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1. WAVES & PHASORS
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Chapter 1 Overview
I
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Dimensions and Units
I

Table 1-1: Fundamental SI units. Table 1-2: Multiple and submultiple prefixes.
. : . Prefix Symbol Magnitude
Dimension Unit Symbol exa r 1018
Length meter m peta P 1013
Mass kilogram kg tera T 1012
Time second S giga G 107
Electric Current ampere A mega M 100
Temperature kelvin K kilo k 103
Amount of substance | mole mol e _3
milli m 107
micro I 10—6
nano n 10~
pico p 10~ 12
femto f 10—1
atto a 1018




Charge: Electrical property of particles
N

Units: coulomb
One coulomb: amount of charge accumulated in one second by a current of one ampere.
1 coulomb represents the charge on ~ 6.241 x 10'8 electrons

The coulomb is named for a French physicist, Charles-Augustin de Coulomb (1736-18006),
who was the first to measure accurately the forces exerted between electric charges.

Charge of an electron

e =1.602 x 1017 C

Charge conservation

Cannot create or destroy charge, only transfer



Electrical Force
-

Coulomb’s experiments demonstrated that:

(1) two like charges repel one another, whereas two
charges of opposite polarity attract,

(2) the force acts along the line joining the charges, and Fe

the magnitudes of the two charges and inversely
proportional to the square of the distance between
them.

A q142
Fezl = Rz

|

Force exerted on charge 2 by charge 1

(N) (in free space),
4 eg R%z

(3) its strength is proportional to the product of e \/




Electric Field In Free Space
-

If any point charge g’ is present in an electric field E (due
to other charges), the point charge will experience a force
acting on it equal to Fe = ¢'E.

E = ﬁﬁ (V/m) (in free space),
4
\ 0,
T t o &
Permittivity of free space h \ .i/
~ \l/ ~

\ /
*-1-*1—4——'-—-—-"‘
P . ~—Electric
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Magnetic Field

Electric charges can be isolated, but magnetic poles always exist in pairs.

Magnetic field induced by a
current in a long wire

~ ol
27y

B = (T)

o = 4 x 1077 henry per meter (H/m)

Magnetic permeability of free space

Electric and magnetic fields are
connected through the speed of light:

=3x 105  (m/s)

=
A/ HOED




Static vs. Dynamic
I

Static conditions: charges are stationary or moving,
but if moving, they do so at a constant velocity.

Table 1-3: The three branches of electromagnetics.

Branch Condition Field Quantities (Units)
Electrostatics Stationary charges Electric field intensity E (V/m)
(dg /ot =0) Electric flux density D (C/mz)
D =c¢E
Magnetostatics Steady currents Magnetic flux density B (T)
(0l /0t =0) Magnetic field intensity H (A/m)
B =uH
Dynamics Time-varying currents E.D.B,and H
(Time-varying fields) (0l/0t #0) (E, D) coupled to (B, H)

Under static conditions, electric and magnetic fields are independent,
but under dynamic conditions, they become coupled.



Material Properties
I

Table 1-4: Constitutive parameters of materials.

Parameter Units Free-space Value

Electrical permittivity ¢ F/m | g9 =28.854 x 10712 (F/m)

! 107 (F/m)
~ — X ' m
367

Magnetic permeability « | H/m o =4 x 10~/ (H/m)

Conductivity o S/m 0




Traveling Waves
T

0 Waves carry energy
1 Waves have velocity

0 Many waves are linear: they do not affect the
passage of other waves; they can pass right through
them

0 Transient waves: caused by sudden disturbance

01 Continuous periodic waves: repetitive source



Types of Waves
-

Cylindrical wavefront

. . Plane wavefront
Two-dimensional wave )

\

/

N

(a) Circular waves (b) Plane and cylindrical waves

Spherical wavefront

(c) Spherical wave



Sinusoidal Waves in Lossless Media

A medium 1s said to be lossless if it does not attenuate the

amplitude of the wave traveling within it or on its surface.
‘ »(x, 0)
A Atr=0

y = height of water surface
x = distance

2wt 2mx I 4 >
y(x,t) = Acos — +¢o | (m), (1.17)
T A (a) y(x, 1) versus x at 7= 0
where A is the amplitude of the wave, T is its time period, “1(0’ ) Aty=0

A is its spatial wavelength, and ¢ is a reference phase.

3 T >]

(b) y(x, 7) versustatx =10

Figure 1-12: Plots of y(x,t) = Acos (% — Z’TT") as a
function of (a) x atr = 0 and (b) r at x = 0.



Phase velocity

I —— |

y(x,1) = Acos¢(x,7)  (m),

where
2t 2w x

¢(.\f.r)=( T - A

If we select a fixed height y, and follow
its progress, then

+ @o) (rad).

