Antennas and Propagation

Chapter 3: Antenna Parameters

Introduction

Purpose

Introduce standard terms and definitions for antennas Need a common language to specify performance

Two types of parameters

1. Radiation parameters What is the spatial selectivity of the element? Indicate where is power sent / collected from.

2. Network parameters

What does the antenna present at its port(s)? Indicates requirements for system it connects to.

Outline: Radiation Parameters

Goal

Precisely define the spatial selectivity of antennas

Main Concepts

Radiation patterns, pattern cuts, beamwidth Field regions: far-field, near-field Power density of EM fields Radiation Power Density Directivity / Gain

Radiation Patterns

Definition

Graphical representation of radiation (or reception) properties Function of spatial coordinates \vec{A}

Possible quantities

Power density (most common) Field strength Directivity Gain

Phase

Polarization

Far-field / Cuts

Far-Field Patterns

Usually more interesting than near fields

Pattern only a function of angles (θ, ϕ)

Field Cuts

Complete 3D pattern difficult to visualize (and plot!) More precise to look at cuts of the pattern:

Far-field / Cuts: Patch Antenna

Earth Coordinate System

Caution

Depends on how antenna is mounted

Natural coordinates for analyzing antenna (x, y, z)

May be different from way mounted relative to Earth

Need to rotate axes

General Pattern Types

Isotropic Pattern

Power (or field) equally radiated in all directions In practice, does not exist!

Used as a reference

Omnidirectional Pattern

Radiated field constant in azimuth (φ)May vary with elevation (θ)Examples: dipole or small loop

Directional Pattern

Radiates significantly more power in some directions than others

"Directional in the _____ plane"

Significantly more directional than a half-wave dipole

Principal Patterns

Motivation

Defines patterns independent of coordinate system Useful for antennas with linear polarization

E-Plane Pattern

Cut of the pattern containing \overline{E} and the direction of max radiation

H-Plane Pattern

Cut of the pattern containing \overline{H} and the direction of max radiation

Principal Patterns

Example: Horn Antenna

Beamwidth

Definition

Angular extent of the main beam Critera HPBW: Half-power beamwidth FNBW: First null beamwidth

Slide 11

Field Regions

Reactive Near-field

Region immediately surrounding antenna Convention: $R < 0.62\sqrt{D^2/\lambda}$ Fields can be very intense Mostly reactive (stored energy, not propagating) **Note:** D = largest antenna dimension λ = wavelength

Caution

Expressions do not work for electrically small antennas Maximum dimension must be comparable or larger than λ

Field Regions (2)

Radiating Near-Field (Fresnel) Region

Fields are radiating But, radiation pattern is a strong function of distance *r* Convention: $0.62\sqrt{D^3/\lambda} \le R < 2D^2/\lambda$

Far-Field (Fraunhofer) Region

Angular field distribution nearly independent of distance Fields are transverse to direction of propagation Convention: $R \ge 2D^2/\lambda$

Power Flow

Power Flow of EM Field

Instantaneous Poynting Vector $\overline{W}(t) = \overline{E}(t) \times \overline{H}(t)$ W/m² V/m A/m

Time-average power

 $<\overline{W}(t)>_t=<\overline{E}(t)\times\overline{H}(t)>_t$

In frequency domain, this becomes

$$\overline{W} = \frac{1}{2} \operatorname{Re}\left\{\overline{E} \times \overline{H}^*\right\}$$

Interpretation

Power per unit area \Rightarrow power density Direction is direction of power flow

Power Radiated by Antenna

Total radiated power

\overline{w} on surface of S

Power *radiated* per unit area <u>Radiation power density</u>

Visualization

Generally fix *r* and plot $W(\theta, \phi)$

Antennas and Propagation

Slide 15

Normalization

Can normalize W

 $U(\theta,\phi)=r^2W(r,\theta,\phi)$

Obtain power per unit solid angle Independent of distance from antenna *U* is called <u>radiation intensity</u>

