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utomotive radars, along with other sensors such as lidar, (which stands for “light 
detection and ranging”), ultrasound, and cameras, form the backbone of self-driving 
cars and advanced driver assistant systems (ADASs). These technological advance-

ments are enabled by extremely complex systems with a long signal processing path from 
radars/sensors to the controller. Automotive radar systems are responsi-

ble for the detection of objects and obstacles, their position, and 
speed relative to the vehicle. The development of signal pro-

cessing techniques along with progress in the millime-
ter-wave (mm-wave) semiconductor technology plays 

a key role in automotive radar systems. Various 
signal processing techniques have been devel-

oped to provide better resolution and estima-
tion performance in all measurement 
dimensions: range, azimuth-elevation 
angles, and velocity of the targets sur-
rounding the vehicles. This article summa-
rizes various aspects of automotive radar 
signal processing techniques, including 
waveform design, possible radar architec-
tures, estimation algorithms, implementa-
tion complexity-resolution trade off, and 
adaptive processing for complex environ-
ments, as well as unique problems associat-

ed with automotive radars such as pedestrian 
detection. We believe that this review article 

will combine the several contributions scattered 
in the literature to serve as a primary starting 

point to new researchers and to give a bird’s-eye 
view to the existing research community.

Introduction
The history of radio detection and ranging, more commonly known 

as radar, starts with the experiments carried out by Hertz and Hülsmeyer on 
the reflections of electromagnetic (EM) waves and ideas advocated by Tesla and Mar-
coni in the late 19th and early 20th centuries. Earlier developments in radar  technology 
were limited to military applications such as aircraft/ship surveillance, navigation, and 
weapons guidance. Radar is now used in many applications, including civilian avia-
tion, navigation, mapping, meteorology, radio astronomy, and medicine. The main 
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objectives of a radar system are to detect 
the presence of one or more targets of 
interest and estimate their range, angle, and 
motions relative to the radar [1].

To the everyday person, tangible applica-
tions of radar include speed guns used by law 
enforcement officers to detect speeding driv-
ers. Action heroes in movies sometimes drive 
a fancy car with attractive features that can 
track an enemy’s speed and location, move 
swiftly and automatically amid obstacles, 
and debut its night vision feature during the 
movie’s climax. The ambition of having all of these add-ons to 
a car has become feasible with the flourishing mm-wave circuit 
technology and advanced signal processing techniques. Advances 
in circuit technology reinforced by new signal processing algo-
rithms, machine learning, artificial intelligence, and computer-
vision techniques have made self-driving cars a reality.

 Such cars also rely on different sensors such as a laser, a cam-
era, ultrasound, global positioning system, and radar. Among 
these sensors, radar offers the possibility of seeing long distances 
ahead of the car in poor visibility conditions, which can help avoid 
collisions [2]. For example, Google’s self-driving car [3] has radars 
mounted on both front and rear bumpers of the vehicle to detect 
objects in its surroundings.

Automotive radars were first deployed several decades ago. 
The evolution of automotive radar from its inception to the 
present has been thoroughly discussed in [4]. With highly inte-
grated and inexpensive mm-wave circuits implemented in silicon, 
compact automotive radar safety systems have become a popular 
feature [5], [6]. Since then, review articles written on automotive 
radar mostly covered the circuit implementation, market analysis, 
and architectural-level signal processing [7]–[9]. However, there 
are many aspects of automotive radar signal processing techniques 
scattered throughout the literature. For example, a part of the lit-
erature may concentrate on detecting the presence or absence of 

targets, while another might look at radar esti-
mation problems concerning their location and 
velocity in space relative to the radar [10], [11]. 

This article’s goal is to review principal 
developments in signal processing tech-
niques applied to estimating significant target 
parameters such as range, velocity, and direc-
tion. The article also discusses the charac-
terization of radar waveforms and advanced 
estimation techniques that enhance the oper-
ation of automotive radars. In particular, we 
review each topic with adequate mathemati-

cal framework so as to make this a good start-up document for the 
newcomer in the field.

Automotive radar classification
Both autonomous and human-driven cars are increasingly using 
radars to improve drivers’ comfort and safety. For instance, park 
assist and adaptive cruise control provide comfort, while warn-
ing the driver of imminent collisions and overriding control of 
the vehicle to avoid accidents improve the safety. Figure 1 depicts 
various such radar subsystems that form ADASs. Each subsys-
tem has unique functionality and specific requirements in terms 
of radar range and angular measurement capability (Table 1). 
The next section explains the fundamentals of location and speed 
estimation using the radar measurements.

Basic automotive radar estimation problems
A radar can simultaneously transmit and receive EM waves in 
frequency bands ranging from 3 MHz to 300 GHz. It is 
designed to extract information [i.e., location, range, velocity 
and radar cross section (RCS)] about targets using the EM 
waves reflected from those targets. Automotive radar systems 
typically operate at bands in 24 GHz and 77 GHz portions of 
the EM spectrum known as mm-wave frequencies so that higher 
velocity and range resolution can be achieved. Fundamental 
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Figure 1. An ADAS consists of different range radars.
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radar operation involves three main tasks: range (distance), rela-
tive velocity, and direction estimation, as discussed next. 

