Chapter 6: Microwave Resonators

- 1) Applications
- 2) Series and Parallel Resonant Circuits
- 3) Loaded and Unloaded Q
- 4) Transmission Line Resonators
- 5) Rectangular Wave guide Cavities
- 6) Q of the TE_{10l} Mode
- 7) Resonator Coupling
- 8) Gap Coupled Resonator
- 9) Excitation of Resonators
- 10) Summary

Microwave Resonators Applications

Microwave resonators are used in a variety of applications such as:

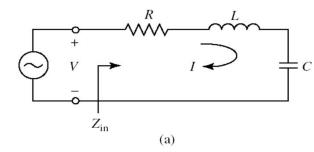
- Filters
- Oscillators
- Frequency meters
- Tuned Amplifier

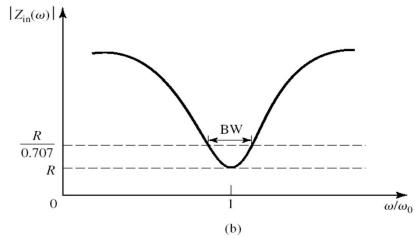
The operation of microwave resonators are very similar to that of the lumped-element resonators of circuit theory, thus we will review the basic of series and parallel RLC resonant circuits first.

We will derive some of the basic properties of such circuits.

Series Resonant Circuit

Near the resonance frequency, a microwave resonator can be modeled as a series or parallel RLC lumped-element equivalent circuit.





A series *RLC* resonator and its response. (*a*) The series RLC circuit. (*b*) The input impedance magnitude versus frequency.

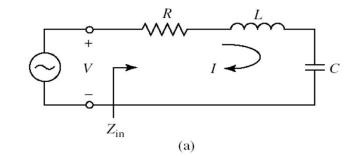
$$Z_{in} = R + j\omega L - j\frac{1}{\omega C}$$
$$P_{in} = \frac{1}{2}|I|^{2} Z_{in} = \frac{1}{2}|I|^{2} \left(R + j\omega L - j\frac{1}{\omega C}\right)$$

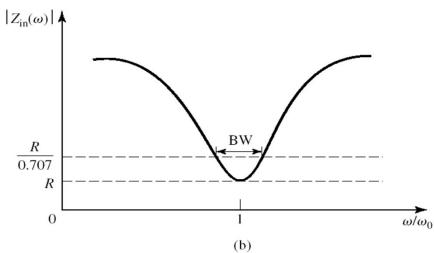
Average magnetic energy: $W_m = \frac{1}{4} |I|^2 L$

Average electric energy: $W_e = \frac{1}{4} |I|^2 \frac{1}{\omega^2 C}$

Resonance occurs when the average stored magnetic (W_m) and electric energies (W_e) are equal and Z_{in} is purely real.

Series Resonators





A series *RLC* resonator and its response. (*a*) The series RLC circuit. (*b*) The input impedance magnitude versus frequency. • The frequency in which

$$\omega_o = \frac{1}{\sqrt{LC}}$$

is called the resonant frequency.Another important factor is the Quality Factor Q.

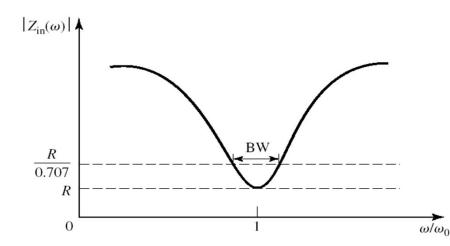
$$Q = \omega \frac{Average \ Energy \ Stored}{Energy \ Loss \ / \ Second}$$
$$BW = 1/Q \qquad Q = \frac{\omega_o L}{R} = \frac{1}{\omega_o RC}$$

Near the resonance $\omega = \omega_{o} + \Delta \omega$

$$Z_{in} = R + j\omega L(1 - \frac{1}{\omega^2 LC}) = R + j\omega L(\frac{\omega^2 - \omega_o^2}{\omega^2})$$

$$= R + j \frac{2RQ\Delta\omega}{\omega_o}$$
$$\omega^2 - \omega_o^2 = (\omega - \omega_o)(\omega + \omega_o) \cong 2\omega\Delta\omega$$
$$Z_{in} = R + j2L\Delta\omega$$

Series Resonators



The input impedance magnitude versus frequency.

