(N):

auxV = Y[:,nn]-mu_new[:,si]

C_newaux = C_newaux + (auxV*auxV.transpose())*gamma

[si,nn];

C_new[:,:,si]=C_newaux/sumgamma[si];

return omega_new,P_new,C_new,mu_new

#==============================================

def HMMGaussiangenerate(N,omega,P,mu,C):

"""

# Generate an HMM of S gaussians

# SYNOPSIS

# HMMGaussiangenerate(N,omega,P,mus,sigma2s)

# inputs:

# N = length of the sequence

# omega = initial distribution S x 1

# P = transition distribution S x S

# mus = mean array d x S

# sigma2s = variance array d x d x S

# outputs:
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# X = state sequence 1 x N

# Y = observation array d x N

"""

d = size(C,0); S = size(P,0);

C1on2 = zeros([d,d,S]);

F = zeros([S,S]);

for si in range(S):

F[si,:]=cumsum(P[si,:]);

C1on2[:,:,si] = sqrtm(C[:,:,si]);

Fomega = cumsum(omega);

Y = mat(zeros([d,N]));

X = zeros(N);

X[0] = S-int(sum(Fomega.flat>=rand()));

Y[:,0] = mu[:,int(X[0])]+C1on2[:,:,int(X[0])]*mat(randn(d,1));

for n in range(1,N):

c=F[int(X[n-1]),:];

X[n]= S-int(sum(c.flat>=rand()));

Y[:,n]=mu[:,int(X[n])]+C1on2[:,:,int(X[n])]*mat(randn(d,1));

return X,Y

#=======================================================

def ForwBackwGaussian(Y,omega,P,C,mu):

"""

# SYNOPSIS:

# ForwBackwGaussian(Y,omega,P,C,mu)

# Inputs:

# Y = array d x N

# omega = intitial distribution array S x 1

# P = transition distribution S x S

# where P(j,i) = Prob(X_n = i|X_n-1 = j)

# independent of n

# C = observation covariance d x d x S

# mu = observation mean d x S

# Outputs:

# alpha = array N x 1 - forward propagation

# beta = array N x 1 - backward propagation

# gamma = array N x 1

# ell = log likelihood

# ct = normalisation constant N x 1

"""

d = size(Y,0)

N = size(Y,1)

unsur2pid = (2*pi)**(-d/2);

S = len(omega.flat);
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ct = zeros(N); alpha = zeros([S,N]);

tildealpha = zeros(S); like = zeros([S,N]);

for si in range(S):

Cis = C[:,:,si]

detCis = sqrt(det(Cis));

muis = mu[:,si];

for nn in range(N):

yin = Y[:,nn]-muis;

aux1 = yin.transpose()*pinv(Cis)*yin;

like[si,nn] = unsur2pid * exp(-aux1/2.0) / detCis;

for si in range(S):

tildealpha[si] = like[si,0]*omega.flat[si];

ct[0] = sum(tildealpha);

alpha[:,0] = tildealpha / ct[0];

ell = log(ct[0]);

for nn in range(1,N):

gin = like[:,nn];

for si in range(S):

tildealpha[si] = gin[si] * alpha[:,nn-1].transpose()*

P[:,si];

ct[nn] = sum(tildealpha);

alpha[:,nn] = tildealpha / ct[nn];

ell = ell+log(ct[nn]);

beta = ones([S,N]);

for nn in range(N-2,0,-1):

ginp1 = like[:,nn+1];

for si in range(S):

beta[si,nn]=sum((beta[:,nn+1] * P[si,:].flat) * ginp1)/

ct[nn+1];

gamma = mat(beta * alpha);

return alpha,beta,gamma,ell,ct

Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 12 06:52:34 2016

****** testEMforHMM

@author: maurice

"""

from numpy import zeros, eye, ones

from numpy import matrix as mat

from numpy.random import randn

from matplotlib import pyplot as plt
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import toolEMforHMM as tEM

#===== testFB.m

# Uses function geneGMM.m to generate data

d=2; S=4; N=100; C = zeros([d,d,S]);

for si in range(S):

C[:,:,si] = mat(eye(d));

mu = mat(randn(d,S));

P = mat([[0.4, 0.1, 0.3, 0.2],\

[0.1, 0.4, 0.3, 0.2],[0.3, 0.1, 0.4, 0.2],[0.1, 0.3, 0.1, 0.5]]);

omega = mat([1.0/2,1.0/4,1.0/8,1.0/8]);

#===== testEMforHMMG.m

X,Y = tEM.HMMGaussiangenerate(N,omega,P,mu,C); mu_old = mat(randn

(d,S));

#===== EM initialisation

omega_old = mat(ones(S)/S); C_old = zeros([d,d,S]);

for si in range(S):

C_old[:,:,si] = mat(eye(d));

P_old = mat(ones([S,S])/S);

