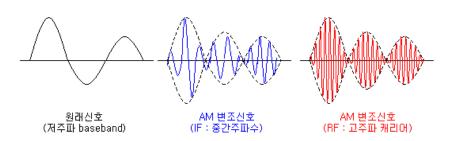

Microwave Engineering CHO, Yong Heui


#### **Transmission**





- □ Information
  - Channel bandwidth
  - Base band
  - Inefficient wave radiation
- Modulation center frequency





**Time domain** 

Frequency domain

출처: RFDH.com

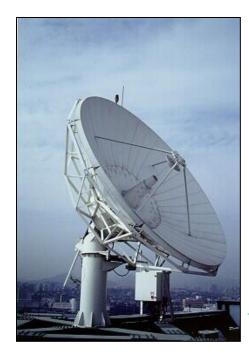
## Why's modulation need?

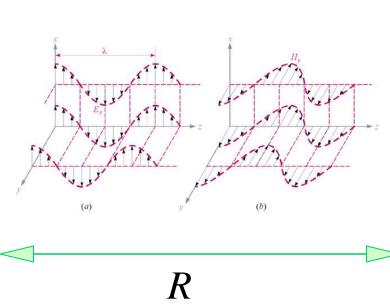


- **☐** Transmission efficiency
  - Multiplexing
  - Antenna length: wavelength
  - Wave radiation: comparison with DC



**Battery: DC** 





**Antenna: AC** 

# Friis power transmission formula



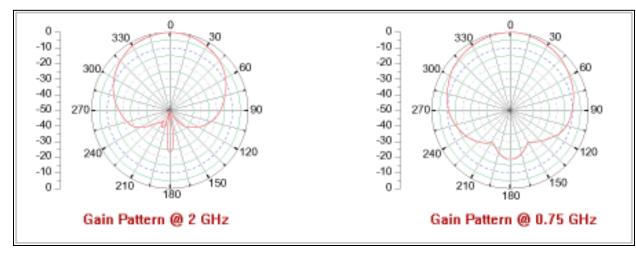
#### ■ Microwave radio link







 $P_t$ 


 $P_r$ 

# Friis power transmission formula



- Power density:  $S = \frac{P_t}{4\pi R^2} G_t [W/m^2]$
- ☐ Antenna gain: anisotropic radiation (G > 1) isotropic radiation (G = 1)





Radiation pattern [dBi]: dB isotropic

# Friis power transmission formula



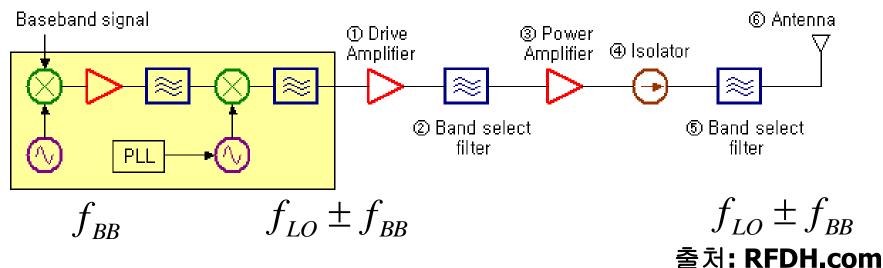
- $\square$  Received power:  $P_r = SA_e$
- □ Effective area