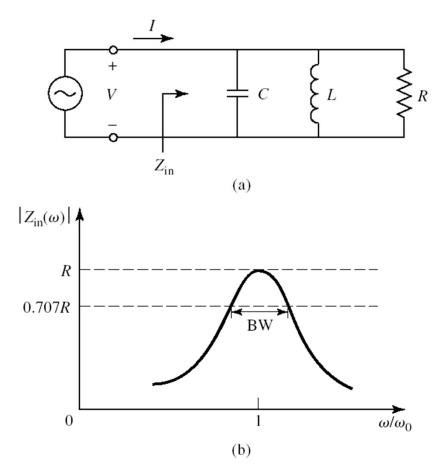
$$Q = \frac{\omega_o L}{R} = \frac{1}{\omega_o RC}$$

Fractional Bandwidth is defined as: $\frac{\Delta \omega}{\omega_o} = \frac{BW}{2}$ BW = 1/Q

and happens when the average (real) power delivered to the circuit is one-half that delivered at the resonance.

- Bandwidth increases as R increases.
- Narrower bandwidth can be achieved at higher quality factor (Smaller R).

Parallel Resonators



A parallel RLC resonator and its response. (*a*) The parallel RLC circuit. (*b*) The input impedance magnitude versus frequency.

$$Z_{in} = \left(\frac{1}{R} + \frac{1}{j\omega L} + j\omega C\right)^{-1}$$

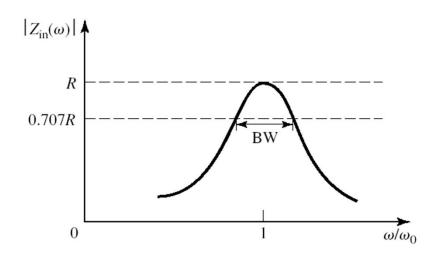
Resonance occurs when the average stored magnetic and electric energies are equal and Z_{in} is purely real. The input impedance at resonance is equal to R.

 $Q = \omega \frac{Average \ Energy \ Stored}{Energy \ Loss \ / \ Second}$

$$\omega_o = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{R}{\omega_o L} = \omega_o RC$

Note: Resonance frequency is equal to the series resonator case. Q is inversed.

Parallel Resonators



The input impedance magnitude versus frequency.

$$Q = \frac{R}{\omega_o L} = \omega_o RC \qquad BW = 1/Q$$

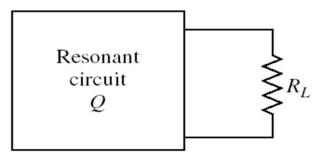
- Bandwidth reduces as R increases.
- Narrower bandwidth can be achieved at higher quality factor (Larger R).

Close to the resonance frequency:
$$Z_{in} \cong \left(\frac{1}{R} + 2j\Delta\omega C\right)^{-1} = \frac{R}{1 + 2jQ\Delta\omega/\omega_o}$$

 $\omega = \omega_o + \Delta\omega$
 $R \to \infty$ $Z_{in} = \frac{1}{j2C(\omega - \omega_o)}$

Loaded and Unloaded Q Factor

The Q factors that we have calculated were based on the characteristic of the resonant circuit itself, in the absence of any loading effect (Unloaded Q).



A resonant circuit connected to an external load, R_L .

In practice a resonance circuit is always connected to another circuitry, which will always have the effect of lowering the overall Q (Loaded Q).

$$Q_e = \begin{cases} \frac{\omega_o L}{R_L} & \text{for series connection} \\ \frac{R_L}{\omega_o L} & \text{for parallel connection} \end{cases}$$

Loaded Q Factor

If the resonator is a series RLC and coupled to an external load resistor R_L , the effective resistance is:

$$R_e = R + R_L$$

If the resonator is a parallel RLC and coupled to an external load resistor R_L , the effective resistance is:

$$R_{e} = R \cdot R_{L} / R + R_{L}$$

Then the loaded Q can be written as:

$$\frac{1}{Q_L} = \frac{1}{Q} + \frac{1}{Q_e}$$

Note: Loaded Q factor is always smaller than Unloaded Q.

