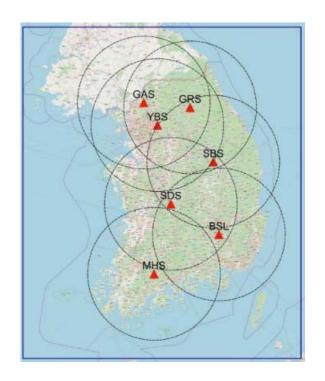
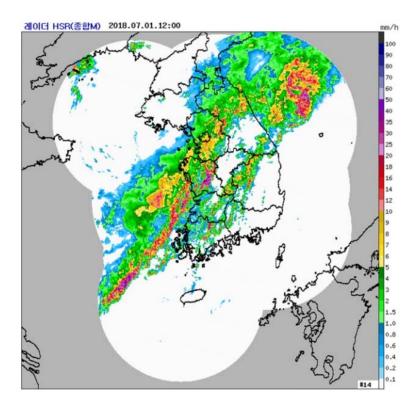

Radar Systems and Radar Equation

- 1. What is A Radar?
- 2. Radar Use Cases
- 3. Radar Block Diagram
- 4. Radar Range Equation
- 5. Example of Radar Range Calculation
- 6. Coding Problems

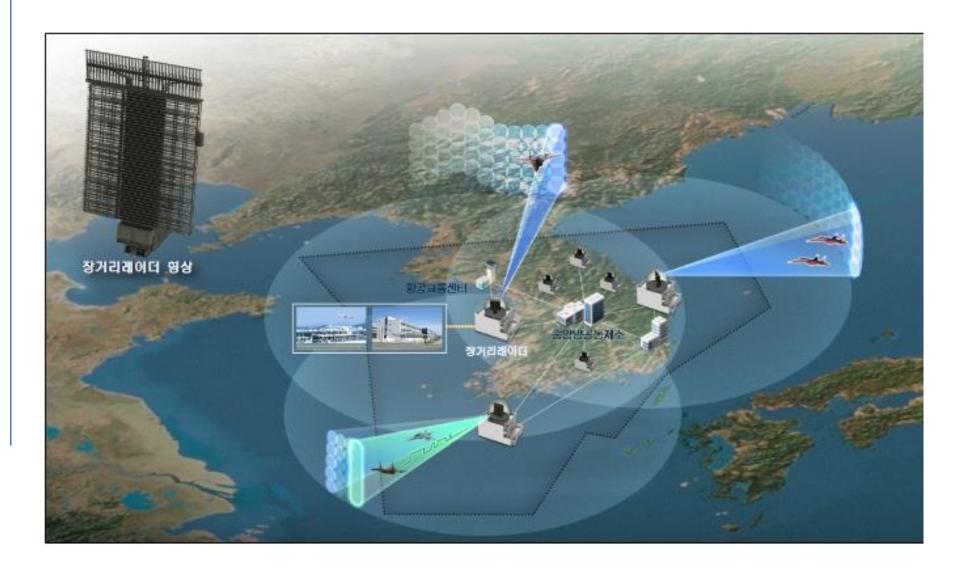
1. What is A Radar?