$$- A_e = \frac{\lambda^2 G_r}{4\pi}$$

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2 [W]$$



Friis transmission formula




# Microwave transmitter (Tx)



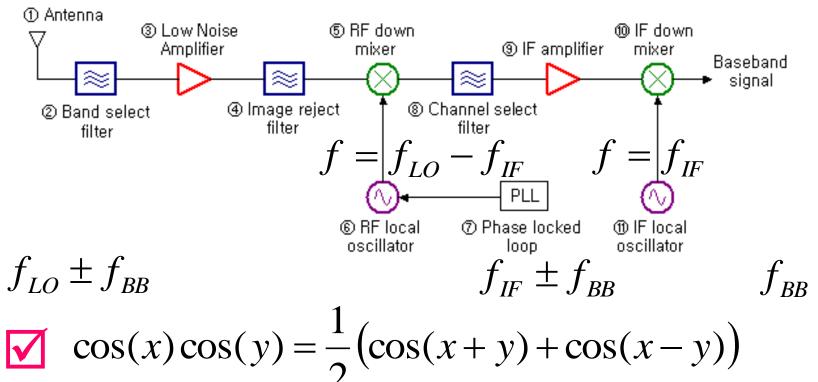


#### □ Up-conversion: frequency



출저: RFDH.con

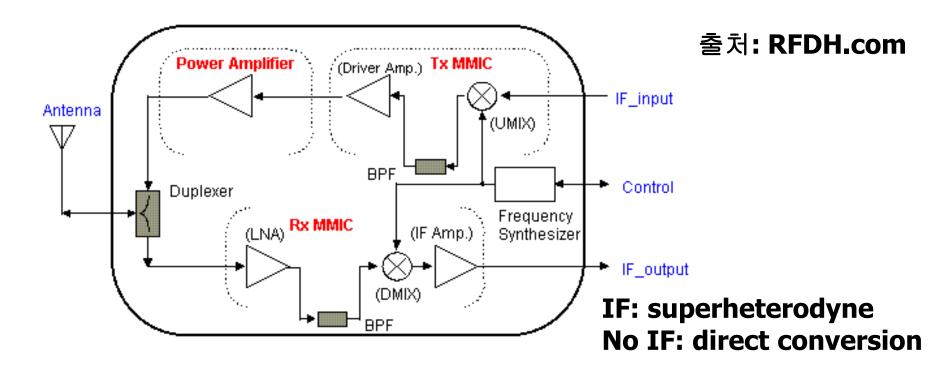
$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$


# Microwave receiver (Rx)





#### □ Down-conversion: frequency


#### 출처: RFDH.com



#### Microwave transceiver



- **□** Duplexer: bandpass filter or switch
  - Loss, tx suppression, channel selection



# **Uplink and downlink**







$$P_t = 10[W]$$

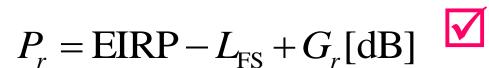
$$f_d = 12[GHz]$$

$$\theta_{3dB} = 2^{\circ}$$

$$\eta = 0.55$$






$$P_t = 100[W]$$

$$f_u = 14[GHz]$$

4m diameter dish

$$\eta = 0.6$$

# **Uplink calculation**







$$D_r = \frac{4\pi}{\theta_1 \theta_2}$$
$$G_r = \eta D_r$$

$$G_r = \eta D_r$$





$$EIRP = P_tG_t$$

$$D_{t} = \frac{4\pi}{\lambda^{2}} A_{e}$$

$$G_{t} = nD$$

$$G_{t} = \eta D_{t}$$

$$L_{\rm FS} = \left(\frac{4\pi R}{\lambda}\right)^2$$

#### **Downlink calculation**







$$EIRP = P_tG_t$$

$$D_{t} = \frac{4\pi}{\theta_{1}\theta_{2}}$$
$$G_{t} = \eta D_{t}$$

$$G_t = \eta D_t$$





$$D_r = \frac{4\pi}{\lambda^2} A_{\text{max}}$$
$$G_r = \eta D_r$$

$$G_r = \eta D_r$$

$$L_{\rm FS} = \left(\frac{4\pi R}{\lambda}\right)^2$$

### **Thermal Noise or Johnson Noise**

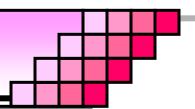






$$P_n = kTB$$
$$N = N_0B$$

$$T = \frac{N}{kB}$$




**Noise power** 



**Noise temperature** 

#### **Carrier to noise ratio**

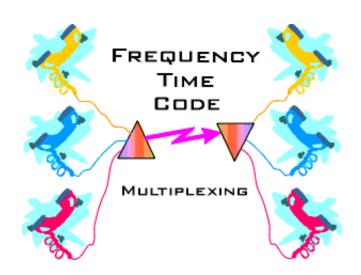




- ☐ C/No: related to carrier to noise ratio
- **□** G/T: Figure of merit
  - **Carrier to noise ratio**