Quantity	Series Resonator	Parallel Resonator
input Impedance/admittance	$Z_{\rm in} = R + j\omega L - j\frac{1}{\omega C}$	$Y_{\rm in} = \frac{1}{R} + j\omega C - j\frac{1}{\omega L}$
	$\simeq R + j \frac{2RQ\Delta\omega}{\omega_0}$	$\simeq \frac{1}{R} + j \frac{2Q\Delta\omega}{R\omega_0}$
Power loss	$P_{\rm loss} = \frac{1}{2} I ^2 R$	$P_{\rm loss} = \frac{1}{2} \frac{ V ^2}{R}$
Stored magnetic energy	$W_m = \frac{1}{4} I ^2 L$	$W_m = \frac{1}{4} V ^2 \frac{1}{\omega^2 L}$
Stored electric energy	$W_e = \frac{1}{4} I ^2 \frac{1}{\omega^2 C}$	$W_e = \frac{1}{4} V ^2 C$
Resonant frequency	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$
Unloaded Q	$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC}$	$Q = \omega_0 RC = \frac{R}{\omega_0 L}$
External Q	$Q_e = rac{\omega_0 L}{R_L}$	$Q_e = \frac{R_L}{\omega_0 L}$

FABLE 6.1 Summary of Results for Series and Parallel Resonators

Transmission Line Resonators (Short Circuited)

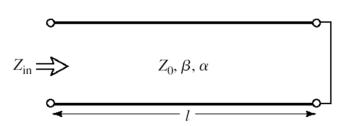
- Ideal lumped element (R, L and C) are usually impossible to find at microwave frequencies.
- We can design resonators with transmission line sections with different lengths and terminations (Open or Short).
- Since we are interested in the Q of these resonators we will consider the Lossy Transmission Line.

For the special case of : $\ell = \lambda / 2$

$$Z_{in} = Z_o \tanh(\alpha + j\beta)\ell$$

$$Z_{in} = Z_o \frac{\tanh \alpha \,\ell + j \tan \beta \,\ell}{1 + j \tanh \beta \,\ell \cdot \tanh \alpha \,\ell}$$

$$Q = \frac{\omega_o L}{R} = \frac{\beta}{2\alpha}$$

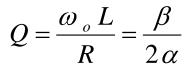


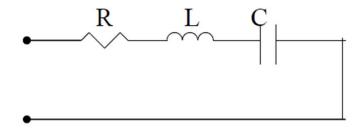
A short-circuited length of lossy transmission line.

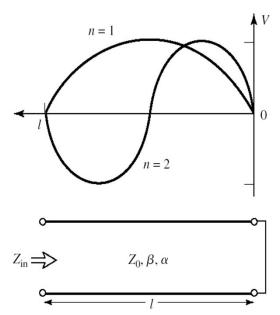
Transmission Line Resonators (Short Circuited)