In Far-Field Region

$$\begin{split} \overline{H} &= \frac{1}{\eta} \hat{r} \times \overline{E} \\ \overline{W}(\overline{r}) &= \frac{1}{2} \operatorname{Re} \left\{ \overline{E} \times \overline{H}^* \right\} = \frac{1}{2} \operatorname{Re} \left\{ \overline{E} \times \eta^{-1} (\hat{r} \times \overline{E}^*) \right\} \\ &- \frac{|\overline{E}(r, \theta, \phi)|^2}{2\eta} \hat{r} \\ U(\theta, \phi) &= \frac{r^2 |\overline{E}(r, \theta, \phi)|^2}{2\eta} \end{split}$$

 $dA = r^2 \underbrace{\sin \theta d\theta d\phi}_{\text{Solid Angle}}$

Antennas and Propagation

Slide 16

Chapter 3

Directivity

Definition

Sometimes called "directive gain", given by

Radiation intensity of given antenna

Radiation intensity of a reference antenna

Note: Total radiated power same for two antennas

Reference Antenna: Standard is to choose isotropic radiator

In terms of radiation density

$$D(\theta,\phi) = \frac{|\overline{W}(r,\theta,\phi)|r^2}{P_{\rm rad}/(4\pi)} = \frac{|\overline{W}(r,\theta,\phi)|}{P_{\rm rad}/(4\pi r^2)}$$

Directivity (2)

Maximum Directivity

 $D = \max_{(\theta,\phi)} D(\theta,\phi) = \frac{U_{\max}}{P_{\mathrm{rad}}/(4\pi)}$

When directivity given as a single number \Rightarrow Maximum directivity

Notes

Directivity of an isotropic radiator is 1 Therefore, D > 1 in practice D usually expressed in dB

Directivity (3)

Explicit Computation

Given far E-fields,

$$D(\theta,\phi) = 4\pi \frac{|\overline{E}(\theta,\phi,r)|^2}{\int_0^{2\pi} \int_0^{\pi} |\overline{E}(\theta',\phi',r)|^2 \sin \theta' \ d\theta' d\phi'}$$

Observation:

Directivity is the radiation density divided by the average radiation intensity (over solid angle)

Gain

Comparison with Directivity

Directivity/Gain

Radiation intensity of given antenna Radiation intensity of a reference antenna

Directivity:

Total radiated power of two antennas kept the same

Gain:

Input power of two antennas kept the same

What is the difference?

Losses

Gain (2)

Computation
$$G(\theta, \phi) = \frac{U(\theta, \phi)}{P_{in}/(4\pi)} = e_t D(\theta, \phi)$$

Efficiency

 e_t is the total <u>efficiency</u> of the antenna

$$e_t = e_r e_c e_d$$

where

 e_r = Reflection efficiency 1- $|\Gamma|^2$

 e_c = Conduction efficiency

 e_d = Dielectric efficiency

Radiation Efficiency

$$e_t = P_{rad} / P_{in} = R_{rad} / (R_{rad} + R_L)$$

Antenna Polarization

Definition

TX: Polarization of the radiated wave produced by the antennaRX: Polarization of incident plane wave yielding maximum available output power at the antenna terminals

Directional Dependence

Polarization can be defined

- 1. As a function of direction
- 2. For direction of maximum gain (assumed if no direction specified)

Review of EM Polarization

Definition

For a plane wave propagating in the $-\hat{z}$ direction Instantaneous field is $\overline{E}(z,t) = \hat{x}E_x(z,t) + \hat{y}E_y(z,t)$ where $E_x(z,t) = \operatorname{Re} \left\{ E_{x0}e^{j(\omega t + kz + \phi_x)} \right\}$ $E_y(z,t) = \operatorname{Re} \left\{ E_{y0}e^{j(\omega t + kz + \phi_y)} \right\}$ Maximum Amplitude of x,y Components of x,y Components