2t 27’[)6)

Vo= , 1) = Acos —
Yo=y(x,1) (T :

2t 2mx 1 /Y0
— = COS (—) = constant
T A A
2m 2w dx B
T Arodr
dx (/s)
Un = — = — S
P™dr — T

B (c) t=TN

Figure 1-13: Plots of y(x,t) = Acos (%_ Zix as a

function of x at (a) r =0, (b) t=T/4, and (c) t =T/2.
Note that the wave moves in the +x-direction with a velocity
up =A/T.




Wave Frequency and Period
N

The frequency of a sinusoidal wave, f, is the reciprocal of
its time period 7

= (Hz). (1.26)

1
T

Combining the preceding two equations yields

Using Eq. (1.26), Eq. (1.20) can be rewritten in a more
compact form as

up= fi (mls). (127

2

v(x,t) = Acos (2Jrfr — TX) = Acos(wt — Bx), (1.28)

where o is the angular velocity of the wave and S is its phase
constant (or wavenumber), defined as

w=2r1f (rad/s), (1.29a)

2w
B = = (rad/m). (1.29b)




Direction of Wave Travel
I

y(x,t) = Acos(wt — Bx) < Woave travelling in +x direction

y(x,1) = Acos(wt + Bx) <—— Woave travelling in —x direction

+x direction: if coefficients of + and x have opposite signs

—x direction: if coefficients of + and x have same sign (both positive

or both negative)



Phase Lead & Lag
-

Leads ahead of y Retference wave (¢g=0)
reference wave

\

Lags behind reference wave

o = /4

A4 -

Figure 1-14: Plots of y(0,¢) = Acos[(2wt/T) + ¢g] for three different values of the reference phase ¢y.

y(x, 1) = Acos(wt — Bx + ¢p)

When its value is positive, ¢g signifies a phase lead in time,
and when it is negative, it signifies a phase lag.



The EM Spectrum  *=7%
N

Optical Infrared S
window windows Radio window

\ 7N\ \

Atmosphere opaque lonosphere opaque

100%
Atmospheric opacity

0
X-rays
e ——
Medical diagnosis "{
Gamma rays Ultraviolet | 8 Infrared Microwave Radio spectrum
Cancer therapy o L T ]i. Heating, = Communication, radar, radio and TV broadcasting,
night vision radio astronomy
1 fm 1 pm 18 1nm I pm 1 mm Im | km | Mm Wavelength (m)
107" 1w 107107 107° 107 1 10° 10° 10°
1 EHz 1 PHz 1 TH= 1 GHz 1 MHz 1 kH=z 1Hz Frequency (Hz)
9= 10" 10" 10" 10" 10” 10° 10° 1



Complex Numbers

We will find it is useful to represent j=+-1
sinusoids as complex numbers

Z=X+jy Rectangular coordinates Re(z) = x
Z= ‘2‘46’ = \z‘ew Polar coordinates Im(z) =y
JmA(z) X = |z| cos 6
= in & .
V- ) 4 |i| S;n i Relations based
A =vxtty on Euler’s Identity
0 = tan™! (y/x)
e’ =cosf+ jsiné

> Ne(z)



Relations for Complex Numbers
N

Euler’s Identity: ¢/¥ = cosé + jsin6

el — 1% el? 4 e~ /%
sinf = ——— cosf = —————
2j 2
z2=x+jy=|zle/’ z¥=x — jy=|z|e”*
Learn how to
x = Re(z) = |z| cos b z| = Vzz* = Jx?
perform these
y = Jm(z) = |z|sin b 0 =tan~"(y/x) ‘th
z" = |z|"e/"? z'/? = £|z|!/2/%/ e
. _ calculator/computer
Zp =X+ Jyi  =x2+ W

z1=niffxy=xyandyy =y2 z1+2=(x;+x2)+ (v + )

212> = |z1]|z2|e/ @118 Z_ |zl‘ o) (01=02)
i } Yy} |Zf>\

j=elm? =1,90° —j =i = | 29
Jj= teimt = gD o R T S Gl )

V2 V2




Phasor Domain
I

A domain transformation 1s a mathematical process that
converts a set of variables from their domain into a
corresponding set of variables defined in another domain.

1. The phasor-analysis technique transforms equations
from the time domain to the phasor domain.

2. Integro-differential equations get converted into
linear equations with no sinusoidal functions.

3. After solving for the desired variable--such as a particular voltage or
current-- in the phasor domain, conversion back to the time domain
provides the same solution that would have been obtained had

the original integro-differential equations been solved entirely in the

time domain.