• The resonance occurs for
$$\ell = \frac{n\lambda}{2}$$
 $n = 1, 2, 3, ...$

$$Z_{in} = Z_o[\alpha \ell + j(\Delta \omega \pi / \omega_o)]$$



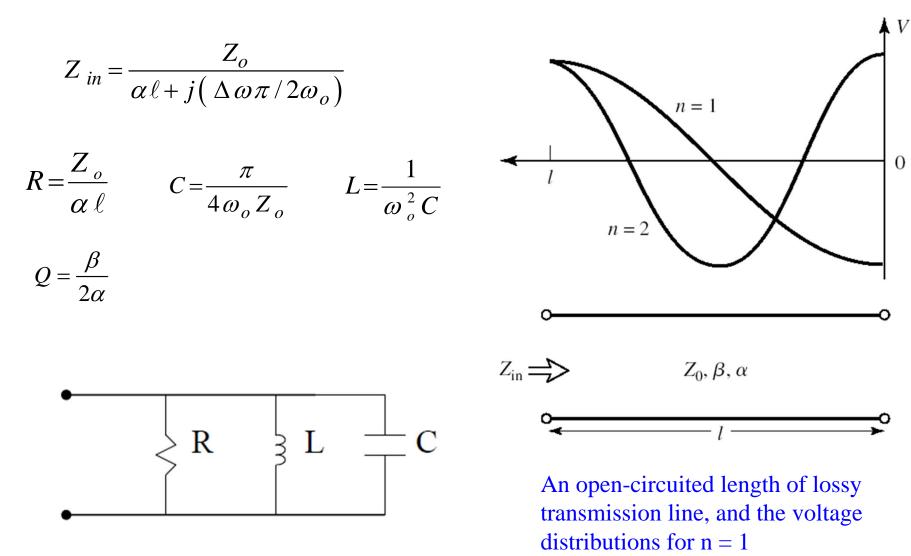




A short-circuited length of lossy transmission line and the voltage

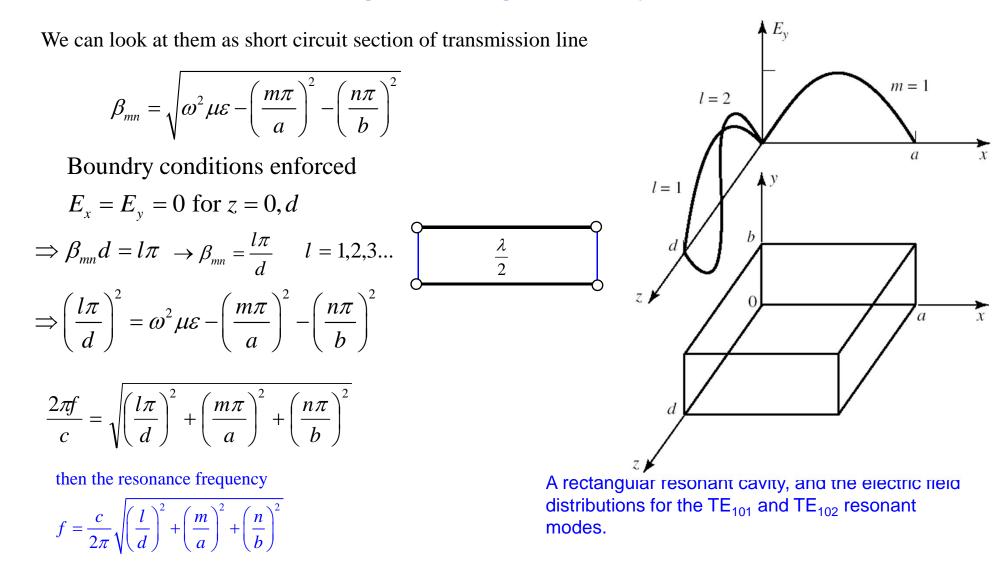
distributions for n=1,
$$\ell = \frac{\lambda}{2}$$

Transmission Line resonators



resonators.

Rectangular waveguide cavity resonator



if b < a < d the lowest and dominant resonant TE (resp TM) mode will be TE101 (resp. TM110)

Rectangular waveguide cavity resonator Q factor for TE10/

$$Q = \left(\frac{1}{Q_c} + \frac{1}{Q_d}\right)^{-1}$$

$$Q_d = \frac{1}{\tan \delta}$$

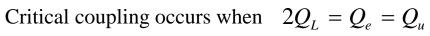
$$Q_c = \frac{\left(2\pi ad/\lambda\right)^3 \eta}{2\pi^2 R_s} \frac{1}{\left(2l^2 a^3 b + 2bd^3 + l^2 a^3 d + ad^3\right)}$$