Range estimation
The range estimation is fundamental to automotive radars. The 
range R, to a target, is determined based on the round-trip time 
delay that the EM waves take to propagate to and from that tar-
get: ( / ),R c 2x=  where x  is the round-trip time delay in sec-
onds and c is the speed of light in meters per second 
( )c 3 10 m/s8#. . Thus, the estimation of x  enables the range 
measurement [1]. The form of the EM waves (signals) that a 
radar transmits is important for round-trip time delay estima-
tion. For example, pulse-modulated continuous waves (CWs) 
consist of periodic and short power pulses and silent periods. 
Silent periods allow the radar to receive the reflected signals 
and serve as timing marks for radar to perform range estima-
tion as illustrated in Figure 2. However, unmodulated CW sig-
nals (i.e., ( )cos f t2 cr ) cannot be used for range estimation 
since they lack such timing marks. Additionally, the signal 
reflected from a target should arrive before the next pulse 
starts. Hence, the maximum detectable range of a radar 
depends on pulse repetition interval TPRF. The transmitted sig-
nal from the radar until it is received back undergoes attenua-

tion due to the path loss and imperfect reflection from the 
target. In addition, received target signals are subject to inter-
nal noise in radar electronics and interference that may be a 
result of reflected signals from objects not of interest and may 
come from human-made sources (i.e., jamming). The typical 
round-trip time delay estimation problem considers only 
ambient noise in the form of additive white Gaussian random 
process. It is assumed that demodulation has already removed 
the carrier so that a target signal ( )x t  at baseband can be 
modeled as

 ( ) ( ) ( ),x t s t ta x ~= - +  (1)

where a  is a complex scalar whose magnitude represents 
attenuation due to antenna gain, path loss, and the RCS of the 
target and ( )w t  is additive white Gaussian noise with zero 
mean and variance .2v  The goal is to estimate x  with the 
complete knowledge of the transmitted radar waveform ( )ts . 
Assuming the signal ( )ts  has unit amplitude and finite energy 

,Es  the ideal radar receiver can be found using a matched fil-
ter with the impulse response ( ) ( )h t s t*= - , which maximiz-
es signal to noise ratio ( / ) ( / )E TSNR s p

2 2 2 2a v a v= =^ h at 
the output. Thus, the matched filter-based receiver finds the 
correlation between the transmitted signal and received 
reflected pulses

 ( ) ( ) ( ) .y x t s t dt*x x= -#  (2)

The maximum likelihood (ML) estimate of the time delay 
is the time that the magnitude of the matched filter output 
peaks at

 | ( ) |arg max yx x=
x

t . (3)

The presence of the noise can perturb the location of the 
peak, which will result in the estimation error. Furthermore, 
the radar needs to decide whether or not a received signal 
actually contains an echo signal from a target. A good deal of 
classical radar literature is devoted to developing strategies 
that provide the most favorable detection performance.  

Table 1. The classification of automotive radars based on range 
measurement capability.

Radar Type 
Long-Range 
Radars 

Medium-Range 
Radars 

Short-Range 
Radars 

Range (m) 10–250 1–100 0.15–30 

Azimuthal field 
of view (deg.) 

15! c 40! c 80! c 

Elevation field 
of view (deg.) 

5! c 5! c 10! c 

Applications Automotive 
cruise control 

Lane-change assist, 
cross-traffic alert, 
blind-spot detec-
tion, rear-collision 
warning

Park assist, 
obstacle detec-
tion, precrash 

Classification can be made based on the operating frequency into 24–29 GHz and 
76–81-GHz bands [12].
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Figure 2. A pulsed CW radar with a correlation-based receiver can measure range R of the target car.
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A  typical decision strategy can be formulated based on statis-
tical hypothesis testing (a target present or not). This leads to 
a simple threshold testing at the matched filter output.

Range resolution, another key performance measure, 
denotes the ability to distinguish closely spaced targets. Two 
targets can be separated in the range domain only if they pro-
duce nonoverlapping returns in the time domain. Hence, the 
range resolution is proportional to the pulsewidth .Tp  In other 
words, finer pulses provide higher resolution. However, shorter 
pulses contain less energy, which implies poor receiver signal-
to-noise ratio (SNR) and detection performance. As explained 
in the section “Radar Waveforms,” this problem is overcome 
by the technique called pulse compression, which uses phase 
or frequency modulated pulses.

Velocity estimation
Estimation of the target velocity is based on the phenomenon 
called the Doppler effect. Suppose the car displayed in Figure 2 
is moving ahead with differential velocity .v  With the existence 
of relative motion between two cars, the reflected waves are 
delayed by time ( ( ) / )cR vt2 !x = . The time dependent delay 
term causes a frequency shift in the received wave known as the 
Doppler shift ( )/f v2d ! m= . The Doppler shift is inversely pro-
portional to wavelength m , and its sign is positive or negative, 
depending on whether the target is approaching or moving away 
from the radar. While this frequency shift can be detected using 
CW radar, it lacks the ability to measure the targets range. Here, 
we discuss a pulsed radar configuration that uses frequency 
modulated (FM) CW pulses and provides simultaneous range-
velocity estimation in multitarget traffic scenarios.

