Antenna Design

Lab 07 - Friis Transmission Equation

 

Dipole dimensions:

Feeding: Center-fed with a discrete port with source impedance of 50 W

Design frequency:  f = (1000 + PIN/1000) MHz=1GHz

실습조교 PIN = 0000

Dipole end-to-end length:  = 0.40 λ=120mm

Dipole diameter: d  = L/15=8mm

Dipole feed gap at the dipole center: g = d/2=4

Dipole material: PEC

Frequency range: 0.5f0 to 1.5f0

 

Use Dipole #1 and Dipole #2 with dimensions as above.

Dipole #1 arm: Direction = z, dipole center at y = 0 and x = 0

Dipole #2 arm: Direction = z, dipole center at y = R and x = 0

프로젝트 template 생성

 

 

다이폴 #1 구조 그리기: 다이폴 원통 전체를 만든 , 급전 간극 (feed gap) 제거한다.

(1) Make a Dipole 1

Modeling, Cylinder 아이콘 선택, ESC , Name: solid1, Orientation: Z

 

(2) Make a feed gap

Modeling, Cylinder 아이콘 선택, ESC , Name: solid1, Orientation: Z

Next

Shape intersection: Cut away highlighted shape

 

(3) Make a Dipole 2

다이폴 #2 구조 그리기: 다이폴 #1 복사한다.

Use Dipole #1 and Dipole #2 with dimensions as above.

Dipole #1 arm: Direction = y, dipole center at z = 0 and x = 0

Dipole #2 arm: Direction = y, dipole center at z = R and x = 0

a)  Select the dipole1

 

 

 

 

 

b) Make dipole 2 wire using Transform

For R = 0.25 λ=0.25*300=75 mm

Modelling, Components, component1

Click the dipole 1, the right mouse button, Transform

X: 0

Y:75

Z: 0

 

 

 

 

다이폴 급전 포트 설정

Modeling, Pick Points, Pick Face Center, gap 한면에 마우스 위치후 더블클릭

Pick Points, Pick Face Center, gap 한면에 마우스 위치후 더블클릭

Simulation, Discrete Port

키보드 A 누르고 중앙 선택

 

- 아래와 같이 점이 생성됨

 

- 위와 같은 방식으로 반대쪽에도 생성

 

- [Simulation]-[Discrete Port] Click

- 아래와 같은 창이 생성됨

- OK Click

 

 

 

 

- 반대쪽도 똑같이 생성해주면 된다.

- 유의할 점은 포트의 방향은 같아야 한다는 .

Repeat a discrete port2 same the discrete port1.

 

시뮬레이션 설정

주파수 설정:

Simulation, Frequency, Min. frequency: 0.5, Max. frequency: 1.5

필드 모니터 설정:

Simulation, Field Monitor, E-field, Frequency, Frequency:1, Apply

Simulation, Field Monitor, H-field and Surface current, Frequency, Frequency:1, Apply

Simulation, Field Monitor, Far field/RCS, Frequency, Frequency:1, Apply

Simulate

Simulation, Setup Solver, Start

 

1-1.  Plot the antenna structure.

 

1-2. Plot Plot |S11|, |S21| in dB.

1-3. Find |S21| (dB) at f0.

|S21| = -8.87 dB @ 1GHz

 

1-4. Plot the co-polarized gain Gtheta at f0 of a dipole toward the other dipole on a polar plot in θ= 90° plane. Find the Gtheta (dB) in the direction of the other dipole. The presence of the other dipole may change the omnidirection pattern of an isolated dipole.

Navigation Tree,

2D/3D Results, Farfileds, Theta

 

a) Polar

- 3D pattern에서 마우스 우클릭  [Farfield Plot Properties] 클릭

아래 화면과 같이 지정

     (Theta->Phi, OK)

 

 

 

Gtheta = 2.55 dBi @ phi = 90° (in the direction of the other antenna)

 

 

For Y=R = 0.5 λ=150 mm, repeat the above.

Double click the  dipole1_1

 

 

Then double click the Transform component (translate)

 

Change the distance (Y=R = 0.5 λ=150 mm)

 

 

Simulate

Simulation, Setup Solver, Start

 

2-1.Plot the antenna structure.

 

2-2. Plot Plot |S11|, |S21| in dB.

 

2-3. Find |S21| (dB) at f0.

|S21| = -13.91 dB @ 1GHz

 

 

2-4. Plot the co-polarized gain Gtheta at f0 of a dipole toward the other dipole on a polar plot in θ= 90° plane. Find the Gtheta (dB) in the direction of the other dipole. The presence of the other dipole may change the omnidirection pattern of an isolated dipole.

 

a) Polar

 

 

 

 

Gtheta = 1.79 dBi @ 1 GHz in the direction of the other antenna

 

For Y= R = 1.0 λ=300 mm, repeat the above.

Double click the  dipole1_1

 

 

Then double click the Transform component (translate)

 

Change the distance (Y = R = 1.0 λ=300 mm)

 

 

Simulate

Simulation, Setup Solver, Start

 

3-1.Plot the antenna structure.

 

3-2. Plot Plot |S11|, |S21| in dB.

 

3-3. Find |S21| (dB) at f0.

 

 

|S21| = -18.46 dB @ 1GHz

 

3-4. Plot the co-polarized gain Gtheta at f0 of a dipole toward the other dipole on a polar plot in θ= 90° plane. Find the Gtheta (dB) in the direction of the other dipole. The presence of the other dipole may change the omnidirection pattern of an isolated dipole.

 

a)      Polar

 

 

 

Gtheta = 2.07 dBi @ 1 GHz in the direction of the other antenna

 

II. Discussions

1. Compare |S21| (dB) by CST Studio with |S21| (dB) by Friis equation.

 

R = 0.25 λ

R = 0.5 λ

R = 1.0 λ

1. |S21| (dB), CST Studio

-8.87

-13.91

-18.46

2. Antenna gain Gtheta (dB) in the other dipole direction

2.55

1.79

2.07

3. Path loss: (λ/4πR)2 (dB)

1/(4π×0.25)2 = -9.94

1/(4π×0.5)2 = -15.94

1/(4π×1.0)2 = -21.94

4. |S21| (dB), Friis equation

-4.84

-12.36

-17.80

5. |S21| difference (dB) (1-4)

-4.03

-1.55

-0.66

 

2. Find the minimum distance where the Friis equation is accurate within ±1 dB. Note the Friis equation is accurate when both antennas lie in the far-field region of the other antenna.

 

R = 0.5,  delta = -1.55

R = 1.0,  delta = -0.66

R = x,    delta = -1.0

-------------------------------

Use a linear approximation (비례식)

x = 1.0 - (1.0-0.66)*(1.0-0.5)/(1.55-0.66) = 0.809 λ