#=====

MAXITER = 200; LL=zeros(MAXITER); update_omega = 0;

ip = 0; THRESHOLD = 1e-8; llflag = 1; LL_previous = -1e7

while llflag:

alpha, beta, gamma, ell, ct = \

tEM.ForwBackwGaussian(Y,omega_old,P_old,C_old,mu_old);

LL[ip] = ell; relgap = abs((LL[ip]-LL_previous)/LL_previous);

LL_previous = LL[ip]

#===

[omega_new, P_new, C_new, mu_new] = \

tEM.EMforHMM(Y,P_old,C_old,mu_old,alpha,beta,gamma,ct);

omega_old=omega_new; P_old=mat(P_new); mu_old = mu_new; C_old

= C_new;

ip = ip+1; llflag = (relgap>THRESHOLD) & (ip<MAXITER)

LL = LL[range(ip)]; plt.clf(); plt.plot(LL,’.-’); plt.show()

5.3.8.– (State estimation by Viterbi algorithm) (see p. 139)

The following program test the Viterbi algorithm:

# -*- coding: utf-8 -*-

"""

Created on Sun Jun 12 11:24:24 2016

****** testViterby

@author: maurice

"""
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from numpy import zeros, size, argmax, log, array, cumsum

from numpy.random import randn, rand

#==============================================

def HMMGaussian1dgenerate(N,omega,P,mus,sigmas):

"""

# Generate an HMM of S gaussians

# SYNOPSIS

# HMMGaussiangenerate(N,omega,P,mus,sigma2s)

# inputs:

# N = length of the sequence

# omega = initial distribution S x 1

# P = transition distribution S x S

# mus = mean array S x 1

# sigmas = variance array S x 1

# outputs:

# X = state sequence N x 1

# Y = observation array N x 1

# logG = log-likelihood array N x S

"""

S = size(P,0);

F = zeros([S,S]);

for si in range(S):

F[si,:] = cumsum(P[si,:]);

Fomega = cumsum(omega);

Y = zeros(N); X = zeros(N); logG = zeros([N,S]);

X[0] = S-int(sum(Fomega.flat>=rand()));

sigmas_n = sigmas[int(X[0])]

mus_n = mus[int(X[0])]

Y[0] = mus_n+sigmas_n*randn();

for n in range(1,N):

c = F[int(X[n-1]),:];

X[n] = S-int(sum(c.flat>=rand()));

sigmas_n = sigmas[int(X[n])]

mus_n = mus[int(X[n])]

Y[n] = mus_n+sigmas_n*randn();

for n in range(N):

for si in range(S):

mu_s = mus[si]; sigma_s = sigmas[si];

logG[n,si]=-log(sigma_s)-(Y[n]-mu_s)**2/sigma_s/sigma_s

return X, Y, logG

#========================================

def fviterbi(logG,logA):

"""
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# Viterbi algorithm

# SYNOPSIS: hatX = FVITERBI(logG,logA)

# Inputs

# logA(i,j) = log p(i|j)

# logG(n,i) = array (N x S) = [ log g(y_n|i) ]

# Outputs

# hatX = "optimal sequence"

"""

N = size(logG,0); S = size(logG,1);

met = zeros([N+1,S]); asc = zeros([N,S]);

hatX = zeros(N); d = zeros([S,S]);

for nn in range(N):

for sj in range(S):

for si in range(S):

d[si,sj]= met[nn,sj]+logG[nn,si]+logA[si,sj];

for si in range(S):

met[nn+1,si] = max(d[si,:]);

asc[nn,si] = argmax(d[si,:]);

hatX[N-1] = argmax(met[N-1,:]);

for nn in range(N-2,0,-1):

hatX[nn] = asc[nn+1,int(hatX[nn+1])];

return hatX

#========= main program

S = 5; N = 12; Sigma2s = zeros(S); mus = zeros(S);

for ids in range(S):

Sigma2s[ids] = 0.1*rand()

mus[ids] = 10.0*randn();

P = array([[0.4, 0.1, 0.3, 0.2], \

[0.1, 0.4, 0.3, 0.2],\

[0.3, 0.1, 0.4, 0.2],\

[0.1, 0.3, 0.1, 0.5]])

omega = array([1.0/2,1.0/4,1.0/8,1.0/8]);

X, Y, logG = HMMGaussian1dgenerate(N,omega,P,mus,Sigma2s);

hatX = fviterbi(logG,P); print(sum(hatX == X))

5.4. Monte-Carlo methods

5.4.1.– (Multinomial law) (see p. 146) Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Tue May 31 07:23:00 2016

****** multinomial
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@author: maurice

"""

from numpy import zeros, cumsum, where

from numpy.random import rand

from matplotlib import pyplot as plt

N=10000; mu=[0.1,0.2,0.3,0.2,0.2]; lmu=len(mu); F=cumsum(mu);

x=zeros(N);

for ii in range(N):

u = rand(); x[ii]=where(F>=u)[0][0]

plt.clf(); plt.hist(x, range(lmu+1),normed=’True’,rwidth=0.5);

plt.show()

5.4.2.– (Homogeneous Markov chain) (see p. 146) Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Mon May 30 21:06:26 2016