The FMCW radar transmits periodic wideband FM pulses, 
whose angular frequency increases linearly during the pulse. 
For the carrier frequency fc  and FM modulation constant K , a 
single FMCW pulse can be written as [see Figure 3(a)]

 ( ) .s t e t T0      ( . )j f Kt t2 0 5c # #= r +  (4)

The signal reflected from a target is conjugately mixed with 
the transmitted signal to produce a low-frequency beat signal, 
whose frequency gives the range of the target. This operation 
is repeated for P  consecutive pulses. Two-dimensional (2-D) 
waveforms in Figure 3(c) depict successive reflected pulses 
arranged across two time indices. The slow time index p sim-
ply corresponds to pulse number. On the other hand, the fast 
time index n  assumes that for each pulse, the corresponding 
continuous beat signal is sampled with frequency fs  to collect 
N  samples within the time duration .T  Assuming single tar-
get and neglecting reflected signal distortions, the FMCW 
radar receiver output as a function of these two time indices is 
given by

( , ) ( , ) .expd n p j
c
K R f

f
n f pT

c
f R

n p2 2 2
d

s
d

c
0. r ~+ + + +` j; E' 1

 (5)

Therefore, as illustrated in Figure 3(c), discrete Fourier trans-
form across fast time n can be applied to obtain beat frequency 

( / )KR cf 2b =  coupled with Doppler frequency fd . This opera-
tion is also known as the range transform or range gating, 
which allows the estimation of Doppler shift corresponding to 
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unique range gate by the application of second Fourier transform 
across the slow time. A range-Doppler map can be found effi-
ciently by using 2-D fast Fourier transform (FFT) (5). A demon-
strative example based on the aforementioned discussion is 
shown in Figure 3.

Direction estimation
Use of wideband pulses such as FMCW provides discrimina-
tion of targets in both distance and velocity. The discrimina-
tion in direction can be made by means of an antenna array. 
Figure 4(a) depicts a realistic traffic scenario with several tar-
gets surrounding the radar that collects direct and multipath 
reflections from them. In such cases, to spatially resolve equi-
distant targets and deliver comprehensive representation of 
the traffic scene, angular location of targets should be esti-
mated. Therefore, in automotive radars, the location of a tar-
get is often described in terms of a spherical coordinate 
system ( , , ),R i z  where ( , )i z  denote azimuthal and elevation 
angles, respectively. However, in this case, the single antenna 
radar setup as used in the range-velocity estimation problems 
may not be sufficient, since the measured time delay 

( ( ) / )cR vt2 !x =  lacks the information in terms of angular 
locations of the targets.

To enable direction estimation, the radar should collect 
reflected wave data across multiple distinct dimensions. For 
example, locating a target using EM waves in 2-D requires the 
reflected wave data from the object to be collected in two dis-
tinct dimensions. These distinct dimensions can be formed in 
many ways using combinations of time, frequency, and space. 
For instance, a linear antenna array and wideband waveforms 
such as FMCW form two unique dimensions [13], [14]. Addi-
tionally, smaller wavelengths in mm-wave bands correspond to 
smaller aperture sizes and, thus, many antenna elements can 
be densely packed into an antenna array. Hence, the effective 
radiation beam, which is stronger and sharper, in turn increas-
es the resolution of angular measurements.

Consider an antenna array located in plane ,z 0=  and let l  
be the abscissa corresponding to each receiver antenna position 

[see Figure 4(b)]. Let ( , )Rq qi  be the position of the qth  tar-
get in spherical coordinates, moving with velocity vq  relative 
to the radar. With the help of far field approximation [15], for 
the qth  target, the round-trip time delay between a transmitter 
located at the origin and the receiver positioned at coordinate 
l is given by

 
( ) sin

c
R v t ld2

lq
q q q

x
i

=
+ +

, (6)

where d  is the distance between antenna elements (usually 
half the wavelength) arranged in a linear constellation. Com-
bining (5) and (6) gives the three-dimensional (3-D) FMCW 
radar output signal, which enables estimation of range, veloci-
ty, and angle. For Q  number of targets, the signal can be rep-
resented as

( , , )

( , , ),

exp
sin

d l n p j
c
K R

f
f
n

c
f ld

f pT
c
f R

l n p

2
2

2
q

Q

q
q

dq
s

c q

dq
c q

0

1

0

. a r
i

~

+ +

+ + +

=

-

c m;

E

'

1

/
 

 (7)

where a  and ~ correspond to same quantities as explained in 
the range estimation problem. The delay term lqx  creates uni-
form phase progression across antenna elements, which per-
mits the estimation of the angle by FFT in spatial domain, as 
shown in (7). Thus, 2-D location (range and angle) and speed 
of targets can be jointly estimated by 3-D FFT. The target 
location and velocity estimation problems are revisited later in 
the section “Advanced Estimation Techniques” with more 
emphasis on the high resolution algorithms and computational 
complexity analysis.

Radar waveforms
Various automotive radar classes, summarized in Table 1, 
have diverse specifications in terms of several fundamental 
radar system performance metrics, such as range resolution, 
velocity resolution, angular direction, SNR, and the probabili-
ty of target detection. The type of waveform employed by a 
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Figure 4. (a) A typical traffic scenario with reflections from different targets, including two cars at the same distance R. (b) The azimuth angle estimation 
setup using uniform linear antenna array.
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radar is a major factor that affects these metrics. The radar 
waveforms, as summarized in Table 2, can be characterized 
whether or not they are CW, pulsed and frequency, or phase 
modulated. Modulated radar waveforms include FM CW, 
stepped frequency (SF) CW, orthogonal frequency-division 
multiplexing (OFDM), and frequency shift keying (FSK). 
Each waveform type has a certain advantage in processing, 
implementation, and performance as follows:

 ■ In the CW radar, a conjugate mixing of a high-frequency 
transmitted and received signal produces the output signal at 
the Doppler frequency of the target. The resolution of fre-
quency measurement is inversely proportional to the time 
duration of the signal capture. The continuous nature of the 
waveform precludes round-trip delay measurement, which is 
necessary for range estimation of the target [see Figure 5(a)]. 