Polarization = Shape of curve traced by tip of E vector in xy plane

Review of EM Polarization (2)

In xy plane

 $\overline{E}(t, z = 0) = \hat{x} E_{x0} \cos(\omega t + \phi_x) + \hat{y} E_{y0} \cos(\omega t + \phi_y)$

Traces out an ellipse in general

Special Cases

Linear polarization

$$\Delta \phi = \phi_y - \phi_x = 0, \pi$$
$$\overline{E}(t) = (\hat{x}E_{x0} \pm \hat{y}E_{y0})\cos(\omega t)$$

Circular Polarization

$$E_{x0} = E_{y0}$$
$$\Delta \phi = \phi_y - \phi_x = \begin{cases} +\frac{\pi}{2}, & \text{CW (right hand circular)} \\ -\frac{\pi}{2}, & \text{CCW (left hand circular)} \end{cases}$$

Outline: Network Parameters

Goal

Precisely define the "input/output interface" of the antenna

Main Concepts

Input impedance Reflection coefficient / VSWR Mutual Coupling, Z-parameters, S-parameters

Antenna Input Characteristics

Input Impedance

Have seen that mismatch reduces efficiency of antenna system

To ensure maximum transmission,

Conjugate match condition: $Z_L = Z_g^*$

In Practice

Antennas designed to have *convenient* input impedance (50 Ohms)

Matching network integrated in antenna

Transforms raw antenna impedance to Z_0

Antenna Input Characteristics (2)

Nominal input impedance is Z_0 Actual impedance varies slightly with frequency Also, no fabrication process is perfect Variations in impedance from one antenna to next

Characterizing input Impedance

Graphical representations

Smith Chart

impedance = Z0 * (0.255 - j0.472)

impedance = Z0 * (1.055 + j0.032)

impedance = Z0 * (0.945 - j2.083)

Antenna Input Characteristics (3)

Problem with Providing Input Impedance

Impedance varies from one device to the next (fabrication variations) Every antenna must be measured

More common approach

Antenna design assumes system impedance of Z_0 Specify:

- 1. Worst case reflection, or
- 2. Voltage standing wave ratio (VSWR)

Reflection Coefficient

Definition

 $\Gamma = V'/V^+$ on the feeding line $|\Gamma|^2$ indicates what fraction of power is reflected Power lost, because not delivered to antenna

Return Loss

Related to Γ: Return Loss = – 20 log₁₀ |Γ| IEEE definition: Return Loss as a positive value (hence – sign) Worst case return loss

Return Loss $_{min}$ = - 20 log₁₀ | Γ |_{max}

VSWR

Definition

Voltage standing wave ratio (max voltage to min voltage on feed line)

 $\mathrm{VSWR} = \frac{|V(z)|_{\mathrm{max}}}{|V(z)|_{\mathrm{min}}} = \frac{1+|\Gamma|}{1-|\Gamma|}$

Reason:

Wave ratio was easy to measure with old slotted waveguides Still used in many specifications of RF parts / antennas

Expressed as a ratio

i.e. 1.2:1 or 2:1

If a single number, indicates worst-case value

Mutual Coupling

Where important

Antenna arrays Multimode or multipolarization antennas \Rightarrow Multiple ports

Basic problem

Antenna elements close together

Signals on one element \Rightarrow create signal on other element

Usually want to receive signals on antennas independently

SP Algorithms

Typically are degraded by the effect

Characterizations: Z-Parameters

Example: Dual Polarization Patch Antenna

Square patch at 2.44 GHz Feed 1 \Rightarrow Vertical Pol. Feed 2 \Rightarrow Horizontal Pol.