****** MC

@author: maurice

"""

from numpy import array, cumsum, size, zeros, where

from numpy.random import rand

from matplotlib import pyplot as plt

# intial law

pi1 = array([0.5, 0.2, 0.3]); F1 = cumsum(pi1);

# transition matrix

A = array([[0.3, 0.0, 0.7],[0.1, 0.4, 0.5],[0.4, 0.2, 0.4]]);

La = size(A,0); N = 10000; X = zeros(N);

X[0] = len(F1[F1<rand()]); F = zeros([La,size(A,1)]);

for ia in range(La):

F[ia,:] = cumsum(A[ia,:]);

for n in range(1,N):

c = F[int(X[n-1]),:]; X[n] = sum(rand()>c)

plt.clf()

for ia in range(La):

vcurr = where(X[range(N-1)]==ia)[0];

succ = X[vcurr+1]; plt.subplot(La,1,ia+1)

plt.hist(succ,bins=(0,1,2,3),normed=’True’,rwidth=0.5);

plt.show()

5.4.3.– (Linear transformation of 2D Gaussian) (see p. 147) Type:

# -*- coding: utf-8 -*-

"""
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Created on Mon May 30 15:17:06 2016

****** gauss2d

@author: maurice

"""

from numpy import array, dot

from scipy.linalg import eigh, sqrtm

from numpy.random import randn

from matplotlib import pyplot as plt

N = 5000; R = array([[2, 0.95],[0.95, 0.5]]);

S = sqrtm(R); W = randn(N,2); X = dot(W,S);

plt.clf(); plt.plot(X[:,0],X[:,1],’.’)

plt.axis(’square’); plt.xlim([-8, 8]); plt.ylim([-8, 8]),

[D,U] = eigh(R); plt.hold(’on’),

plt.plot(U[1,1]*array([-8.0, 8.0]),-U[0,1]*array([-8.0, 8.0]),’r’)

plt.plot(U[1,0]*array([-8.0, 8.0]),-U[0,0]*array([-8.0, 8.0]),’y’)

plt.hold(’off’); plt.show()

5.4.4.– (Box-Muller method) (see p. 148) The generation algorithm consists of the

two following steps:

1) Draw two independent samples (U, V ) with a uniform distribution over (0, 1);

2) Calculate the variable pair:{
X = σ

√−2 log(U) cos(2πV )

Y = σ
√−2 log(U) sin(2πV )

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Mon May 30 05:36:27 2016

#****** boxmuller

@author: maurice

"""

from numpy.random import rand

from numpy import cos, sin, sqrt, log, pi

from matplotlib import pyplot as plt

from matplotlib.colors import LogNorm

N = 100000; sigma = 1; U = rand(N); V = rand(N);

X = sigma*sqrt(-2*log(U)) * cos(2*pi*V); Y = sigma*sqrt(-2*log(U)) *

sin(2*pi*V);

plt.clf(); plt.hist2d(X,Y, bins=40, norm=LogNorm()); plt.show()
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5.4.5.– (The Cauchy distribution) (see p. 148)

1) The cumulative function of Z is written as:

P {Z ≤ z} =
1

2
+

1

π
atan

z − z0
a

The density is therefore expressed as:

pZ(z) =
a

π(a2 + (z − z0)2)

2) The cumulative function of Z is written as:

P {Z ≤ z} =

∫
{(x,y):ay/x<z−z0}

1

2π
e−(x2+y2)/2dxdy

P {Z ≤ z} =
1

2π

∫ 0

−∞
e−x2/2

∫ +∞

x(z−z0)/a

e−y2/2dydx

+
1

2π

∫ +∞

0

e−x2/2

∫ x(z−z0)/a

−∞
e−y2/2dydx

=
1

2π

∫ +∞

0

e−x2/2

∫ +x(z−z0)/a

−x(z−z0)/a

e−y2/2dydx

From the derivative with respect to z, we obtain the density:

pZ(z) =
1

aπ

∫ +∞

0

xe−x2(1+(z−z0)
2/a2)/2dx

=
1

aπ

∫ +∞

0

e−u(1+(z−z0)
2/a2)du =

1

π

a

a2 + (z − z0)2

3) Type and run the following program:

# -*- coding: utf-8 -*-

"""

Created on Mon May 30 05:56:42 2016

#****** cauchylaw

@author: maurice

"""

from numpy import tan, pi, linspace

from numpy.random import randn, rand

from matplotlib import pyplot as plt

from scipy.stats import probplot, cauchy
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z0=10; a=0.5; N=1000; z=linspace(-5.0,25.0,50);

pztheo = cauchy.pdf(z,z0,a);

#===== atan(U)

z1 = z0+a*tan(pi*(rand(N)-0.5));

#===== Y/X

X = randn(N,2); z2 = z0+a*(X[:,1] / X[:,0]);

plt.clf(); plt.subplot(221); plt.hist(z1,z,normed=’True’);

plt.hold(’on’); plt.plot(z,pztheo,’.-r’); plt.hold(’off’); plt.