Hence, apart from ease of implementation and ability to 
detect target speed, the CW radar cannot provide the 
range information.

 ■ Pulsed CW radar can estimate the range information as 
explained previously in the section “Basic Automotive 
Radar Estimation Problems.” The Doppler frequency can 
be estimated by making each pulse longer and measuring 
the frequency difference between the transmitted and 
received pulses. As shown in Figure 5(b), the pulse duration 
and pulse repetition frequency (PRF) are the key parame-
ters in designing pulsed CW radar with desired range and 
velocity resolution.

 ■ FMCW, also known as linear frequency modulation 
(LFM) or chirp, is used for simultaneous range and 
velocity  estimation (refer to the “Velocity Estimation” 
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Figure 5. (a) Doppler frequency measurement with the CW radar. (b) A pulsed CW radar waveform with pulse repetition time TPRF  and pulsewidth Tp. 
(c) An SFCW signal with period T0. (d) An OFDM block with symbols time T and cyclic prefix time .TCP

Table 2. Radar waveforms.

Waveform Type Transmit Waveform s(t) Detection Principle Resolution Comments 

CW ej f t2 cr  Conjugate mixing /f T1d9 =  No range information 

Pulsed CW ( )T ep
j f t2 cP r  Correlation /R cT 2p9 =  /f T1d p9 =  Range-Doppler performance tradeoff 

FMCW ,    e K T
B( . )j f Kt t2 0 5

0
c =r +  Conjugate mixing /R c B29 =  /f PT1d 09 =  Both range and Doppler information 

SFCW ,    ( )e f f n f1j f t
n c

2 n 9= + -r  Inverse Fourier transform /R c B29 =  /f PT1d 09 =  f9  decides maximum range 

OFDM 
( )I n e ( )

n

N
f n f t

0

1
2 c 9r

=

-
+/ Frequency domain 

 channel estimation 
/R c N f9 9=  /f PT1d N9 =  Suitable for vehicular  communication 

B denotes bandwidth of the radar. T is the amount of time for which data is captured.
N  stands for a number of samples in CW and number of carriers in OFDM.
( )TpP  is rectangular pulse of duration .T Pp  is number of FM/SF-CW or OFDM blocks of duration  ,T Tand N0  respectively.

( )I n  is arbitrary sequence and f9  is carrier/frequency separation in OFDM/SFCW.
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section for details). Due to the pulse 
compression, the range resolution is 
inversely proportional to the band-
width of the FMCW signal and is 
independent of pulsewidth. For exam-
ple, the short-range FMCW radar uses 
ultrawideband (UWB) waveforms to 
measure small distances with higher 
resolution. The Doppler resolution is a 
function of pulsewidth and the number of pulses used 
for the estimation. Thus, with the ability to measure 
both range and speed with high resolution, FMCW radar 
is widely used in the automotive industry.

 ■ In contrast to FMCW waveforms, the frequency of FSK 
and SFCW varies in a discrete manner [see Figure 5(c)]. In 
this case, the range profile of the target and the data col-
lected at discrete frequencies form the inverse Fourier 
transform relationship. Also, hybrid waveform types can be 
employed to achieve additive performance. FSK waveform 
can be combined with multislope FMCW waveform to 
overcome ghost targets in radar processing [16]. Similarly, 
alternate pulses of CW and FMCW are used to accurately 
estimate range and Doppler [17].

 ■ OFDM can be viewed as another multifrequency wave-
form that offers unique features of the joint imple-
mentation of automotive radar and vehicle-to-vehicle 
communications [18], [19]. For the radar operation, the 
orthogonality between OFDM subcarriers is ensured by 
choosing carrier spacing more than maximum Doppler 
shift, and the cyclic prefix duration is selected greater than 
the longest round-trip delay [see Figure 5(d)]. The range 
profile is estimated through frequency domain channel 
estimation. OFDM radar processing along with simulation 
results is explained in [20].
Based on the knowledge of target statistics, radar wave-

forms can be optimized. Radar waveform design is revisited 
along with multiple-input, multiple-output (MIMO) radars in 
the “MIMO Radar” section.

Advanced estimation techniques
Advancements in silicon semiconductor technology have had 
the profound impact on the design of automotive radar sys-
tems, providing higher integration and performance at lower 
cost. This section reviews some sophisticated radar signal pro-
cessing algorithms, which have become feasible with such 
advancements, especially for real-time implementation. In this 
section, most commonly used FMCW radar architecture is 
assumed and targets are considered to be stationary. Hence, (7) 
is reduced to a range-azimuth estimation problem with the sig-
nal model given by

 
( , )

( , ) .
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(8)

To elucidate advanced estimation tech-
niques, the dimensionality of the problem 
is reduced to two dimensions. It should be 
noted that the discussed techniques can be 
extended to four-dimensional problems 
with mobile targets and elevation direction.

