Electromagnetics
01, Python Coding
1.
ÆÄÀ̽㠿¶óÀÎ ÀÚ½À¼
¤· Tutorials Point 'Learn Python': https://www.tutorialspoint.com/python/index.htm
2.
¿ÀǼҽº ÆÄÀ̽ã ÄÚµùÅø Online
Python »ç¿ë¹ý
¤·
https://www.online-python.com/
¿¡ Á¢¼ÓÇÏ¿© ¼Ò½ºÄڵ带 À§Ã¢¿¡ copy
¤· [Run]¾ÆÀÌÄÜ Å¬¸¯
¤·
¾Æ·¡ â¿¡ µ¥ÀÌÅÍ
ÀÔ·Â prompt°¡
Ç¥½ÃµÇ¸é Űº¸µå·Î µ¥ÀÌÅÍ
ÀÔ·ÂÇÑ´Ù. Ãâ·ÂÀº
°°Àº â¿¡ Ç¥½ÃµÈ´Ù.
¤·
°á°ú¸¦ ¹®¼(º¸°í¼)¿¡ ºÙ¿©
³Ö±â
-
ÇÏ´Üâ »ó´ÜÀÇ [Stop] ¾ÆÀÌÄÜ Å¬¸¯
-
ÇÏ´Üâ ÁÂÃø ù¹øÂ°
¾ÆÀÌÄÜ Å¬¸¯ÇÏ¿© °á°ú ÅØ½ºÆ®¸¦ Clipboard¿¡ »ðÀÔ
- °á°ú¸¦ »ðÀÔÇÏ·Á´Â ¹®¼·Î À̵¿ÇÏ¿© »ðÀÔÀ§Ä¡¿¡ Ä¿¼¸¦ À§Ä¡ ½ÃŲ´Ù.
- Űº¸µå¿¡¼ Ctrl + V¸¦ ´©¸£¸é °á°ú ÅØ½ºÆ®°¡ ´ÙÀ½°ú °°ÀÌ ¹®¼¿¡ »ðÀԵȴÙ.
q1(C)=
10e-6
q2(C)=
20e-6
q3(C)=
30e-6
R12,R13(m)
=
0.1
0.2
F1(N)=
247.190808*******
q1(C)=
Session
Killed due to Timeout.
Press
Enter to exit terminal
(Âü°í)
¤·
»ó´Üâ(¼Ò½ºÄÚµåâ) »ó´Ü¿¡ ¹èÄ¡µÈ ¾ÆÀÌÄÜ
¸Þ´º ÀǹÌ
»ó´ÜÁÂÃø
¾ÆÀÌÄÜ 4°³: Open file From Disk, Save File to
Disk, Undo, Redo
»ó´Ü¿ìÃø
¾ÆÀÌÄÜ 3°³: Change Theme, About Site,
Settings
¤·
ÇÏ´Üâ(ÀÔÃâ·Ââ) ÁÂÃø ¾ÆÀÌÄÜ ¸Þ´º 5°³ÀÇ ÀǹÌ
Copy
to clipboard: Ãâ·Ââ ³»¿ëÀ» Ŭ¸³º¸µå¿¡ copy (´ÙÀ½¿¡ Ctrl+v·Î
¹®¼¿¡ »ðÀÔ)
Download:
Ãâ·Ââ ³»¿ëÀ» txt ÆÄÀÏ·Î ÄÄÇ»ÅÍ·Î ´Ù¿î·Îµå
Clear:
Ãâ·Ââ ³»¿ë Áö¿ò
Smart
terminal: >>>°¡ Ç¥½ÃµÇ°í interpreter ¸ðµå. Python¸¦ 1ÁÙ¾¿ ½ÇÇà. help(print)
¿Í °°ÀÌ help Ç¥½Ã
Expand/Collapse:
Expand = Ãâ·Â⸸ Àüüȸ鿡 Ç¥½Ã, Collapse: À§Ã¢, ¾Æ·¡Ã¢ µ¿½ÃÇ¥½Ã
3. ÆÄÀ̽ã ÄÚµù½Ç½À
3.1 Example 1: Äð·ÕÀÇ ¹ýÄ¢
1) ¹®Á¦
Medium:
air, ¥å0 = 8.854¡¿10-12
F/m
q1
= 10 ¥ìC, q2 = 20 ¥ìC, q2 = 30 ¥ìC
q1
at (x, y, z) = (10, 0, 0) cm
q2
at (20, 0, 0) cm
q3
at (30, 0, 0) cm
Find
the electrostatic force magnitude F1
on q1.