yticks([])

plt.subplot(222); probplot(z1, dist="cauchy", plot=plt)

plt.xticks([]); plt.yticks([]); plt.title(’’)

plt.subplot(223); plt.hist(z2,z,normed=’True’);

plt.hold(’on’); plt.plot(z,pztheo,’.-r’);

plt.hold(’off’); plt.yticks([])

plt.subplot(224); probplot(z1, dist="cauchy", sparams=(z0,a),

plot=plt)

plt.xticks([]); plt.yticks([]); plt.title(’’);

plt.show()

5.4.6.– (Metropolis-Hastings algorithm) (see p. 154)

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 21:08:08 2016

****** applicationMetropolis

@author: maurice

"""

from numpy import zeros, mean

from numpy import random

from scipy.stats import norm

from matplotlib import pyplot as plt

N = 10000; sigma = 2; U0 = 10*sigma; x = zeros(N); pprevious = 1;

for n in range(1,N):

xproposal = U0*(random.rand()-0.5);

pproposal = norm.pdf(xproposal,0.0,sigma);

rho = pproposal / pprevious;

if rho > 1:

x[n] = xproposal; pprevious = pproposal;

else:

b = random.rand()<rho;

x[n] = xproposal*b+x[n-1]*(1.0-b);

pprevious = pproposal*b+pprevious*(1.0-b);
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Nburn = 200; Nval = N - Nburn; x = x[Nburn:N];

#===== integral approx. value

I = mean(x ** 2); plt.clf()

auxhist=plt.hist(x,bins=30,normed=’True’); dx=auxhist[1]

gtheo = norm.pdf(dx,0.0,sigma)

plt.hold(’on’); plt.plot(dx,gtheo,’o-r’,linewidth=2)

plt.hold(’off’); plt.title(’Approx value of I=%4.5f’%I);plt.show()

5.4.7.– (Gibbs sampler) (see p. 155)

1) The conditional distribution is given by expression [1.46]:

pX1|X2
(x1, x2) = N

(
μ1 + ρ

σ1

σ2
(X2 − μ2), σ

2
1(1− ρ2)

)
2) Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 17:56:22 2016

#****** applicationGibbs

@author: maurice

"""

from numpy import array, zeros, sqrt, mean, dot, size

from matplotlib import pyplot as plt

from numpy import random

mus=[2,1]; sigmas=[2,3]; rho = 0.9; C12 = rho*sigmas[0]*sigmas[1];

C = array([[sigmas[0]**2, C12],[C12, sigmas[1]**2]])

N = 10000; X = zeros([N,2]);

for n in range(1,N):

mucond = mus[0]+rho*sigmas[0]*(X[n-1,1]-mus[1])/

sigmas[1];

sigmacond = sigmas[0]*sqrt(1.0-rho*rho);

X[n,0] = mucond+sigmacond*random.randn();

mucond = mus[1]+rho*sigmas[1]*(X[n,0]-mus[0])/sigmas[0];

sigmacond = sigmas[1]*sqrt(1.0-rho*rho);

X[n,1] = mucond+sigmacond*random.randn();

Nburn = 200; Nval = N - Nburn;

X = X[Nburn:N,:]; Xc = zeros([size(X,0),size(X,1)])

Xc[:,0] = X[:,0] - mean(X[:,0]); Xc[:,1] = X[:,1] - mean(X[:,1]);

Cestim = dot(Xc.transpose(),Xc)/(Nval-1)

for i1 in range(2):

for i2 in range(2):

print(’C[%i,%i] = %4.3e, estimate C[%i,%i] = %4.3e’%(i1,i2,
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C[i1,i2]\

,i1,i2,Cestim[i1,i2]))

plt.clf(); plt.plot(X[:,0],X[:,1],’.’); plt.show()

5.4.8.– (Importance sampling) (see p. 160)

Type the following program:

# -*- coding: utf-8 -*-

"""

Created on Mon May 30 17:21:28 2016

****** IS_GaussfromCauchy

@author: maurice

"""

#=====

# Importance sampling for estimation of

# int_{alpha}^{+infty} p(x)dx with p(x)=N(0,1)

# (1) directly from N(0,1)

# (2) from Cauchy distribution and weights

# (3) from Cauchy without knowing p(x) up to

# a multiplicative constant

#=====

from numpy import zeros, sqrt, pi, tan, sum, exp

from numpy import std, linspace

from numpy.random import randn, rand

from matplotlib import pyplot as plt

from scipy.stats import norm

N = 10000; alpha = 3.0; palpha_th = 1-norm.cdf(alpha,0.0,1.0);

palpha_th2=palpha_th*palpha_th; Lruns=500; P1_direct=zeros(Lruns);

P1_IS_withCteNorm1=zeros(Lruns);P1_IS_withoutCteNorm1=zeros(Lruns);

dpitdemi = sqrt(2/pi);

for ii in range (Lruns):

x = randn(N,1); u = rand(N,1); x_IS = tan(pi*(u-0.5));