As discussed previously, the 2-D FFT of 
(8) can provide joint estimation of distance 
and angle. The FFT-based estimation has the 

least complexity of implementation, which is ( )logLN LNO ,  
where N  is the number of time domain samples and L 
denotes the number of elements in a one-dimensional (1-D) 
antenna array. However, the resolution of Fourier techniques 
is dictated by the Rayleigh limit. While the higher range res-
olution can be obtained with larger FMCW bandwidth, the 
higher angular resolution requires more antenna elements, 
adding to the cost of RF front end. Additionally, the radar 
has to process a larger set of signal samples. However, it is 
important to reduce the computational load while realizing 
the desired angular and range resolution. We first visit the 
ML formulation of joint estimation of range and direction of 
targets. Then, we review the so-called superresolution tech-
niques as suboptimal and lower complexity alternatives to 
the ML estimator.

ML estimation
The complex Gaussian observation noise in (8) is assumed 
to be temporally and spatially independent. ML estimation 
of 2-D parameters ( , )R i  can be found solving the follow-
ing equation:

( , )

.

min exp
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Thus, depending on the granularity of ( , )R i  search space, the 
ML estimator can offer the resolution beyond the Rayleigh limit 
set by system parameters such as bandwidth and number of 
antenna elements. However, the complexity of implementing 
this algorithm depends on the cardinality of the search-space as 
well as the number of targets. Since ( , )Rq qi  are continuous 
parameters, the computational complexity of ML algorithm 
(| ( , ) | )RO Qi  becomes prohibitive. In the subsequent para-

graphs, the superresolution techniques that can achieve high res-
olution at lower computational cost are illustrated.

Superresolution techniques
Due to their prohibitive computational cost, ML algorithms 
need to be implemented via suboptimal techniques. These tech-
niques rely on collecting enough signal samples. At a suffi-
ciently high SNR, eigenvalues and associated eigenvectors of 
sample covariance matrix C (defined in Algorithm 1) repre-
sent the ML estimate of their true values. Hence, these eigen-
vectors can be used to resolve the target with high resolution. 

The traffic imaging 
problem can be turned 
into a classical parameter 
estimation problem so  
that superresolution 
techniques such as  
MuSiC can be applied.
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The superresolution algorithms that rely on 
these techniques include multiple signal 
classification (MUSIC) [24] and estimation 
of signal parameters via rotational invari-
ance technique (ESPRIT) [25], [26]. Recall-
ing the 2-D ( , )R i  stationary target location 
estimation problem, the superresolution 
algorithms can be applied across each dimension separately. 
However, this approach might lead to the so-called associa-
tion problem [15]. Since the association of estimated parame-
ters is the key step in interpreting and delivering results to the 
driver assist system, joint processing can be implemented. As 
( , )R i  domain is jointly searched for its entire range, the pos-
sibility of ghost targets is eliminated and unambiguous results 
are obtained [27].

As discussed previously, the temporal frequency of (8) 
gives the range, and spatial frequency corresponds to the 
angular position of the target. Hence, the traffic imaging 
problem can be turned into a classical parameter estimation 
problem so that superresolution techniques such as MUSIC 
can be applied. From (8), a 2-D matrix is formed, which has a 
Vandermonde structure across each dimension for a uniform 
linear antenna array. A 2-D joint superresolution was applied 
in the radar imaging context in [27] and later with FMCW 

waveforms in [21], which is described in 
Figure 6 and Algorithm 1. The complexity 
of the 2-D joint superresolution algorithm 
lies in the cost of eigenvalue decomposition 
of covariance matrix CL N L Ns s s s#  and 2-D 
exhaustive search over the entire range of 
( , )R i  domain. Thus, traditional 2-D joint 

superresolution algorithm has computational complexity of 
the order of .( )L NO s s

3

Larger size sampled covariance matrix makes 2-D joint 
superresolution algorithms difficult in practice. To deal with 
implementation issue of superresolution algorithms in real 
time, size of the observation space must be reduced.

Complexity reduction technique using  
beamspace projection
FFT-based estimation techniques have a low complexity of 
implementation. However, its resolution is limited by the 
radar bandwidth and number of antenna elements. On the 
other hand, the superresolution estimation resolves closer tar-
gets yet has higher computational complexity. Thus, there 
exists a trade-off between resolution and complexity. To 
reduce the computational complexity of superresolution algo-
rithms and maintain their resolution capability, we propose 
two-stage estimator using a beamspace superresolution algo-
rithm, which breaks the large problem into smaller problems 
using initial FFT processing [28], [29].

The computational cost of a joint superresolution algorithm 
lies mainly in the eigenvalue decomposition of large sample 
covariance matrix. Thus, to reduce the cost, the size of the 
covariance matrix must be reduced. Hence, as the first stage 
of a two-stage FFT-based-beamspace algorithm, we obtain 
the FFT of 2-D matrix DL N#  in (8). From the output of this 
low-resolution 2-D FFT, we can determine temporal and spa-
tial frequencies, which correspond to the approximate loca-
tion of a target or cluster of targets. Once the frequencies of 
interest are known, we can project the data from the higher-
dimensional subspace of DL Ns s#  to the lower subspace of our 
interest DL Nbb#  using DFT matrices, which form nonoverlap-
ping beams in range and angular domain. Thus, the super-
resolution algorithm operates on the smaller data set, and the 
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Figure 6. The spatial smoothing of 2-D data using a window size of  
L Ns s#  [21]. 

Algorithm 1: The 2-D joint superresolution algorithm.