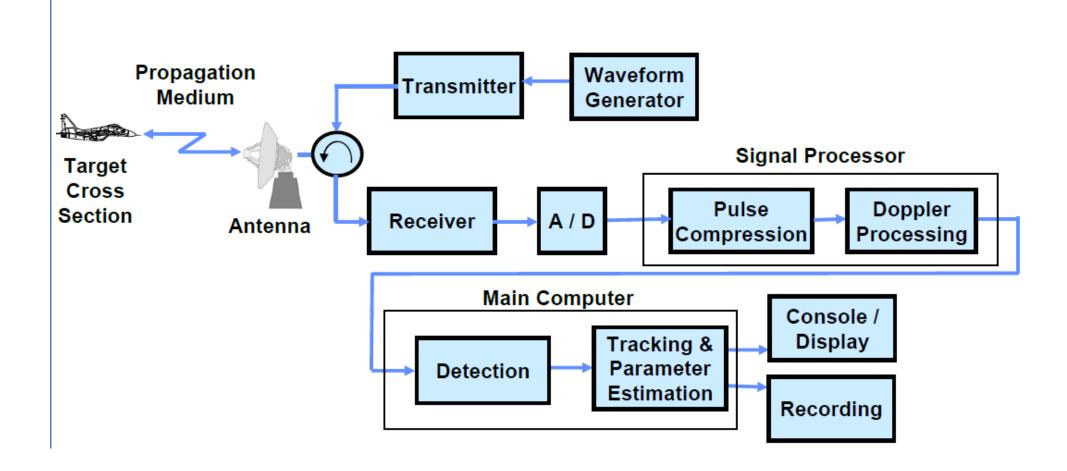

Radar (Radio Detection and Ranging)


Example: Air-traffic contro radar

2. Radar Use Cases

☐ Korea's S-band rain radar network





2. Radar Use Cases

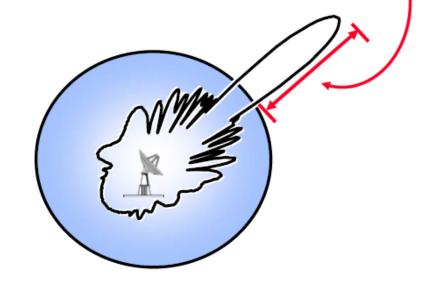
☐ Air-surveillance radar for national defense

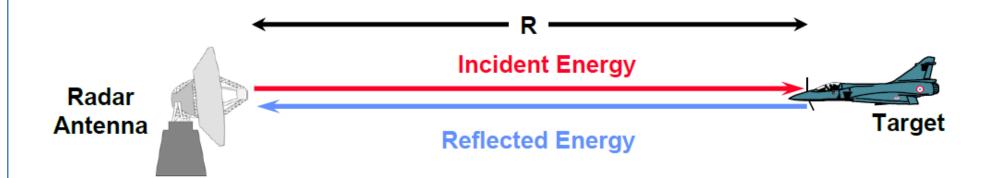
3. Radar Block Diagram

Power density from isotropic antenna

$$\frac{P_t}{4 \pi R^2}$$

P_t = peak transmitter power R = distance from radar


Power density from directive antenna


$$\frac{\mathsf{P_t\,G_t}}{\mathsf{4}\;\pi\;\mathsf{R}^2}$$

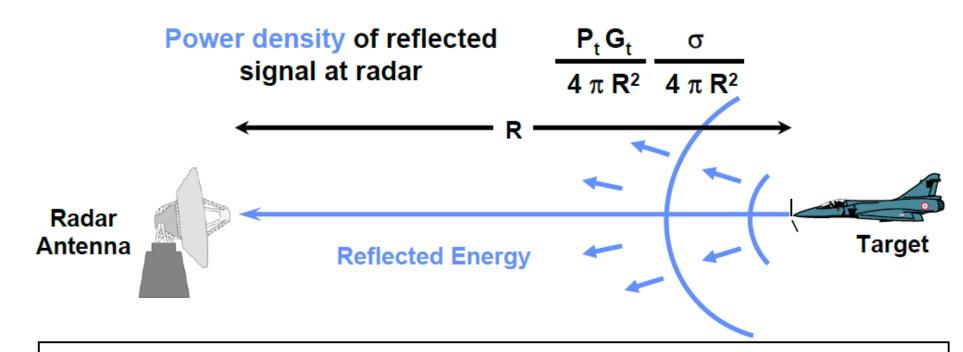
G_t = transmit gain

Gain is the radiation intensity of the antenna in a given direction over that of an isotropic (uniformly radiating) source

Gain =
$$4 \pi A / \lambda^2$$

Radar Cross Section (RCS or σ) is a measure of the energy that a radar target intercepts and scatters back toward the radar