P1_direct[ii] = sum(x>alpha)/float(N); x_IS2 = x_IS**2;

weight_IS_withoutCteNorm1 = exp(-(x_IS2) /2) * (1.0+x_IS2);

P1_IS_withoutCteNorm1[ii] = sum((x_IS>alpha) *

(weight_IS_withoutCteNorm1/ \

sum(weight_IS_withoutCteNorm1)));

poids_IS_withCteNorm1 = \

weight_IS_withoutCteNorm1/dpitdemi;

P1_IS_withCteNorm1[ii] = \

sum((x_IS>alpha)*poids_IS_withCteNorm1/float(N));

plt.clf(); plt.subplot(1,3,1)

plt.hist(P1_direct, normed=’true’);
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plt.xticks(linspace(0,0.0025,3),fontsize=8)

plt.subplot(1,3,2); plt.hist(P1_IS_withCteNorm1, normed=’true’);

plt.xticks(linspace(0,0.0025,3),fontsize=8)

plt.subplot(1,3,3)

plt.hist(P1_IS_withoutCteNorm1, normed=’true’);

plt.xticks(linspace(0,0.0025,3),fontsize=8)

ect_direct_estime = std(P1_direct-palpha_th);

ect_direct_theo = sqrt((palpha_th-palpha_th2)/N);

ect_IS_estime = std(P1_IS_withCteNorm1-palpha_th);

ect_IS_theo = sqrt((sqrt(pi)*3*(1-norm.cdf(alpha*sqrt(2.0)))/

4.0+\

+0.25*alpha*exp(-alpha*alpha)-palpha_th2)/N); plt.show()

print(’Draw from Gaussian distribution’)

print(’\tTheorical std = %5.2e, Estimated std = %5.2e’ \

%(ect_direct_theo,ect_direct_estime));

print(’Draw from Cauchy distribution and IS (not normalized)’)

print(’\tTheorical std = %5.2e, Estimated std = %5.2e’\

%(ect_IS_theo,ect_IS_estime));

The results show that the direct calculation is more dispersive.

5.4.9.– (Stratification) (see p. 164)

1) Following [1.35] for μ = 0 and σ2 = 1: E
{
ejuX

}
= e−u2/2 =

E {cos(ux) + j sin(ux)}. Thus, E {cos(uX)} = e−u2/2.

2) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Tue May 31 20:51:35 2016

****** stratification

@author: maurice

"""

from numpy import exp, sum, cos, mean, ones, zeros, std

from numpy.random import rand

from scipy.stats import norm

from matplotlib import pyplot as plt

# choose a value of u

u=3.0; I_exact = exp(-u**2/2);

#===== stratif_uniform function

def stratif_uniform(vect_n):

# SYNOPSIS: STRATIF_UNIFORM(vect_n)

# vect_n = k-length sequence to be drawn uniformly
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# in the intervals of length 1/k of [0,1]

k = len(vect_n); ampl = 1.0/k;

N = int(sum(vect_n)); U = zeros(N); Sjm1 = 0; Sj = -1;

for j in range(k):

vj = int(vect_n[j]); Sj = Sj+vj;

U[Sjm1:Sj+1] = (rand(vj)+(j))*ampl; Sjm1 = Sj+1;

return U

#======= main program

N = 1000; S = 200; ni = int(N/S); vect_n = ones(S)*ni;

nb_runs = 3000; hatDirect_I = zeros(nb_runs);

hatStratif_I = zeros(nb_runs);

for i_run in range(nb_runs):

Udirect = rand(N); Xdirect = norm.isf(Udirect,0,1);

hatDirect_I[i_run] = sum(cos(u*Xdirect))/N;

Ustrate = stratif_uniform(vect_n); Xstrate = norm.isf

(Ustrate,0,1);

hatStratif_I[i_run] = sum(cos(u*Xstrate))/N;

plt.clf()

plt.boxplot([hatDirect_I, hatStratif_I])

plt.show()

td = ’bias DIRECT = %5.2e, std DIRECT = %5.2e’\

%(abs(I_exact-mean(hatDirect_I)),std((hatDirect_I)));

ts = ’bias STRATIF = %5.2e, std STRATIF = %5.2e’\

%(abs(I_exact-mean(hatStratif_I)),std((hatStratif_I)));

print(’***************************’)

print(td); print(ts)

5.4.10.– (Antithetic variate approach) (see p. 164)

1) Using the estimators given by [4.14] and [4.32], respectively, we have

cov (f(X), f(X)) =

∫ 1

0

1

(1 + x)2
dx− I2 = 0.5− log2(2)

cov (f(X), f(X)) =

∫ 1

0

1

(2− x)(2− x)
dx− I2 = 0.5− log2(2)

and

cov
(
f(X), f(X̃)

)
=

∫ 1

0

1

(1 + x)(2− x)
dx− I2 =

2

3
log(2)− log2(2)

For N = 100, we therefore obtain var
(
Î1

)
≈ 1.95 10−4 and var

(
Îa

)
≈

1.19 10−5.
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2) Type the program:

