ÀüÀÚ±âÇÐ Áß°£°í»ç ¹®Á¦ (2022-4-21, 14:00-14:40)

Çйø (             )  ¼º¸í  (              ) À̵¿ÀüÈ­¹øÈ£(               )

       

PIN = abcd: ÇлýÀÇ ÈÞ´ëÀüÈ­ ³¡ 4 ÀÚ¸® (¿¹: 010-8028-3194,  a=3, b=1, c = 9, d = 4), ´Ü °¢ ¼ýÀÚ°¡ 0ÀÎ °æ¿ì ¼øÂ÷ÀûÀ¸·Î 1, 2, 3, 4·Î ´ëü (¿¹: 010-1234-0097ÀÎ °æ¿ì a = 1, b = 2, c = 9, d = 7)

 

1. A = (a, b, c), B = (d, c, b). Find C = A¡¿B

 

 

 

 

2. A = (a, b, c), B = (d, c, b). Find the angle (deg.) between A and B.

 

 

 

3. P = (x, y, z) = (b, c, d). Express P = (r, ¥è, ¥õ) in the spherical coordinate system.

 

 

 

4. Write down an equation for a voltage wave traveling in +z direction with the following parameters.

   amplitude = a (V)

   frequency = b (MHz)

   wavelength = c (m)

   phase = d (rad)

 

 

 

5. A point charge Q = d¡¿10−9 C at a point A = (d, a, b) (m). Find the electric field E (V/m) at a point B = (c, b, a) (m).

 

 

 

6. There are three point charges

   Q1 = a¡¿10−9 C at a point P1 = (b, c, d) m.

   Q2 = b¡¿10−9 C at a point P2 = (c, d, a) m.

   Q3 = c¡¿10−9 C at a point P3 = (d, a, b) m.

and a spherical surface S enclosing all the three charges. Find the total electric flux going throgh the spherical surface S.

 

 

7. A cylindrica resistor with cross sectin S = a (m2), length L = b (m), conductivity = c¡¿103 (S/m) with an applied voltage V = d (V) between end faces of the resistor. Find the resistance R (ohm) of the resistor, current density J (A/m2) in the resistor, and electric field E (V/m) in the resistor.

 

 

 

 

8. Two point charges at

   Q1 = a¡¿10−9 C at a point P1 = (b, c, d) m.

   Q2 = b¡¿10−9 C at a point P2 = (c, d, a) m.

Find the energy W (J) stored in the electric field.