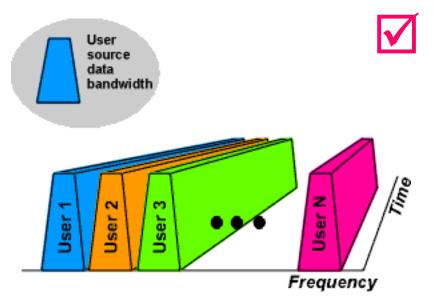
$$\frac{C}{N} = \frac{C}{N_0 B} = \frac{C}{TkB}$$

G/T: sensitivity of receiver


$$C = \text{EIRP} - L_{\text{FS}} + G_r[\text{dB}]$$

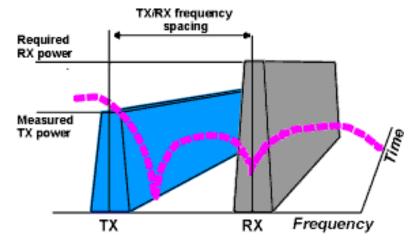
# Multiplexing: resources





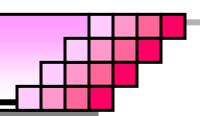

- **□** FDM (Frequency Division Multiplexing)
- **□** TDM (Time Division Multiplexing)
- □ CDM (Code Division Multiplexing)




**Communication** 

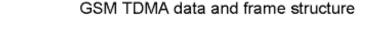
# FDMA (FDM Access)

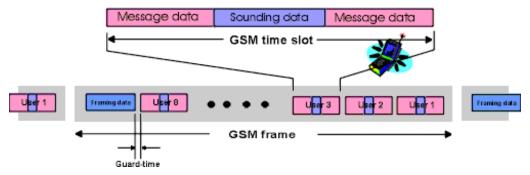



Frequency division multiple access

- ☐ Resource: frequency☐ Guard band
- **□** Simple transceiver
- □ Interference

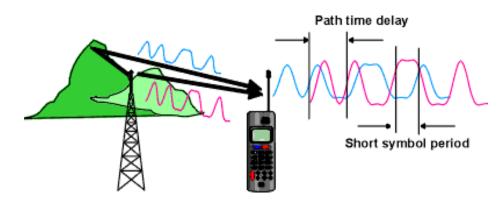



Power control issues with selective fading


# TDMA (TDM Access)



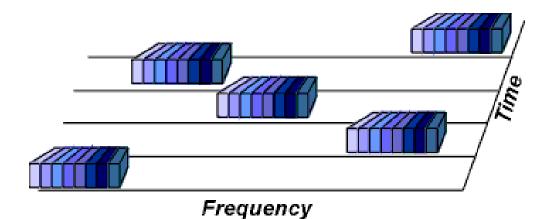



- ☐ Resource: time
- ☐ Guard time
- Complicated transceiver





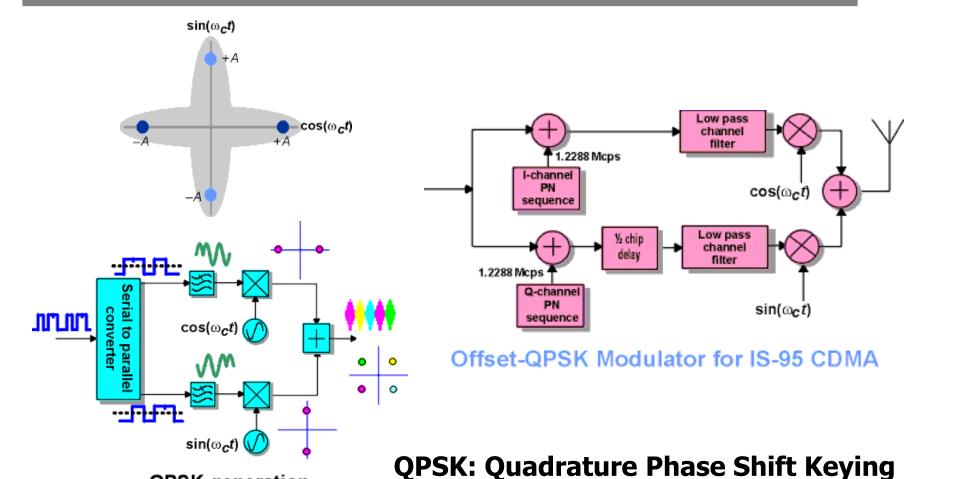
# 200 kHz 37 dB Adjacent GMSK spectrum for GSM