Power of reflected signal at target


$$\frac{\mathsf{P_t}\,\mathsf{G_t}}{\mathsf{4}\,\pi\,\mathsf{R}^2}\,\mathsf{\sigma}$$

Power density of reflected signal at the radar

$$\frac{P_t G_t}{4 \pi R^2} \frac{\sigma}{4 \pi R^2}$$

σ = radar cross section units (meters)²

Power density of reflected signal falls off as (1/R²)

The received power = the power density at the radar times the area of the receiving antenna

Power of reflected signal from target and received by radar

$$P_r = \frac{P_t G_t}{4 \pi R^2} \frac{\sigma A_e}{4 \pi R^2}$$

$$P_r = \begin{array}{c|c} P_t G_t & \sigma A_e \\ \hline 4 \pi R^2 & 4 \pi R^2 \end{array} \quad \begin{array}{c} P_r = \text{power received} \\ A_e = \text{effective area of} \end{array}$$

receiving antenna

Signal Power reflected from target and received by radar

$$P_r = \frac{P_t G_t}{4 \pi R^2} \frac{\sigma A_e}{4 \pi R^2}$$

Average Noise Power

$$N = k T_s B_n$$

Signal to Noise Ratio

$$S/N = P_r/N$$

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

Assumptions:

Signal to Noise Ratio (S/N or SNR) is the standard measure of a radar's ability to detect a given target at a given range from the radar

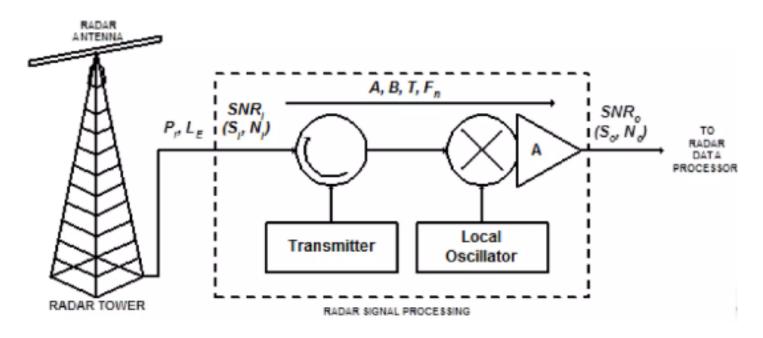
"S/N = 13 dB on a 1 m² target at a range of 1000 km"

radar cross section of target

The System Noise Temperature, T_s, is divided into 3 components:

$$T_s = T_a + T_r + L_r T_e$$

- T_a is the contribution from the antenna
 - Apparent temperature of sky (from graph)
 - Loss within antenna
- T_r is the contribution from the RF components between the antenna and the receiver
 - Temperature of RF components
- L_r is the loss of input RF components
- T_e is the temperature of the receiver
 - Noise factor of receiver


The System Noise Temperature, T_s, is divided into 3 components:

$$T_s = T_a + T_r + L_r T_e$$

- T_a is the contribution from the antenna
 - Apparent temperature of sky (from graph)
 - Loss within antenna
- T_r is the contribution from the RF components between the antenna and the receiver
 - Temperature of RF components
- L_r is the loss of input RF components
- T_e is the temperature of the receiver
 - Noise factor of receiver

The output noise power,

$$\begin{aligned} N_o &= AF_nN_i\\ \text{since}\,N_i &= kTB\\ N_o &= AF_nkTB \end{aligned}$$

The signal to noise ratio at output,

$$SNR_o = \frac{S_o}{N_o} = \frac{AP_r/L}{AF_nkTB} = \frac{P_r}{F_nkTBL}$$

since

$$P_r = \frac{P_t G^2 \lambda^2}{\left(4\pi\right)^3 R^4} \sigma$$

the complete radar equation

$$SNR_o = \frac{P_t G^2 \lambda^2 \sigma}{\left(4\pi\right)^3 R^4 F_n k TBL}$$

T: Antenna noise temperature (K)

 F_n : Receiver noise figure

 $T_s = F_n T$: Radar receiving system noise temperature (K)

5. Example of Radar Range Calculation

 Problem: Show that a radar with the parameters listed below, will get a reasonable S / N on an small aircraft at 60 nmi.