$$R_s = \sqrt{\omega \mu_o/2\sigma}$$

$$\eta = \sqrt{\frac{\mu}{\varepsilon}}$$

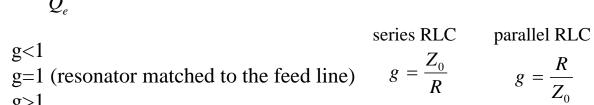
Resonators - coupling

g>1



If we define coupling coefficient g

$$=\frac{Q_u}{Q_e}$$
 then we have



Zo

R

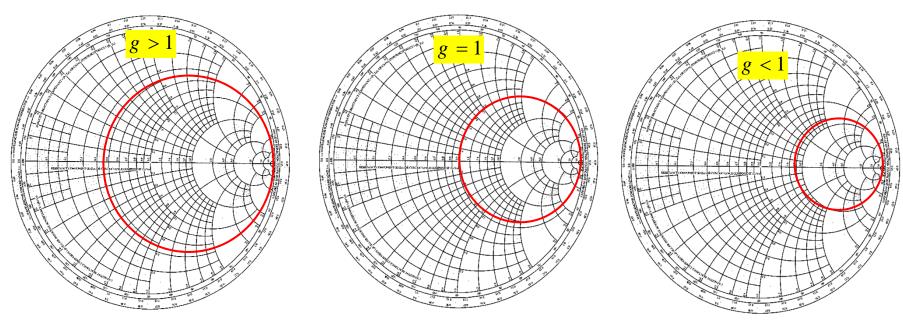
 Z_i

n

m

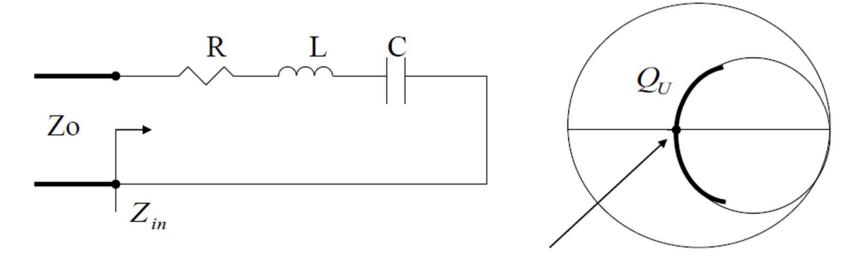
• critically coupled resonator if • overcoupled resonator if

• undercoupled resonator if



Series RLC circuit

• Critical coupling $Z_{in}(\omega_0) = Z_0$

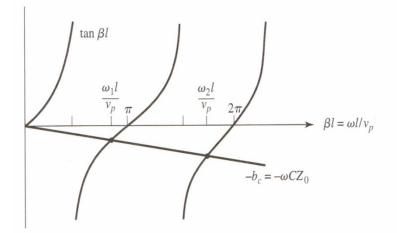


Gap coupled microstrip resonator resonators

$$z = \frac{Z}{Z_o} = -j \left(\frac{\tan \beta l + b_c}{b_c \tan \beta l} \right) \text{ where } b_c = Z_o \omega C$$

Resonance occurs when $\tan \beta l + b_c = 0$

The coupling of the feed line to the resonator lowers its resonant frequency



Solutions to (6.78) for the resonant frequencies of the gap-coupled microstrip resonator.

Gap coupled microstrip resonator resonators

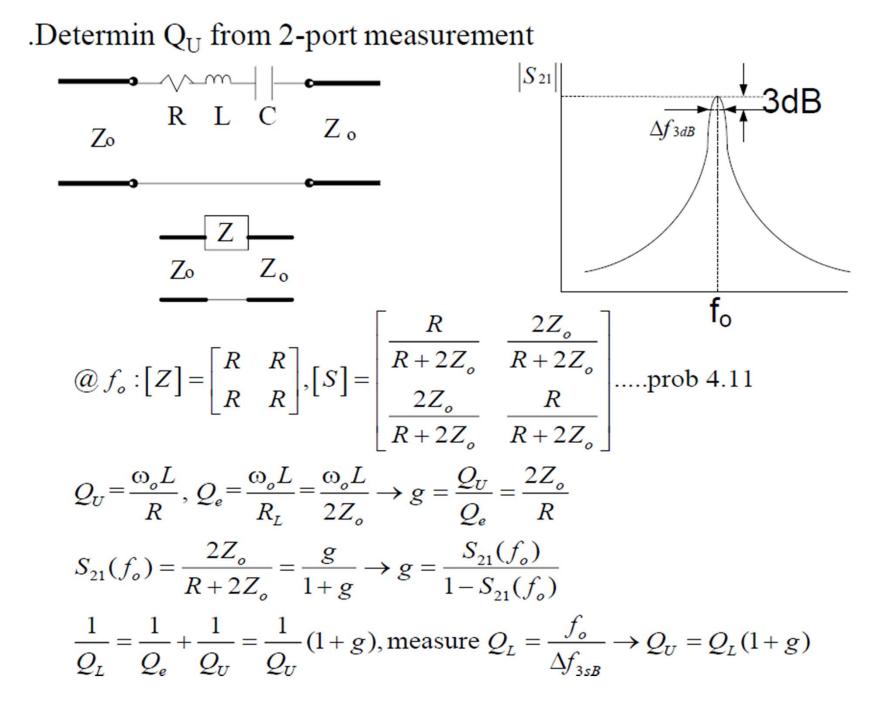
$$Z(\omega) = Z_o \left(\frac{\pi}{2Qb_c^2} + j \frac{\pi(\omega - \omega_o)}{\omega_o b_c^2} \right)$$

$$\Rightarrow R = Z_o \left(\frac{\pi}{2Qb_c^2}\right) \Rightarrow b_c = \sqrt{\left(\frac{\pi}{2Q}\right)}$$