# -*- coding: utf-8 -*-

"""

Created on Sun May 29 17:27:37 2016

#****** antithetic

@author: maurice

"""

from numpy import log, std, mean

from numpy.random import rand

Lruns = 2000; N = 100; Ns2 = int(N/2); X = rand(N,Lruns);

Xtilde = 1.0-X; fX = 1.0 / (1.0+X); fXtilde = 1.0 / (1.0+Xtilde);

I1 = mean(fX,axis=0);

I2 = (mean(fX[1:Ns2,:],axis=0)+mean(fXtilde[1:Ns2,:],axis=0))/2.0;

Nvar1th = 0.5-log(2.0)*log(2.0); Nvar2th = 2.0*log(2.0)/3.0-log

(2.0)*log(2.0);

print(’theoretical variances: %4.2e(direct), %4.2e(antith.)’ \

%(Nvar1th/N, (Nvar1th+Nvar2th)/N));

print(’empirical variances: %4.2e(direct), %4.2e(antith.)’ \

%(std(I1)**2, std(I2)**2));



Bibliography

[BAS 93] BASSEVILLE M., NIKIFOROV I., Detection of Abrupt Changes: Theory and
Application, Prentice-Hall, Upper Saddle River, 1993.

[BIL 12] BILLINGSLEY P., Probability and Measure, John Wiley & Sons, 2012.

[BLA 14] BLANCHET G., CHARBIT M., Digital Signal and Image Processing Fundamentals,

vol. 1, 2nd ed., ISTE, London and John Wiley & Sons, New York, 2014.

[BRO 90] BROCKWELL P., DAVIES R., Time Series: Theory and Methods, Springer Verlag,

1990.

[BUR 02] BURNHAM K.P., ANDERSON D.R., Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach, Springer, New York, 2002.

[CAP 05] CAPPÉ O., MOULINES E., RYDEN T., Inference in Hidden Markov Models,

Springer New York, 2005.

[DEM 77] DEMPSTER A.P., LAIRD N.M., RUBIN D.B., “Maximum likelihood from

incomplete data via the EM algorithm”, Journal of Royal Statistical Society: Series B,

vol. 39, pp. 1–38, 1977.

[EFR 79] EFRON B. “Bootstrap methods: another look at the jackknife”, Annals of Statistics,

vol. 7, no. 1, pp. 1–26, 1979.

[GEL 08] GELMAN A., “Scaling regression inputs by dividing by two standard deviations”,

Statistics in Medecine, vol. 27, pp. 2865–2873, 2008.

[HAS 09] HASTIE T.J., TIBSHIRANI R.J., FRIEDMAN J.H., The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009.

[EMI 60] EMIL KALMAN R., “A new approach to linear filtering and prediction problems”,

Transactions of the ASME – Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[MAT 98] MATSUMOTO M., NISHIMURA T., “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling
and Computer Simulations,vol. 8, no. 1, pp. 3–30, 1998.



262 Digital Signal Processing with Python Programming

[MC 43] MCCLURE F.J., “Ingestion of fluoride and dental caries: quantitative relations based

on food and water requirements of children one to twelve years old”, American Journal of
Diseases of Children, vol. 66, no. 4, pp. 362–369, 1943.

[MIL 74] MILLER R.G., “The jacknife – a review”, Biometrika, vol. 61, no. 1, pp. 1–15,

1974.

[MON 10] MONTGOMERY D.C., RUNGER G.C., Applied Statistics and Probability for
Engineers, John Wiley & Sons, 2010.

[NEY 33] NEYMAN J., PEARSON E.S., “On the problem of the most efficient tests of

statistical hypotheses”, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 231, pp. 694–706, 1933.

[PEA 88] PEARL J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988.

[QUE 56] QUENOUILLE M.H., “Notes on bias in estimation”, Biometrika, vol. 43, 1956.

[RUD 86] RUDIN W., Real and Complex Analysis, 3rd ed., McGraw-Hill, 1986.

[SHA 08] SHARMA A.K., Textbook of Biostatistics: Volume 1, Discovery Publishing, 2008.

[STI 73] STIGLER S., “Studies in the history of probability and statistics. XXXII: Laplace,

Fisher and the discovery of the concept of sufficiency”, Biometrika, vol. 60, no. 3, pp.

439–445, 1973.

[TUC 58] TUCKEY J.W., “Bias and confidence in not-quite large samples”, Ann. Math.
Statist., vol. 29, pp. 614–623, 1958.