Radar Parameters

Range	60 nmi
Aircraft cross section	1 m ²
Peak Power	1.4 Megawatts
Duty Cycle	0.000525
Pulsewidth	.6 microseconds
Bandwidth	1.67 MHz
Frequency	2800 MHz
Antenna Rotation Rare	12.8 RPM
Pulse Repetition Rate	1200 Hz
Antenna Size	4.9 m wide by
	2.7 m high
Azimuth Beamwidth	1.35 °
System Noise Temp.	950 ° K

$$\lambda = c/f = .103 \text{ m}$$
 $G = 4 \pi \text{ A}/\lambda^2 = 15670 \text{ m}^2$
 $= 42 \text{ dB}, \text{ (actually 33 dB)}$
with beam shaping losses)

Number of pulses per beamwidth = 21

Assume Losses = 8dB

5. Example of Radar Range Calculation

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

$$\begin{array}{lll} P_t = 1.4 \; \text{Megawatts} & R = 111,\,000 \; \text{m} \\ G = 33 \; \text{dB} = 2000 & T_s = 950 \; \text{o} \; \text{K} \\ \lambda = .1 \; \text{m} & B_n = 1.67 \; \text{MHz} \\ \sigma = 1 \; \text{m}^2 & L = 8 \text{dB} = 6.3 \\ k = 1.38 \; \text{x} \; 10^{-23} \; \text{w} \, / \; \text{Hz} \; \text{o} \; \text{K} & (4 \; \pi \,)^3 = 1984 \end{array}$$

 $(1.4 \times 10^6 \text{ w})(2000)(2000)(.1\text{m})(.1\text{m})(1\text{m}^2)$

(1984) (1.11 X 10⁵ m)⁴ (1.38 x 10 ⁻²³ w / Hz ° K) (950 ° K) (6.3) (1.67 x 10⁶ Hz)

$$\frac{5.6 \times 10^{+6+3+3-1-1}}{415 \times 10^{+3+20-23+2+6}} = \frac{5.6 \times 10^{+10}}{4.15 \times 10^{+2+3+20-23+2+6}} = \frac{5.6 \times 10^{+10}}{4.15 \times 10^{+10}} = 1.35 = 1.3 \text{ dB}$$

S / N = 1.3 dB per pulse (21 pulses integrated) => S / N per dwell = 14.5 dB + 13.2 dB

5. Example of Radar Range Calculation

dB Method

		(+)	(-)
Peak Power	1.4 MW	61.5	
(Gain) ²	33 db	66	
(Wavelength) ²	.1 m		20
Cross section	1 m ²	0	
$(4 \pi)^3$	1984		33
(Range) ⁴	111 km		201.8
k	1.38 x 10 ⁻²³ w / Hz ° K	228.6	
System temp	950		29.8
Losses	8 dB		8
Bandwidth	1.67 MHz		62.2
		+ 356.1	- 354.8
		+ 1	.3 dB

S / N = 1.3 dB per pulse (21 pulses integrated) => S / N per dwell = 14.5 dB (+13.2 dB)

6. Coding Problems

1. Write a Python code for the following problem. Radar range calculation (Input) pt: radar pulse tx power (W); example =10e3 g: tx antenna (and rx antenna) gain (dB); example = 40 txL: tx side loss (dB); example = 2 snr: required signal to noise ratio; example = 16 rxL: rx side loss (dB); example = 2 ts: radara receiving system noise temperature (K); example = 1100 b: receiver bandwidth (Hz); example = 50e6 f: frequency (Hz); example = 2e9 sigma: target radar crosse section (m^2) ; example = 1 n: number of pulses integrated before detection; example = 20(Output) r: target detection range (m)

Fin (End)