½Ç½À 07a – GPS L1 ¼¼¶ó¹Í ÆÐÄ¡ ¾ÈÅ׳ª ¼³°è

 

Purpose

- Learn how to design a patch antenna.

- Learn how to design a circularly-polarized ceramic patch antenna.

 

1. Theory

1) Àμâȸ·Î ±âÆÇÀÇ ±¸Á¶

The structure of a printed circuit board (PCB): ground plane, dielectric, circuit patterns

 

substrate

 

   Metal: copper, thickness 0.017mm, 0.034mm, 0.068mm, etc.

   Dielectric: dielectric constant (¥år = 2.5, 4.4, 10, 20, 45, 90, etc.), loss tangent (tan¥ä = 0.02, 0.005,    0.002, 0.0002)

 

2) »ç°¢ÆÐÄ¡ ¾ÈÅ׳ª ±¸Á¶ ¹× µ¿ÀÛ¿ø¸®

A patch antenna: a wide and thin dipole in a printed form with a metal backing.

 

comparison 

 

3) »ç°¢ÆÐÄ¡ ¾ÈÅ׳ªÀÇ Àü·ù, ÆÐÄ¡ ¾Æ·¡ °øµ¿ÀÇ Àü±âÀå, ±ÞÀüÀ§Ä¡¿¡ µû¸¥ ÀÔ·Â ÀÓÇÇ´ø½º

Feeding of a patch: by a coaxial probe or a microstrip line. Feed position changes the antenna input impedance.

         

         

         

 

patch feeding methods

 

4) ÆÐÄ¡ÀÇ ¹æ»çÆÐÅÏ

Radiation patterns of a patch: E-plane pattern is broader than H-plane pattern. Pattern shapes are affected by the ground plane size.

(º¸Ãæ) Á¢ÁöÆÇ Å©±â¿¡ µû¸¥ ¹æ»çÆÐÅÏ

 

5) ¿øÆíÆÄ »ý¼º¿ø¸®

 

Crossed dipole

(¼öÁ¤) yÃà ¹æÇ⠹ݴë·Î

   RHCP(right-hand circular polarization):

   LHCP(left-hand circular polarization):

   LP(linear polarization):

   EP(elliptic polarization: none of the above cases.

 

6) ¿ì¿øÆíÆÄ, Á¿øÆíÆÄ, Ãàºñ

Æò¸éÆÄ°¡ +z ¹æÇâ(¿À¸¥¼Õ ¾öÁö)À¸·Î ÁøÇàÇÒ °æ¿ì Àü±âÀåÀÇ È¸Àü¹æÇâ(¿À¸¥¼Õ ³ª¸ÓÁö ¼Õ°¡¶ô): RHCP(¿ì¿øÆíÆÄ)\

 

Radiowave polarization

 

Ãàºñ(AR; axial ratio)

         

         

          Axial ratio bandwidth: frequency for AR < 3dB

 

7) ÀÚ°¡ ¿øÆíÆÄ »ý¼º¿ø¸®

 

Method of phasing: length adjustment

a) Crossed dipoles:

 

Dipole impedance

         

         

         

         

(º¸¿Ï) ±×¸² ¼öÁ¤

 

b) Rectangular patch: for RHCP

  

       Rectangular oatch

(º¸¿Ï) ±×¸² ¼öÁ¤

 

8) ÆÐÄ¡ ¾ÈÅ׳ª ¼³°è

Design of a patch antenna:

- Length L is determined by the center (resonant) frequency. Use the following formula for the initial dimension.

           

 

   Adjust the length (after initial simulation) by frequency scaling.

         

- Width W is determined for high efficiency. Efficiency is proportional to W for . For simplicity make W same as L.

         

 

- Dielectric substrate thickness h determines the bandwidth(BW). Increase h if BW is too small.

         

 

-  Ceramic patch: use a high dielectric constant ceramic material to reduce the patch size. Dielectric constants (¥år) used = 10, 20, 45, 90. Reduction ratio is proportional toaccording to the formula

         

 

- Patch efficiency and bandwidth:

         

 

- Probe (microstrip) feed position adjust along the center line according to the formula

         

   If the resistant is too large, move the probe toward the patch center.

- Circular polarization: for RHCP, remove upper right and lower left corners until a good axial ratio is obtained.

- Probe design: use the following formula for a 50-ohm cable.

 

   Coaxial Cable

         

 

2. Simulation

1) Draw the geometry

3D View:

Top view and dimensions:

Á¢ÁöÆÇ( t = 0.035mm ), ¼¼¶ó¹Í( t = 6mm ), ÆÐÄ¡( t = 0.035mm )

µ¿Ã༱ ³»½É Á÷°æ( 0.8mm ), ¿Ü½É À¯Àüü Á÷°æ( 1.85mm ), À¯ÀüÀ² ( 1 ), ¿ÜºÎµµÃ¼ Á÷°æ( 2.25mm )

µ¿Ã༱ÀÇ ³»½ÉÀº  ÆÐÄ¡Á߽ɿ¡¼­ ¾Æ·¡ ¹æÇâÀ¸·Î 1.7mm ÀÌ°ÝµÇ¾î ÆÐÄ¡¿¡ ¿¬°áµÊ.  

 

Side view:

2) Simulate the antenna.

¡Û Setting

   - 'Solve'-'Frequencies': Fmin =1GHz, Fmax = 2GHz

   - 'Mesh'-'Global Mesh Properties': Lower mesh limit = 10.0

   - 'Solve'-'Field Monitor': E-field at 1.575GHz, H-field at 1.575GHz, Far-field at 1.575GHz

 

3) Analyze the antenna.

a) Antenna 3D geometry with the rectangular coordinate axis.