  Input:  Data collected using FMCW radar with stationary 
targets [refer to (8)] is arranged in a 2-D matrix 
DL N# .

 Output:  a 2-D image with range and angle superresolu-
tion.

 1)  Apply spatial smoothing to remove the correlation in 
the reflected signal data: Vectorize each sub matrix 

,DL Ns s#  which is selected using window into a col-
umn vector DL N 1s s#

t . For each sub matrix, find sam-
ple covariance matr ix ( / )C DD NL N L N

H
s s s s =#

t t . 
Average the covariance matrix across possible over-
lapping windows (see Figure 6). This step is neces-
sary for the application of the MUSIC algorithm, 
which typically assumes uncorrelated sources.

 2)  Perform the eigenvalue decomposition of the sample 
covariance matrix and find the noise subspace V~  
using AIC or MDL criterion to determine the number 
of sources [22] [23].

 3)  Obtain steering vectors in terms of the target 
position

( , ) .veca R e
sinj c

KR
f
n

c
f ld

c
f R2 2 2

s
c c

i = r
i

+ +; E$ .

 4)  Apply the MUSIC algorithm to locate the target in the 
2-D space.

( , )
( , ) ( , )

.
a V V a

S R
R R

1
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For proper transmitter 
spacing, the colocated 
MiMO radar can emulate 
a larger aperture phased 
array radar.
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complexity of a 2-D superresolution imaging can be reduced 
to .( )L NO b b

3  Moreover, 2-D exhaustive search for the target 
on a finer grid operates over an area of interest, thereby further 
reducing the complexity. The performance of the beamspace 
algorithm is demonstrated in Figure 7. More detailed discus-
sion on the complexity analysis and implementation of radar 
algorithms can be found in [30].

MIMO radar
MIMO radar systems employ multiple transmitters, multiple 
receivers, and multiple waveforms to exploit all available 
degrees of freedom [31]. MIMO radars can be classified as 
widely separated or colocated. In widely separated MIMO 
radar, transmit-receive antennas capture different aspects of 
the RCS of a target. In other words, the target appears to be 
spatially distributed, providing a different RCS at each anten-
na element. This RCS diversity can be utilized to improve the 
radar performance [32]. On the other hand, with colocated 
MIMO radar, the RCS observed by each antenna element is 
indistinguishable [10].

Automobiles typically use colocated MIMO radars, which 
are compact in size [33]. For proper transmitter spacing, the 
colocated MIMO radar can emulate a larger aperture phased 
array radar (see Figure 8). This larger array is called a virtual 
array. Recall of the range-azimuth estimation problem given in 
(8). For the MIMO radar processing, as depicted in Figure 8, 
a 1-D receiver array with two transmit antennas is considered. 
Let LT  and LR  denote a number of transmit and receive anten-
na elements, respectively. Suppose that dT  and dR  represent 
corresponding transmit and receive antenna spacings. Also, 
assume that transmit and receive antenna positions in Cartesian 
coordinates are given by lT  and .lR  Hence, the 2-D FMCW 
mixer output signal across fast time and aperture is given by

 expa j2r +( , , )
{( ) }
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d l l n
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From (10), it is evident that if d L dT R R#= , then MIMO 
radar imitates a regular 1-D array radar with single trans-
mit and L LT R#  receive antenna elements. This is known 
as virtual array representation. Hence, the spatial resolution 
of FFT-based target imaging can be improved by the fac-
tor of LT . With virtual array representation and substituting 
l l L lT R R#= + , the expressions similar to (8) can be obtained 
and the estimation algorithms discussed in the sections “Basic 
Automotive Radar Estimation Problems” and “Advanced Esti-
mation Techniques” can be applied.

The challenging aspect of MIMO radar is the selection of 
waveforms. The waveforms can be made orthogonal in the 
frequency, time, or code domain [34], [35]. Consequently, the 
matched filter design at the receiver varies, which is necessary 
to separate the reflected waveforms originating from differ-
ent transmitters. From the FMCW radar signal given in (4), 
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various orthogonal waveforms can be con-
structed in the following manner [36]:

 ■ Beat frequency division:  ( )s t =
e ( ) . . ( / )j f f t Kt f K2 0 5 0 5c b b

2 29 9r - + +6 @. Here, fb9  is 
the frequency offset introduced for wave-
forms orthogonalization. The last term in 
the exponential corresponds to residual 
video phase compensation, which is necessary for coherent 
receiver processing.

 ■ Modulation constant division: ( )s t = .e ( . [ ] )j f K K t t2 0 5c 9r + +  
The modulation constant or chirp rate offset is given by 
K9 , which is obtained by varying the pulse period. The 

bandwidth at each transmitter remains the same to main-
tain the range resolution. The reset time between the pulses 
ensures the synchronization at the receiver.