Index

A, B

acceptance-rejection method, 149

AIC, 76

algorithm

acceptance-rejection, 149

backward recursion, 133

Box-Muller, 148

EM for GMM, 94

Expectation-Maximization (EM), 91

forward recursion, 132

Gibbs sampler, 155

importance sampling, 158

Kalman, 228

LDA, 40

Metropolis-Hastings, 153, 154

PCA, 36

Viterbi, 138

antithetic variates method, 164

AR, 125

area under the ROC curve (AUC), 49

AUC, 49

autoregressive, 125

backward stepwise selection, 80

Bayesian statistics, 59

best linear unbiased estimator (BLUE), 70

bias, 59

BIC, 76

bilateral hypothesis testing, 52

bilateral test, 44

bootstrap, 107

box plot, 30

Box-Muller method, 148

burn-in period, 151

C

Cauchy, 148

generation, 148

law, 148

moment, 148

cdf, 2, 4

censored data, 97

centered

random variable, 7

central limit

theorem, 22

characteristic function, 6

marginal probability distribution, 6

classification, 36, 41, 88, 196

coefficients

correlation, 7

complete data (EM algorithm), 91

composite hypothesis, 43

conditional

covariance (Gaussian case), 17

distribution (Gaussian case), 17

expectation, 10, 14

expectation (Gaussian case), 17

probability distribution, 10

confidence interval, 55

continuity

theorem, 24

correlation, 7
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coefficients, 7

distribution, 199

matrix, 8

covariance, 7

Cramer-Rao bound (CRB), 60, 93

critical

region, 44

test function, 44

cross validation, 107, 111

cumulated sum, 57

cumulative

distribution, 4

function, 2, 33, 55, 58, 98, 103, 104,

106, 144

CUSUM, 57

D, E, F

δ-method, 20

density (probability), 3

design matrix, 65, 112

detailed balance equation, 152

detection probability, 44

deterministic test, 46

digamma function, 201

directed acyclic graph, 114

efficient, 61, 77

equation

detailed balance, 152

evolution, 119

observation, 119

state, 119

estimator, 58

efficient, 60, 77, 85

unbiased, 60, 61, 70, 71, 77, 81, 85,

109

Expectation-Maximization, 91

false alarm probability, 44

filtering, 117

Fisher

information matrix, 60

transformation, 89, 199

“fresh” data, 73

function

characteristic, 6

digamma, 201

EMforHMM, 249

estimparamGMM.py, 207

fgmm, 192

fminsearch, 83

ForwBackwGaussian, 249

HMMGaussiangenerate, 249

LLarmaKalman, 234

pcaldatoolbox.py, 170

toolGMM.py, 204

toollogistic.py, 212

G, H, I

Gaussian mixture model (GMM), 93

generalized expectation maximization

(GEM), 92

generalized likelihood ratio test (GLRT),

51, 52, 54, 55, 57, 89, 102

generalized method of moments, 82

generation

Cauchy, 148

cumulative function inversion, 144

Gauss, 148

Gauss 2D, 147

Markov chain, 146

multinomial, 146

Rayleigh, 145

Gibbs sampler, 151, 155

goodness of fit test, 57

hidden Markov model, 113

histogram, 30, 53, 58, 103

HMM generation, 130

homogeneous Markov chain, 146

hypothesis

composite, 43

simple, 43

test, 43

identifiable, 42

importance

sampling, 157

weights, 157

incomplete data (EM algorithm), 91

inequality

Schwarz, 11

innovation, 121, 227

instrumental distribution, 156

intercept, 65

inversion method, 144
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J, K, L