Network Characterizations

1. Z-Parameters

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \qquad \overline{v} = \overline{\overline{Z}} \ \overline{i}$$

Coupling means Z_{21} or $Z_{12} \neq 0$

Slide 32

Simulated Z-Parameters

Antennas and Propagation

Slide 33

Chapter 3

Characterizations: S-Parameters

Network Characterizations

2. S-Parameters (S = "scattering") More useful for high-freq. analysis

$$\begin{bmatrix} v_1^- \\ v_2^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} v_1^+ \\ v_2^+ \end{bmatrix}$$
$$S_{ij} = \frac{v_j^-}{v_i^+} \bigg|_{v_i^+ = 0, k \neq i}$$

You should see relation to **F**

Worst-case coupling: 20 $\log_{10} |S_{21}|_{max}$ Often quoted as minimum isolation: -20 $\log_{10} |S_{21}|_{max}$

Slide 34

Simulated S-Parameters

Antennas and Propagation

Slide 35

Chapter 3

Antenna Bandwidth

Definition

Range of frequencies over which the antenna conforms to some specified standard

"Specified standard" includes any performance metrics so far:

Patterns Gain Efficiency Side lobe levels Beamwidth Input Impedance Isolation

Etc.

Antenna Bandwidth (2)

Wideband antennas

Bandwidth expressed as a ratio

 $f_{\text{max}}/f_{\text{min}}$: 1

E.g. 10:1 \Rightarrow Maximum frequency ten times greater than minimum frequency

Narrowband Antennas

Usually express as "fractional bandwidth," or $(f_{max} - f_c)/f_c \ge 100$ where $f_c \approx (f_{max} + f_{min})/2$. E.g. 5% fractional bandwidth \Rightarrow 5% deviation from center frequency can be tolerated

Summarizing

So far ...

Have characterized a single antenna (patterns, port characteristics) But,

How do TX/RX antennas work together? How do we use parameters to estimate gain of whole link?

Simplest Case: Free Space Propagation

Governed by Friis Transmission Equation

More complicated cases

Multipath, shadowing

Consider later in course (Propagation part of class!)

Friis Transmission Equation

Radiation power density from transmitter

$$\begin{split} W_t = \frac{P_t G_t(\theta_t, \phi_t)}{4\pi R^2} & P_t & \text{Transmit power} \\ R & \text{Transmit/Receive separation} \\ (\theta_t, \phi_t) & \text{Transmit direction} \\ G_t & \text{Transmit gain} \end{split}$$

Friis Transmission Equation (2)

Next, power collected by receive antenna Need to derive notion of receiving aperture or "effective area" Assuming antenna captures power from area A_r

$$P_r = W_t A_r = \frac{P_t G_t A_r}{4\pi R^2}$$

Turns out that A_r is a directional quantity related to G_r

Relation of Effective Area and Gain

Consider again (assumed)

$$P_r = W_t A_r = \frac{P_t G_t A_r}{4\pi R^2}$$

Now consider making 1=RX and 2=TX (switch roles)

Know by reciprocity that received power same

$$P_r = \frac{P_t G_r A_t}{4\pi R^2} \quad \mbox{(switched TX/RX)}$$

Comparing, this means that

$$G_t A_r = G_r A_t$$
 or $\frac{G_t}{A_t} = \frac{G_r}{A_r}$

Since we have specified nothing about antennas,

 $\frac{G}{A} = \text{constant}$ (ANY reciprocal antenna!)

Friis Transmission Equation (3)

 $\frac{G}{A} = \text{constant}$

How do we find the constant?

Analyze a convenient antenna and find both G and A_r

Later we will do this for an infinitesimal (Hertzian) dipole: $A_r = 3\lambda^2/(8\pi)$ and $G_r = 1.5$

Which means for any antenna $G_r/A_r = 4\pi/\lambda^2$ $A_r(\theta, \phi) = \frac{G_r(\theta, \phi)\lambda^2}{4\pi}$

$$P_r = \frac{P_t G_t(\theta_t, \phi_t) G_r(\theta_r, \phi_r) \lambda^2}{(4\pi R)^2}$$

Summary

Standard terms and definitions for antennas

Radiation Parameters

Network (port) Parameters

Friis Transmission Equation

Next time: Start analyzing specific antenna types