 ■ Code division: ( )s t e [ ( . ) . ( )]j f Kt t t2 0 5 0 5c= r b+ + , where ( )tb  cor-
responds to the binary phase-shift keying (BPSK) signal 
with a low update rate that assumes values 1! . The band-
width of the BPSK signal is kept smaller to ensure the 
proper operation of the FMCW radar.
Following the waveform selection, the waveform design can 

be used for further optimization of the radar performance. For 
the wideband radar waveforms with high-range resolution, a 
planar target appears to be a cluster of point targets. The extend-
ed target exhibit random reflectivity (impulse response) as its 
reflection consists of several waveforms added together. From 
the known extended target statistics, the transmitted waveform 
can be adapted (see Figure 9). The mutual information between 
a random extended target and the reflected received signal is 
used to optimize the radar waveform [38]. Under the constraint 
on the transmit power, the waveforms can be designed to mini-
mize the mean square error in the target impulse response esti-
mation. The solution to this problem consists of water-filling 
power allocation, distributing more power to target exhibiting 
significant scattering [39]. As shown in [40], multiuser MIMO 
principles can be applied to waveform design in the context of 
multiple target estimation and tracking.

Robust estimation techniques
So far, we have assumed that the automotive radars only 
receive the reflection from the targets of interest such as a 
vehicle traveling in front. However, in addition to direct 
reflections from the target of interest, the radar also receives 
reflections from the road debris, guard rails, and walls. This 
unwanted return at the radar is called clutter. The amount of 
clutter in the system changes as the surrounding environment 
of the vehicle varies. Hence, adaptive algorithms such as con-
stant false alarm rate (CFAR) processing and space-time 
adaptive processing (STAP) can be used to mitigate the effect 
of clutter.

To identify valid targets in the presence of clutter, the 
threshold for the target detection should be properly chosen. 
If the amplitude of the spectrum at an estimated range is 
greater than some threshold, the target is said to be detect-
ed. Thus, the threshold should depend on the noise or in 
other words on the clutter in the given system. As clutter 

increases, a higher threshold may be cho-
sen. A simple CFAR method based on 
cell averaging can use a sliding window 
to derive the local clutter level by averag-
ing the multiple range bins. As multiple 
targets make this detection method intri-
cate, sophisticated techniques based on 

ordered statistics can be used [41], [42].
STAP is another technique that can robustify target posi-

tion estimation [43], [44]. The key idea is to use an adaptive 
filter that selects the target amid clutter from road and other 
objects. The weights of the filter change adaptively with clutter 
statistics. In FMCW radar (7), this filter operates on the mixer 
output across different chirps (i.e., P slow time samples) as well 
as across spatial domain (L samples from 1-D aperture). The 
clutter statistics are recorded with the interference covariance 
matrix C ,LP LP#  which is calculated by averaging over the range 
bins surrounding the target of interest. Let ( , )e fLP t d1 ti#  be the 
spatio-temporal steering vector pointing to the possible target. 
The weights of space-time adaptive filter are given by minimum 
variance distortionless (MVDR) beamformer [44] as
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The presence of target is then tested by passing the spatio-
temporal data through the filter with coefficients ( , )w ft dti . This 
process is conducted for all possible targets of interest.

Additionally, STAP can benefit from extra degrees of freedom 
in MIMO radar by using multiple transmitter antenna elements to 
reduce the clutter. The MIMO radar with increased virtual array 
size can process both direction of arrival and departure informa-
tion, which shows mismatch if the signal is reflected from the 
clutter [11], [45].

Target tracking problem
Target tracking is an essential part of the ADAS subsystems 
such as collision avoidance and lane assist. In the tracking, a 
state ( , , , , , ),x y z v v vx y z  which indicates the 3-D position of the 
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Figure 9. The functional block diagram of adaptive waveform design [37].

To identify valid targets 
in the presence of clutter, 
the threshold for the 
target detection should  
be properly chosen.
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target in Cartesian coordinates and corre-
sponding directional velocities is determined 
based on the current observation ( , , )R i z  
and previous state information.

A key step in tracking is to associate 
separately estimated parameters of Q  tar-
gets, particularly velocities ( , , , )v v vQ1 2 f  
and ranges ( , , , )R R RQ1 2 f  with each other 
[( , ) ( , ), , ( , )] .R v R v R vQ Q1 1 2 2 f  After linking 
estimated parameters with targets, the tar-
gets are associated with tracks. For example, 
if each target follows a separate track, then 
there are Q  tracks in the system. The asso-
ciation problem becomes complex when two tracks cross each 
other. Different methods to perform data association include joint 
probabilistic data association (JPDA), nearest neighbor (NN), 
and fuzzy logic [46].

Following the data association, tracking can be performed 
using well-known algorithms such as Kalman filtering. For 
each track, a separate filter is implemented. These filters oper-
ate in parallel. Since the observation vector ( , , )R i z  has a 
nonlinear relationship with the state vector ( , , , , , ),x y z v v vx y z   
an extended Kalman filter (EKF) is used. The state equation that 
captures the effect state transition over time [47] is given by
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where T  is the observation interval. The observation vector is 
related with state vector via
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From the knowledge of the previous state, the present state is 
predicted based on the state equation (12). Using (13) and the pres-
ent observation, the predicted value is updated. The amount of cor-
rection depends on the SNR of the observations; see [47] for more 
details. Vehicle tracking problems are also addressed in [48]–[51].

Pedestrian detection
Pedestrian, bike, and wild life detection is essential for a driver 
assist and collision avoidance system. As a pedestrian walks, a 
small change in range produces very low Doppler shift. In other 
words, the micromotion of a target produces what is known as a 
micro-Doppler [52]. Likewise, the periodic motion of limbs cre-
ates a periodic pattern in velocity over time, which is also 
known as the micro-Doppler signature. This signature, along 
with other feature extraction and matching algorithms, can be 
used to uniquely identify pedestrian walking. More details 
about an analysis of human gait using range-Doppler plots are 
given in [53].