jackknife, 107

Jacobian, 18, 19

useful formula, 19

joint probability, 4

Kalman

filter, 121, 226

gain, 122

innovation, 122

prediction, 121

update, 121

kernel (smoothing), 103

Lagrange multipliers, 36

law

Cauchy, 148

Gauss, 148

Gaussian, 147

large numbers, 30

multinomial, 146

Rayleigh, 145

transition, 151

uniform, 144

LDA, 34, 37

least squares

assumption, 65

design matrix, 65

method, 62

null space, 67

ordinary, 81

unbiased, 70, 71

useful notations, 66

weighted, 81

leave one out (LOO), 111

leverage, 66, 72

likelihood, 43

ratio, 45

linear discriminant analysis, 34, 37

linear regression, 65

logistic, 100, 102

Lyapunov equation, 234

M, N, O

Mahalanobis distance, 88

Mann-Whitney statistics, 50

marginal probability distribution

characteristic function, 6

Markov

chain, 146, 151

homogeneous, 151

process, 151

transition law, 151

matrix

covariance, 8

maximum likelihood

method, 84

estimator, 84

MCMC, 144, 151

mean, 7

efficient estimator, 61, 77

vector, 8

measurement vector, 118

median, 2

empirical, 32, 106

Mersenne twister, 144

method

acceptance-rejection, 149

MLE, 84

i.i.d. gaussian, 87

linear model, 88, 194

model

Gaussian mixture (GMM), 93

hidden Markov, 113

parametric, 41

statistical, 41

model selection, 74, 76

moments

method, 81

monolateral test, 44

Monte-Carlo

Markov chain, 144

methods, 141

noise

measurement, 120

model, 120

observability, 123

observation equation, 119

OLS, 81

order statistics, 217

ordinary least squares, 81

orthogonal projection, 13

orthogonality principle, 12

overtraining, 222
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P

parameter estimation, 58

parametric model, 41

path metrics, 137

pivotal, 74

plot

boxplot, 29

hist, 29

qqplot, 29

scatterplot, 29

prediction, 117

step, 117

predictors, 65

principal components, 147

analysis (PCA), 34, 36

probability

density, 3

distribution, 1

joint, 3

probability density, 3

joint, 4

probability distribution

Gaussian, 14

normal, 14

sum of two r.v., 19

program

afewdistributions.py, 26

antithetic.py, 260

applicationGibbs.py, 256

applicationMetropolis.py, 255

bootstraponmean.py, 109

bootstraponregression.py, 219

boxmuller.py, 253

BSSdiabetes.py, 224

cauchylaw.py, 254

censoredhearttransplantation.py,

209

censoredHT.py, 209

censoredHTwithexogenous.py, 211

chi2test.py, 181

co2CV.py, 222

CO2linmod.py, 184

correlationdistribution.py, 199

cumulEstimate.py, 216

CumulInverseEstimate.py, 217

CUSUMrecursiveformula.py, 179

CUSUMtest.py, 180

deltaMethodRice.py, 168

diabetesvalidationmodel.py, 189

diabetesZscore.py, 188

egalizeimage.py, 219

estimdsproba.py, 104

estimf0.py, 63

estimMarkovchain.py, 203

estimStateGMM.py, 208

gauss2d.py, 252

gaussianquantiles.py, 2

generate2Dtrajectory.py, 129

histograminbrief.py, 31

ICpercent.py, 169

irisclassification.py, 195

irispcalda.py, 172

IS_GaussfromCauchy.py, 257

Kalmantraj2D.py, 238

KFnoisyAR1.py, 229

leverageeffect.py, 184

logisticORing.py, 214

logisticOwner.py, 215

logisticOwnerCV.py, 223

logistictestGLRT.py, 215

MC.py, 252

MLEexponential.py, 200

MMmixture.py, 192

MMversusMLEcorrelation.py, 197

modlinchangeNILE.py, 185

multinomial.py, 251

orderEstimCV.py, 220

qqplotexample.py, 33

rayleighsimul.py, 145

regagediabetes.py, 186

regboston.py, 187

roccurve2gaussians.py, 173

scatterplotexample.py, 29

stratification.py, 258

studentlawdiffm0.py, 174

studentlawdiffm0m1.py, 178

symbolicforCRBGaussian.py, 183

testcorrelationWH.py, 198

testEMforHMMG, 249

testfluorcaries.py, 78

testHMMGgenerate.py, 243

testKarmaOnARMApq.py, 234

testViterbi.py, 249

kalmantraj1D.py, 230
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Ttest.py, 177

verifyCRBrho.py, 196

proposition distribution, 156

p-value, 54

Q, R, S

QQ-plot, 33

qqplot, 29, 32

quadratic risk, 59

quantile, 10, 33, 106

R2, 33

adjusted, 75

random

vector, 7

random process

AR, 125

random value

mean, 7

variance, 7

random variable

Gaussian, 14

independence, 4

standard deviation, 7

randomized test, 45

ranking, 41

Rayleigh, 145

regression, 62, 100

logistic, 102

regression analysis, 41, 62

Riccati equation, 122

right-censored data, 97

ROC curve, 48

scatterplot, 29

seasonal trend, 30

significance level, 44

simple hypothesis, 43

simpy, 61

smoothing, 117

standardization, 65, 76, 79

state, 118

vector, 118

stationary (Markov chain), 152

statistic of test, 44

statistical inference, 40

statistical model, 41

statistics (estimate), 43

symbol

proportional to, 118

symbolic calculus, 61

U, V, W, Z

UMP, 44

unbiased, 60, 61, 70, 71, 77, 81, 85, 109

uniform distribution, 144

uniformly most powerful, 44

unilateral hypothesis testing, 52

update step, 117

variable

dependent, 41

explained, 41

explanatory, 41, 65

independent, 41, 65

response, 41, 65

Viterbi

backtracking, 138

lattice, 138

Voronoi regions, 88

weighted least squares, 81

white

random sequence, 10

WLS, 81

Z-score, 74


	Contents
	Preface
	Notation
	A Few Python Functions
	Useful Maths
	Basic concepts on probability
	Conditional expectation
	Projection theorem
	Gaussianity
	Random variable transformation
	Fundamental theorems of statistics
	A few probability distributions

	Statistical Inferences
	First step - visualizing data
	Reduction of dataset dimensionality
	Some vocabulary
	Statistical model
	Hypothesis testing
	Statistical estimation

	Inferences on HMM
	Hidden Markov models (HMM)
	Inferences on HMM
	Filtering - general case
	Gaussian linear - Kalman algorithm
	Discrete ﬁnite Markov case

	Monte-Carlo Methods
	Fundamental theorems
	Stating the problem
	Generating random variables
	Variance reduction

	Hints & Solutions
	Useful Maths
	Statistical inferences
	Inferences on HMM
	Monte-Carlo methods

	Biblio
	Index

