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N Isotropic Point Sources of Equal Amplitude and Spacing
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Radiation Pattern of N Isotropic Elements Array
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Radiation Pattern for array of n isotropic radiators of equal
amplitude and spacing.



Null Directions for Arrays of N Isotropic Point Sources
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Null Direction and First Null Beamwidth

Null directions and beam width between first nulls for linear arrays
of n isotropic point sources of equal amplitude and spacing

Type of | Null directions Null directions Beam width
array (array any length) (long array) between first
nulls(long array)

n

¥

General case
¢, = arccos Ki A7 _ 5] L}

Broadside . KA KA 24
Y, = arcsin iE Vo = iE 2¥,, = @

Ordinary
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First Null Beamwidth (FNBW)
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Directions of Max SLL for Arrays of N Isotropic Point Sources

. n (2k+1)m
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Magnitude of SLL: AF = | | | = | | ((Zk n 1)71)'
nsin - nsin
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For very large n:
1 .
AF = |n ((Zk n 1)n)| = 2k + Dn = (0.212 for k =1 (First SLL)
2n SLL in dB = 20Log 0.212 = -13.5dB



Direction of Minor Lobe Maxima

Type of array

Direction of minor lobe maxima

General case
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Half-Power Beamwidth (HPBW) of Array

For calculating HPBW, find ¥, where radiated power
IS reduced to half of its maximum value

sm%
AF = | 11)' = 1/V2
TLSII]
Sin—- mp Solution:
For large n, HPBW issmall : AF = | - 1!’ | = 1/v2 Sy 1..3915
2
For Broadside: ¢ = zjd COS¢p =2.783/n

Cos ¢ = Sin (90 - ¢) = 1.3915/ (znd/4) = 0.443/L, (radian)
HPBW ~ 2 x (90 - ¢) =50.8° /L,



Aperture, Directivity and Beamwidth

Directivity for L, or d, equal to
Array Directivity Half-power
(or apertare)} (6rmuia 1 10 100 1000 beam widths
Linear 2L, 2 20 200 2000 50.8° < 360"
broadside array of L,
length L,
Ordinary 2xL, 6.3 63 630 6300 108°
end-fire array of \/L—.
length L, :
Increased -directivity 4xl., 126 126 1260 12600 52¢
end-fire array of ﬁ_:
length L,
Square 4xl} 126 1260 126000 1.26 x 107  50.8° . 50.8°
broadside aperture L, L,
with side length L,
Circular x*d} 9.9 990 99000 99 x 10°  s8°
broadside aperture d_,,
with diameter d;




Grating Lobes for Arrays of N Isotropic Point Sources

To Avoid Grating Lobes:

Y = ?(COSQ’) — c0s¢,,)<2mt whereg,, is direction of

max. radiation

d 1 d 1

— < > | =<

A COS) — cosdp, A 1+ |cose,,]
d

For Broadside Array: Z <1-d< A

A

For Endfire Array: d < E



Arrays with Missing Source

0 0
(b)
Radiation Pattern of linear array of 5 isotropic point sources of equal amplitude and A/2 spacing (a) all 5 sources ON
(b) one source (next to the edge) OFF (c) one source (at the centre) OFF, and (d) one source (at the edge) OFF
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Radiation Pattern of Broadside Arrays with Non-Uniform Amplitude
(5 elements with spacing = A/2, Total Length =2 A)
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All 5 sources are In same phase but relative amplitudes are different



Binomial Amplitude Distribution Arrays

Binomial Amplitude Coefficients are defined by

(1+x)""_1 14 (m—1)x N (m—1)(m—-2)x

]! 2!
m=1 1
m=2 1 1
m=23 1 2 1
m=4 1 3 3 1
m=5 1 4 6 4 1
m =6 15 1010 5 1

No side lobe level but broad beamwidth
—> Gain decreases (practically not used)

+...



Non-Uniform Amplitude Distribution
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Non-Uniform Amplitude Distribution (Contd.)
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Current Distribution for Line-Sources and Linear Array

Distribution Uniform Triangular Cosine Cosine-Squared
Distribution 2, T, 2 (7.
y o I, (1 - =z |) I, cos (T” ) I cos (T‘ )
(analytical)
Distribution Ia f fa iy
(graphical) % ) o . ,

b u\ 2 : 2
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Radiation Characteristics for Line-Sources and Linear Array

Distribution Uniform Triangular Cosine Cosine-Squared
Half-po.wer 50.6 73.4 68.8 83.2

S (/%) A/%) A/%) (1/%)
(degrees)

> A

First-null 114.6 229.2 171.9 229.2
DERTIIWIL (A/%) (A/%) (I/3) (I/%)
(degrees)

[ > A

First sidelobe —13.2 -26.4 —-23.2 -31.5
max. (to

main max.)

(dB)

Directivity l ! ! !
factor 2 (I) 0.75 [2 (I)] 0.810 [2 (:)] 0.667 [2 (I)]

(/ large)




Radiation Characteristics for Circular Aperture and Circular Array

Distribution Uniform Radial Taper Radial Taper Squared
Distribution N\ N1 N\
(analytical) o] 1- (g) hj1- (;) Lil- (;)
Distribution 44 "; A
(graphical) — |
e 20 - u =
Space factor (SF) J J J
P ay . fo2ma? 2 nana? 2% n16wa> 2
U= (Zn —) sinf u u u
A
Half-power 29.2 36.4 42.1
beamwidth (a/) (a/x) (a/3)
(degrees) a > A
First-null 69.9 93.4 116.3
beamwidth (a/) (a/x) (a/3)
(degrees) a > A
First sidelobe max. —-17.6 —24.6 —-30.6
(to main max.)
(dB)

2 2 2
Directivity factor (23’“1 ) 075 (ZTI) 0.56 (ZTI)




Rectangular Planar Array

1 sin (% wx) 1 sin (% Kby)

sin (%) N (%)

where, Y, = kd,sinfcos¢ + [,
Y, = kd,sinfsing + S,

B, = —kd,sinfycos¢p, for P, =0
By = —kd,sinfysing, for 1, = 0




Rectangular Planar Array

Bydy
tang, =
7 Budy,
2 2
Bx ﬁy
.. 2 — [ mY _
and sin“f, (k d. kd, where k = 2a/A

The principal maximum(m = n = 0) and grating lobes can be located by:

kd,(sinfcos¢ — sinfycosgpy) = +2mmr m=0,1,2,....
kd, (sindsing — sinfysing,) = £2nmr n=0,1,2,....



Radiation Pattern of 5x5 Planar Array
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Directivity of Planar Array

Directivity of Rectangular Array

D = nD,D,cosb,

For Broadside Array: | D = 1D, D,,

Directivity of Circular Array

G_47rA y 2 | p = 27m2
=7 =na =7