Phasor Domain

1
v(r) = Vpcos(wt + @)
= Re[ Voe! e/

—r

Phasor counterpart of v(7)

Time Domain Phasor Domain
v(t) = Vj cos wt > V=YV

v(t) = Vocos(wt +¢p) <= V = Voef¢.
If¢p =—m/2,

v(t) = Vpcos(wt —/2) <=> V = Vye /72



Time and Phasor Domain
I

A sin wt
A sin(wt + ¢)
—A sin(wt + ¢)

4
()

d
S LAcos(er + )]

[x(r) dt

[ A cos(wt + ¢) dt

R

x (1) X

A cos wt A

A cos(wt + ¢) Ael?
—Acos(wt + ¢) Ael (@)

Ae /72 = —jA

Al @—7/2)
Al (@+7/2)

jwX

ijejqb

1
— X
Jjw

1 :
_ Ael?
Jjw

It is much easier to deal
with exponentials in the
phasor domain than
sinusoidal relations in
the time domain

Just need to track
magnitude /phase,
knowing that everything
is at frequency @



Phasor Relation for Resistors

Current through resistor

Time domain

Time Domain Frequency Domain = Im COS(a)t T ¢)
i I v=iR=RI_cos(wt+¢)
— —
O O
+ +
Phasor Domain
R R
v v V = RI
=Rl _Z¢
o o




Phasor Relation for Inductors

di
Time domain v = o
Time Domain Frequency Domain . *
; [ Phasor Domain = 93e[VL /']
— - — - and
+ + iL = Re[ILe’].
Consequently,
v L A% L | J +
Re[VLe!" =L E[%E(IL@"‘”)]
~ ~ = Re[jow LI e/,
v=L di V = jolLl which leads to
dt V. = jolLl,
and
v
7L = — = joL.




Phasor Relation for Capacitors

Time domain

. dv
Time Domain Frequency Domain | = E
] I
— —
Phasor Domain
+ +
Ic = jwCVc
v p— Vv S—
V |
Zo= -5 =
_D _: Ic JjwC
[ = @ I =_]U£v



ac Phasor Analysis: General Procedure

Step 1

Adopt Cosine Reference

(Time Domain)

Step 2

Transfer to Phasor Domain

|

p =V

R = Zr =R

L = 7Z; =joL
C—""ZC=1_/]'OJC

- 5
() C ==

vs(?) = 12 sin(wt — 45°)

(V)
I R
=" Y Y
vV,
joC

V, = 127135 (V)

Step 3
Cast Equations in
Phasor Form

Step 4
Solve for Unknown Variable
(Phasor Domain)

Step 5
Transform Solution
Back to Time Domain

i(1) = Re[le/]
=6 cos(wr —105°)
(mA)




Example 1-4: RL Circuit
]

The voltage source of the circuit shown in Fig. 7-8(a) is given
by
ve(7) = 15sin(4 x 10*r — 30°) V.

Also, R =3 Q and L = 0.1 mH. Obtain an expression for the
voltage across the inductor.

Solution:

Step 1: Convert vg(#) to the cosine reference

vs(t) = 15sin(4 x 10* — 30°)
= 15cos(4 x 10* — 30° —90°)
= 15cos(4 x 10* — 120°) V,
and its corresponding phasor Vj is given by

V, = 15¢ 7120y,

Step 2: Transform circuit to the phasor domain

R 1
+
Vs(t) —_|_ L =S V1,
(a) Time domain
A
3
Vs (t) JoL gi Vi

(b) Phasor domain Cont.



Example 1-4: RL Circuit cont.

Step 3: Cast KVL in phasor domain

RI + ijI == Vs.
Step 4: Solve for unknown variable

Vi 15¢—7120°
I= - = .
R+ joL 3+ j4x10% x 1074
lse—jIZOO lSe—j]Z‘UO
344 5ei%BI°

3 J1731° A

The phasor voltage across the inductor is related to I by

VL = ]&)LI
= j4 x 10* x 107% x 3¢ /1317
— j12eI1731°

= o *0Nn°e 7 o
— 128 _}]73.1 '8190 — 128 j83.1 V

k]

where we replaced j with ¢/9%°.

Step 5: Transform solution to the time domain

The corresponding time-domain voltage is
vL(f) = Re[VLe/ ']
_ me[lze—jﬂlloeﬂxl{}“r]

= 12cos(4 x 10% — 83.1°) V.




[-7.2  Traveling Waves in the Phasor Domain

1 According to Table 1-5, if we set ¢pp = 0, its third entry becomes —
Acos(wt + Bx) <= AelP* (1.74)

From the discussion associated with Eq. (1.31), we concluded
that A cos(wt + Bx) describes a wave traveling in the negative
x-direction.

In the phasor domain, a wave of amplitude A traveling in
the positive x-direction in a lossless medium with phase
constant B is given by the negative exponential Ae P, and
conversely, a wave traveling in the negative x-direction is
given by Ae/PX. Thus, the sign of x in the exponential is
opposite to the direction of travel.



Summary
N

Chapter 1 Relationships

Electric field due to charge ¢ in free space Complex numbers
A q
E=R AreoR2 « Euler’s identity

e/® = cos@ + jsiné

Magnetic field due to current / in free space « Rectangular-polar relations

_ & kol .
B—‘PE x = |z|cos@, y = |z|siné.
_. 4. 2 2 — tan—]
Plane wave y(x, ) = Ae™* cos(wt — Bx + ¢p) [zl = yfx"+9e, 6 =tan" (y/x)

e & = () in lossless medium

o phase velocity up = fA = %
sw=2nf; B =2w/k Table 1-5
« ¢g = phase reference

Phasor-domain equivalents