#### **GSM: Global System for Mobile commo**



# FH(Frequency Hopping)-CDMA




- ☐ Resource: code
- Precise clock
- ☐ Very complicated transceiver
- □ Bluetooth, military applications



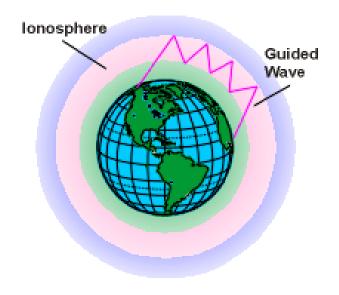
Frequency hopping with GSM

**QPSK** generation

# **DS(Direct Sequence)-CDMA**

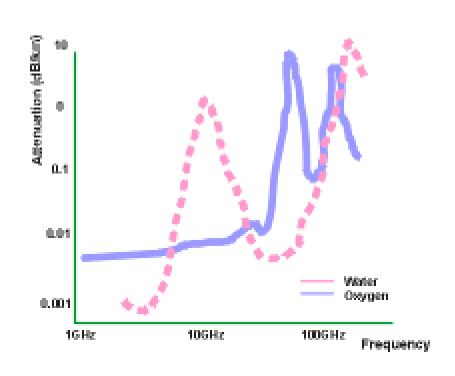


# Frequency spectrum




| Name | Frequency[Hz] | Wavelength     | Application           |
|------|---------------|----------------|-----------------------|
| EHF  | 30G-300G      | 1cm-1mm        | Car radar             |
| SHF  | 3G-30G        | 10cm-1cm       | Radar, satellite      |
| UHF  | 300M-3G       | 1m-10cm        | TV, PCS, IMT2000      |
| VHF  | 30M-300M      | 10m-1m         | FM, TV                |
| HF   | 3M-30M        | 100m-10m       | Shortwave AM, HAM     |
| MF   | 300k-3M       | 1km-100m       | AM                    |
| LF   | 30k-300k      | 10km-1km       | Navigation            |
| VLF  | 3k-30k        | 100km-10km     | Submarine, navigation |
| ELF  | 30-300        | 10000km-1000km | Submarine             |

20


#### 2. Applications

#### **Attenuation**





**HF application** 

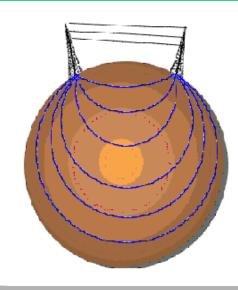




Attenuation by water and oxygen

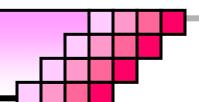
#### 2. Applications

# **ELF** application





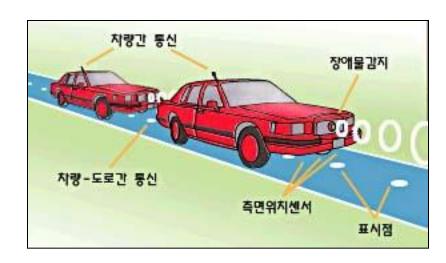

- □ Skin depth: long wavelength
- Long antenna: 104km at USA
- Unidirectional communication
- □ Slow bit rate: redundancy
- ☐ Information: code table




$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = \frac{1}{\alpha}$$



#### 2. Applications


# **EHF** application





- □ Short antenna
- □ Absorption: air, water(60 GHz)
- Anti-collision radar: 76 GHz
- ☐ ITS: Intelligent Transport System





Radar

**ITS**