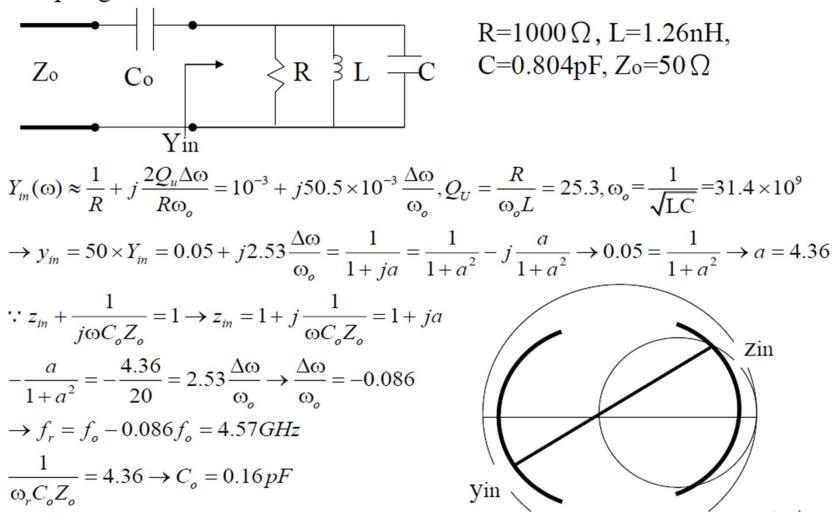
the coupling coefficient
$$g = \frac{Z_o}{R} = \frac{\pi}{2Q_u b_c^2}$$

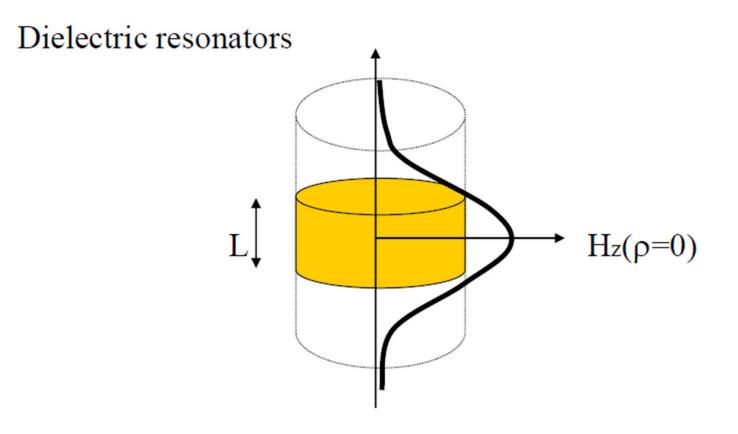
for critical coupling
$$Z_o = R \Rightarrow b_c = \sqrt{\left(\frac{\pi}{2Q}\right)}$$

for undercoupled resonator $\Rightarrow b_c < \sqrt{\left(\frac{\pi}{2Q}\right)}$
for overcoupled resonator $\Rightarrow b_c > \sqrt{\left(\frac{\pi}{2Q}\right)}$



Solved problems: Prob. 6.22 A parallel resonator, calculate Co for critical coupling and fr.





$$\begin{split} &10 < \varepsilon_r < 100, \quad TE_{_{01\delta}} \mbox{ mod } e \ \delta = \frac{2L}{\lambda_g} < 1, \quad Q_d \approx \frac{1}{\tan \delta} \\ &\text{Ex.6.5} \ \varepsilon_r = 95, \ \tan \delta = 0.001, \ a = 0.413 \ cm \\ &\rightarrow f = 3.4 \ GHz, \ Q_d = 1000 \end{split}$$

LOg-Mzcrowave Resonator

1. Q=100 인 32 RLC 공진히로 a) 1月: 공진구라는 > 된계자가 결정, 도자값 성계자가 결정

b) Quirck Smith 로 스미스豆を 能相社会 利科도시

2. RLC 병련공진뢰3이 대해 1 반복

3, 1의 회원의 유라수에 파른 양격인권원은 계산 Python 프로그랜 장성

4. 2011 여러 3강 반복