Moreover, the pedestrian detection task 
becomes more challenging due to a smaller 
RCS of the human body [54]. To make the 
pedestrian detection robust, the radar based on 
micro-Doppler estimation can be combined 
with inputs from a vision sensor [55]. Also, 
the tracking algorithms discussed previously 
can help predict pedestrian movement [56].

Let us discuss how the micro-Doppler 
signature is extracted using FMCW radar 
processing in (5). First, 2-D signal samples 
obtained across slow and fast time are con-
verted into single dimensional signals by 

range gating. Typically, FFT is performed across fast time n  
and only the frequency corresponding to the range of interest 
R0  is retained (assume single target with micromotion at R0). 
Neglecting range-Doppler coupling and effect of finite length 
FFT, (5) can be rewritten as

 ( ) [ ( )] ( )expd p j
c
f
R pT p2

2 c
0 0 0. a r ~X+ +t tc m' 1 , (14)

where (.)X  is the function characterizing the micromotion of 
the target. As explained in [52], the short-time Fourier transform 
(STFT) of (14) gives the instantaneous variation of Doppler 
across time. Detail analysis regarding micro-Doppler vibration 
measurements using FMCW radar is done in [57]. In addition to 
pedestrian detection, micro-Doppler also can be used to identify 
the type of a vehicle (truck, sedan, etc.) by characterizing its 
vibration pattern on top of Doppler shift produced by its bulk 
motion [58], [59].

FMCW radar EM simulation setup
Radar algorithms are often verified by means of simulations, 
which reduces the cost of prototyping and testing. While mod-
eling the radar systems, the targets and channels under consid-
eration are assumed to be ideal. The targets are modeled as 
objects with perfect reflectivity, and the signals are assumed 
to propagate through unobstructed paths. To verify the via-
bility of various radar estimation algorithms in the real 
world, it is necessary to use computational EM software to 
simulate potential target RCSs and channels.

A realistic simulation setup should include radiation patterns 
of the transmit and receive antenna elements, which count for the 
direction dependent scaling of the transmitted and reflected signals 
according to the geometry of the system. In addition, EM waves 
undergo reflection, diffraction, and scattering, depending on the 
shape and size of the target with respect to its wavelength. To incor-
porate these phenomena, Maxwell’s equations with appropriate 
boundary conditions must be solved. Along with numerical com-
puting, software packages such as MATLAB or MATHEMAT-
ICA and EM simulators such as ADS [60], FEKO [61] or Xpatch 
[62] can be used for the accurate modeling of the automotive radar 
imaging. The effect of RF impairments such as phase noise, local 
oscillator leakage, and in-phase and quadrature imbalance can be 
modeled either in MATLAB or an EM simulator such as ADS. 

A realistic simulation 
setup should include 
radiation patterns of the 
transmit and receive 
antenna elements, which 
count for the direction 
dependent scaling of the 
transmitted and reflected 
signals according to the 
geometry of the system.
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We demonstrate a realistic automotive radar simulation setup 
based on FEKO and MATLAB implementations, as illustrated 
in Figure 10.

Data fusion and challenges
The automotive radar output is often combined with outputs 
from other sensors such as lidar, camera vision, and ultrasound. 
Lidar and vision sensors can help enhance discrimination capa-
bilities and reduce computation costs by delivering faster 
response. Independent observations from other sensors must be 
combined with radar systems to increase the reliability. For 
example, the lidar provides improved target detection on curved 
roads. Radar offers superior speed measurements, as they rely 
on the Doppler effect as opposed to lux measurement in lidar 
[63]. Moreover, lidar is more sensitive to environmental factors 
such as snow, fog, dust, and rain [64].

When multiple sensors are in operation, all measurements 
should be synchronized to a common clock using time stamp-

ing. Observations from individual sensors are typically combined 
together to form global sensor data. The relative placement, ori-
entation, and mathematical models of each sensor should be con-
sidered. Details about fusion techniques such as object-list-level, 
track-to-track, low-level, and feature-level fusion are discussed in 
[65] and [66]. More information about real-time object detection 
using learning algorithms can be found in [67].

Another important aspect of automotive radars is the inter-
ference between two vehicles [68]. Analytical studies point out 
reduced radar sensitivity in such cases. Null steering, tracking, 
coded sequences, and interleaving are among several techniques 
used for interference mitigation. An additional feature of the 
intelligent transportation system can include vehicle-to-vehicle 
communication, which can also help to avoid collision [69], [70].

Conclusions
As we progress toward fully autonomous driving, many chal-
lenges and innovative solutions will emerge. The fundamental 
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component of these autonomous systems is the automotive 
radar, which has become feasible due to prospering mm-wave 
circuit technology. Concurrently, sophisticated signal pro-
cessing techniques have gained momentum to efficiently uti-
lize the automotive radar hardware. In this article, we have 
presented various signal processing aspects of automotive 
radars, starting from basics of range and velocity estimation 
to complex 3-D end-to-end EM simulation. The target loca-
tion estimation techniques are explained with sufficient 
mathematical details and illustrative examples so that the 
article may also serve as a tutorial. For briefly touched-on 
advanced topics in the field, we have pointed to relevant liter-
ature, which readers can pursue according to their interests. 
This review article should help researchers and engineers 
take a first step forward in developing novel automotive radar 
signal processing techniques.
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