(Solution)
2) ¼ö½Ä
q in C (coulomb)
R in m (meter)
¥å0 in F/m (farad per meter)
F in N (newton)
q1
= 10 ¥ìC = 10e-6 C
q2
= 20 ¥ìC = 20e-6 C
q3
= 30 ¥ìC = 30e-6 C
R12
= 20 - 10 = 10 cm = 0.1 m
R13
= 30 - 10 = 20 cm = 0.2 m
3) ÄÚµù
# EM-01-Python-Ex1: Coulomb's law
e0=8.853e-12;pi=3.141593
while True: # ¹«ÇÑ·çÇÁ.
ÇÁ·Î±×·¥À» ÁßÁö½Ã۱â Àü±îÁö °è¼Ó ¼öÇà
q1=float(input('q1(C)=')) # while ºí·Ï
¼Ò¼ÓµÈ ÇÁ·Î±×·¥
ÁÙÀº µ¿ÀÏ
ĸ¸Å µé¿©¾²±â
q2=float(input('q2(C)=')); q3=float(input('q3(C)=')) #¿©·¯
ÁÙ ÇÁ·Î±×·¥
ÁÙÀ» ; »ç¿ëÇÏ¿© ÇÑ
ÁÙ¿¡
# Űº¸µå·Î ÀԷµǴ ¸ðµç ¹®ÀÚ´Â character·Î Ãë±Þ.
floatÀ» »ç¿ëÇÏ¿©
½Ç¼öÇü º¯È¯
r12,r13=map(float,input('R12,R13(m) =').split()) #2°³ µ¥ÀÌÅÍ ÇÑÁÙ¿¡ ÀÔ·Â. »çÀÌ¿¡ space
f1=q1*q2/(4*pi*e0*r12**2) + q1*q3/(4*pi*e0*r13**2)
print('F1(N)=',f1)
(Âü°í) Python¿¡¼ comment
#
This is a comment.
y=2*x+3
# A linear function
"""
This
is a multi-line comment.
Comment
starts.
Comment
ends.
"""
'''
This
is a multi-line comment.
Comment
starts.
Comment
ends.
'''
¿©·¯ÁÙ comment: Å« ÀοëºÎ(") ¶Ç´Â ÀÛÀº ÀοëºÎ(') 3°³·Î µÑ·¯ ½ÎÀÎ
ºÎºÐ
4) ÄÚµå ¼öÇà°á°ú
q1(C)=
10e-6
q2(C)=
20e-6
q3(C)=
30e-6
R12,R13(m)
=
0.1
0.2
F1(N)=
247.190808*******
q1(C)=**
Process Stopped **
Press
Enter to exit terminal
3.2 Example 2: ¹«ÇÑ ¼±Àü·ùÀÇ ÀÚ±âÀå °è»ê
1) ¹®Á¦
Medium:
air, ¥ì0 = 8.854¡¿10-12
H/m
I = 1000 A (756 kV Ãʰí¾Ð ¼ÛÀü¼±)
r = 30 m (¼ÛÀü¼±°ú
Áö¸é »çÀÌ °Å¸®)
Find
the magnetic flux density B (G)
B in G (gauss), 1 G = 0.1 mT = 10-4 T, T (Tesla)
2) ¼ö½Ä
I in A
¥ì0 in H/m
r in m
B in T
3) ÄÚµù
#
EM-01-Python-Ex2: Magnetic field of a line current
pi=3.141593;
u0=4*pi*1e-7
while
True:
I=float(input('I(A)='))
r=float(input('r(m)='))
B=u0*I/(4*pi*r)*1e4
print('B(G)=',B)
4) ÄÚµå ¼öÇà°á°ú
I(A)=
1000
r(m)=
30
B(G)=
0.033333333333333326
I(A)=**
Process Stopped **
Press
Enter to exit terminal
3.3 Example 3:
(Âü°í) Python¿¡¼ º¹¼Ò¼ö ¿¬»ê
(Complex
numbers in Python)
¤· Ç¥±â: 1+2j, 1.+1.j, 2j
¤· ÀԷ½à °ýÈ£ ¾øÀÌ 1+2j¿Í °°ÀÌ ÀÔ·Â
¤· Ãâ·Â½Ã °ýÈ£°¡ »ç¿ëµÊ (½Ç¼ö, Çã¼ö ¸ðµÎ ÀÖÀ» ¶§)
2j
(1+2j)
¤· ½Ç¼öºÎ¿Í Çã¼öºÎ´Â ½Ç¼ö ±ÔÄ¢À» µû¸§.
