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Elementary electric dipole - power

Components of electric and magnetic fields generated by an elementary electric dipole
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Elementary electric dipole, field zones

Components of electric and magnetic fields generated by an elementary electric dipole
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Hy(r.0) = ?sin 9-;“4.- F‘ "l Fields are similar to those of a static electric dipole and to that
LUKE of a static current element (quasistationary fields)
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Far field region kr > 1 (r » A/2n)
Most important region of an antenna, E,. vanishes and only
transversal (to r) field components (here E5 and Hy) remain
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Elementary electric dipole — FAR FIELD

Far field region kr > 1 (r » A/2m) The E and H field components are perpendicular to each other,
transverse to the radial direction of propagation, and the r variations

H, = Hg = E¢» =E =0 are separable from those of # and ¢. The shape of the pattern is not a
function of 1, and the fields form a transverse (TEM) wave, Eg and Hy,

are in phase.
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Field structure of an arbitrary antenna in the far-field, i.e. fields are observed at sphere of very large radius:
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Farfield pattern, function involving angular
Constant involving dependence of the field, sin @ in our case of infinitely
current etc. small current element. The dependence comes from

Amplitude and phase
representing point source
(spherical wave)

transformation of unit vectors between cartesian and
spherical coordinates




Elementary electric dipole — FAR FIELD

Let’s concentrate on the electric field only, because we know that in farfield Hy, = Eg/Z,
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Radiation pattern, directivity

Isotropic (point) source, power density
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Isotropic antenna has input power P;,, = 1W.
Radiation intensity is not function of direction,
is constant U, = iW/sr
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Radiation intensity U is defined as “the power radiated from an antenna per unit space angle (steradian)” and is

2
related to the far zone E field of an antenna: U(8,¢) = r25(6,¢) = % |E(8, ¢)|?.

Directivity = radio of radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions

(isotropic source)
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@fective isotropic radiated power (EIRP)\
EIRP = D - Py,
Antenna with D = 30 dBiand P;,, = 1W

30
EIRP =D P, =101 -1 = 1000 W

(equivalent to isotropic source with P;,, = EIRP)

\ Antenna is the best amplifier!! /




Antenna efficiency (gain)

Antenna gain G (8, ) = nD(6, ¢)

(1-111%)
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Joule losses in metal Joule losses in dielectrics

R,

Mostly only conductive losses are considered, n,. =
Ry+RLoss
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Radiation pattern

Full 3D radiation pattern
z-directed dipole = only 8 component of directivity
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Radiation pattern sy

Full 3D radiation pattern
x-directed dipole has both components Dg (6, ¢) and Dy (6, ¢).

D6, 9)| = J [D6(8. $))? + [Dy (6. )]




Radiation pattern — directional antenna
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O, =65, beam solid angle
half-power beamwidths

Example 0, 40002409 = 10 - 10 = D0, = 412.5, Dyp; = 26 dBi
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Polarization of the radiated field

* property of an electromagnetic wave describing the time-varying direction and relative magnitude
of the E.

Linear polarization - fields
* only one component or
* two orthogonal linear components in-phase or out-of-phase

Circular polarization (LHC/RHC) - fields

* must have two orthogonal linear components, and

* the two components must have the same magnitude, and

* the two components must have a time-phase difference of 90° (+ odd
multiples)

RHC: Wave travels away from observer, rotation is clockwise
LHC: Wave travels away from observer, rotation is counterclockwise

General elliptical polarization Axial ratio
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Polarization of the radiated field
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Polarization of the radiated field
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Polarization of the radiated field
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Polarization of the radiated field
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Antenna

location 0 = 90°

(a) Polarization ellipse
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Rotate test probe

Antenna under test
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Antennas

* Directive

* radiated power is concentrated into narrow space angle
* Radiowave P2P links, space communication antennas

* D~10 — 50 dBi

* Arecibo radiotelescope 70 dBi (10 million linear gain)

e Sector

* radiated power is concentrated into given sector
* Base station (access point) antennas, satellite antennas
* D~10 — 20 dBi

* “Omnidirectional”
* 360 degrees in horizontal plane, vertical plane could be
narrower

* Mobile phone antennas, receiving antennas
* D~1,5—-6dBi

é
-
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= AnennaField Regions
- Reactive NF region: Stored energy dominant

- Radiatinig NF region (= Fresnel region): Stored and radiated energy

- FF region (= Fraunhofer region): Radiated energy dominant.
Radiation pattern independent of distance
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(@) Small antennas (a << 1). (b) Large antennas (D > 2.54).
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Radiation zones

Field pattern = function of the radial distance,
radial field component may be appreciable.
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The angular field distribution is
independent of the distance from the
antenna. Field components are transverse

Far-Field

Fraunhofer

Y
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= Rayleigh distance
Dy =2D?IA

- Phase error of 7/8 relative perfectly paralld rays.

Radiation zones
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Radiation zones

f=1.296 GHz, A=232 mm

Far field R>78 m (336 A)

1301
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The small (elementary) dipole and loop

Duality

Elementary dipole m Elementary loop
ol . N . -
it _ jkZglLe™T*r " i B Zk2IS edier 5

a(1,0) = yp= sin $(1r,0) = = sin

kIL e~ /K" Eo(r,0 —k?1Se” Tk —E, (1,6)
Hy(1,6) =14ﬂ — % Hg(r,0) = - sinf = d)Zo
\— L N "

The loop antenna and the electric dipole are said to be duals, because the magnetic field radiated by the electric
dipole has the same form as the electric field radiated by the loop antenna. A small electric loop antenna is also
sometimes called a magnetic dipole.
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