 

b) Near fields

¡Û Electric field with animation: see if you got RHCP.

   - on the patch surface

   - at 1cm above the patch.

¡Û Magnetic field (or electric surface current density):

   - on the patch surface

   - at 1cm above the patch.

c) Input impedance

- |S11|(dB) from 1.5 to 1.7GHz. Find the impedance bandwidth (|S11| < -10dB) with two vertical

          cursors.

       - Plot the impedance locus on the Smith chart from 1.5 to 1.7GHz. Move the reference plane to

          the top surface of the ground plane.

       - Plot Rin and Xin from 1.5 to 1.7GHz on the same graph. Move the reference plane to the top

          surface of the ground plane. Find Rin and Xin at 1.575GHz with a vertical cursor.

d) Far-field patterns

¡Û RHCP gain(dB) patterns at 1.575GHz:

       - 3D, polar patterns of xy-plane, yz-plane and zx-plane.

       - 2D

¡Û LHCP gain(dB) patterns at 1.575GHz:

       - 3D, polar patterns of xy-plane, yz-plane and zx-plane.

       - 2D

¡Û Axial ratio(dB) patterns at 1.575GHz:

       - 3D, polar patterns of xy-plane, yz-plane and zx-plane.

       - 2D

 

4) Simulation result

a) Antenna 3D geometry with the rectangular coordinate axis.

b) Near fields

¡Û Electric field with animation: see if you got RHCP.

   - on the patch surface

   - at 1cm above the patch.

¡Û Magnetic field (or electric surface current density):

   - on the patch surface

   - at 1cm above the patch.

 

c) Input impedance

- |S11|(dB) from 1.5 to 1.7GHz. Find the impedance bandwidth (|S11| < -10dB) with two vertical cursors.

 

- Plot the impedance locus on the Smith chart from 1.5 to 1.7GHz. Move the reference plane to the top surface of the ground plane.

- Plot Rin and Xin from 1.5 to 1.7GHz on the same graph. Move the reference plane to the top    surface of the ground plane. Find Rin and Xin at 1.575GHz with a vertical cursor.

 

d) Far-field patterns

¡Û RHCP gain(dB) patterns at 1.575GHz:

- 3D RHCP gain pattern

 

- 2D RHCP gain pattern

 

- 1D RHCP gain pattern on the xy plane

 

- 1D RHCP gain pattern on the yz plane

 

- 1D RHCP gain pattern on the zx plane

 

¡Û LHCP gain(dB) patterns at 1.575GHz:

- 3D LHCP gain pattern

 

- 2D LHCP gain pattern

 

- 1D LHCP gain pattern on the xy plane

 

- 1D LHCP gain pattern on the yz plane

 

- 1D LHCP gain pattern on the zx plane

 

¡Û Axial ratio(dB) patterns at 1.575GHz:

- 3D axial ration pattern

 

- 2D axial ratio pattern

 

- 1D axial ratio pattern on the xy plane

 

- 1D axial ratio pattern on the yz plane

 

 

- 1D axial ratio pattern on the zx plane

 

3. Measurements

1) Make two dipole antennas with a center frequency of 1.6GHz.

 

2) Calibrate the network analyzer in the full 2-port calibration mode over 1-2GHz. Store the calibration data.

 

3) Measure and plot S11 and S22 of two dipole antennas over 1-2GHz.

   Dipole 1 connected to the port 1. Dipole 2 connected to the port 2.

 

4) Place two dipole antennas parallel to each other with a distance of 10cm. And measure S21 over 1-2GHz. Store the result in the memory.

 

5) Set the network analyzer to display the stored S21 and measured S21. Replace dipole 1 with a 25x25x6mm ceramic patch antenna. Use a rotary joint to rotate dipole 2.

  With a distance of 10cm between the ceramic patch and dipole 2, rotate dipole 2 and observe S21 at 1.575GHz (GPS) and 1.602GHz (GLONASS). Record the maximum and minimum values of S21 at 1.575GHz and 1.602GHz. Adjust the vertical scale value per division (like 2dB/div, 4dB/div, 6dB/div) to increase the readability of the displayed curves.

 

6) Calculate the gain and the axial ratio of the ceramic patch.

¾ÈÅ׳ªÀÇ À̵æ ÃøÁ¤: À̵æÀÌ Á¤È®ÇÏ°Ô ¾Ë·ÁÁø Ç¥ÁØ ¾ÈÅ׳ª (¿¹: ´ÙÀÌÆú, À̵æ 2.15dBi)¿ÍÀÇ Àü´Þ°è¼ö¸¦ ÃøÁ¤ÇÏ¿© ºñ±³

Ãàºñ: ÇÇÃøÁ¤ ¾ÈÅ׳ª¿Í ´ÙÀÌÆú ¾ÈÅ׳ª »çÀÌÀÇ Àü´Þ°è¼ö¸¦ ´ÙÀÌÆú ¾ÈÅ׳ª¸¦ ȸÀü½ÃŰ¸é¼­ ÃøÁ¤ÇÏ¿© Àü´Þ°è¼öÀÇ ÃÖ´ë°ª°ú ÃÖ¼Ò°ªÀÇ Â÷À̸¦ ÃøÁ¤

    

 

     P1: power coming out of the port 1 into the antenna 1

     P2: power entering into the port 2 from the antenna 2

     S21: transmission coefficient between two antennas

     S11: reflection coefficient of the antenna at the port 1

     S22: reflection coefficient of the antenna at the port 2

     d: distance between two antennas

     G1, G2: gain of the antenna 1 and 2