¤· º¹¼Ò¼ö ÁöÁ¤
z=3+2j
z=complex(3,2)
¤· º¹¼Ò¼ö ¿¬»ê
4Ä¢¿¬»ê: + - * / **
z1+z2, z1-z2, z1*z2, z1/z2
z1**2, pow(z, 2), z1**z2
z.real
z.imag
z.conjugate()
z=complex(x, y)
z=complex(2, 4)
z=complex(2) # z=2+0j
¤· º¹¼Ò¼ö ¶óÀ̺귯¸® ÇÔ¼ö
from cmath import *
exp(z), phase(z), abs(z),
polar(z),rect(r, phi), log(z, [base]), log10(z), sqrt(z)
acos(z), asin(z), atan(z), cos(z),
sin(z), tan(z)
acosh(z), asinh(z), atanh(z),
cosh(z), sinh(z), tanh(z)
1) ¹®Á¦
º¹¼Ò¼ö z1°ú z2¸¦ ÀÔ·Â¹Þ¾Æ z3 = z1*z2, z4=z1/z2¸¦ ½Ç¼ö/Çã¼ö, Å©±â/À§»ó(radian)À¸·Î Ç¥½Ã
2) ¼ö½Ä
3) ÄÚµù
# EM-01-Python-Ex3: Complex
calulation
from cmath import * # Use the complex
math library in Python
while True:
z1=complex(input('z1='))
z2=complex(input('z2='))
z3=z1*z2; z4=z1/z2
zp3=polar(z3); zp4=polar(z4)
print('z3=',z3,'z3(polar)=',zp3)
print('z4=',z4, 'z4(polar)=',zp4)
4) ÄÚµå ¼öÇà°á°ú
z1=
1+2j
z2=
3+4j
z3= (-5+10j) z3(polar)=
(11.180339887498949, 2.0344439357957027)
z4= (0.44+0.08j) z4(polar)=
(0.4472135954999579, 0.17985349979247828)
z1=** Process Stopped **
Press Enter to exit terminal
3.4 Example 4: R, L, C
serie circuit impedance
1) ¹®Á¦
R, L, C, f °¡ ÁÖ¾îÁø °æ¿ì RLC Á÷·Äȸ·Î¿Í RLC º´·Äȸ·ÎÀÇ ÀÓÇÇ´ø½º¸¦ °è»êÇ϶ó.
2) ¼ö½Ä
R in ¥Ø (Ohm)
L in H (Henry)
C in F (Farad)
¥ø in rad/s
f in Hz (Herz)
3) ÄÚµù
#
EM-01-Python-Ex4: RLC series and parallel circuits
pi=3.141593
while
True:
R=float(input('R(ohm)='))
L=float(input('L(uH)='))
C=float(input('C(uF)='))
f=float(input('f(Hz)='))
w=2*pi*f
Zs=complex(R, w*L*1e-6-1/(w*C*1e-6))
Zp=1/complex(1/R, w*C*1e-6-1/(w*L*1e-6))
print('Z(series)=', Zs)
print('Z(parallel)=', Zp)
4) ÄÚµå ¼öÇà°á°ú
R(ohm)=
100
L(uH)=
20
C(uF)=
50
f(Hz)=
1e6
Z(series)=
(100+125.66053690148915j)
Z(parallel)=
(1.0132629437904996e-07-0.0031831791384774404j)
R(ohm)=**
Process Stopped **
Press
Enter to exit terminal