Radio Frequency Systems Engineering (°íÁÖÆÄ½Ã½ºÅÛ°øÇÐ)

 

1. °øÁö»çÇ×

¤· Grading: Ãâ¼® 10%, °úÁ¦ 15%, ½Ç½À 15% Áß°£½ÃÇè 30%, ±â¸»½ÃÇè 30%

¤· Textbook:

- ¿ø¼­: D. M. Pozar, Microwave Engineering, 4th Ed., Wiley, 2015.

- ¹ø¿ª¼­: ¸¶ÀÌÅ©·ÎÆÄ°øÇÐ (D. M. Pozar Àú), °íÁöȯ ¿ª, ÇÑÆ¼¿¡µà, 2020.

¤· °úÁ¦¿ë Çлý°íÀ¯¹øÈ£ PIN: Çб³¿¡ µî·ÏµÈ ÀÚ½ÅÀÇ À̵¿ÀüÈ­ ³¡ 4ÀÚ¸®. ´Ü °¢ ¼ýÀÚ°¡ 0ÀÎ °æ¿ì ¼øÂ÷ÀûÀ¸·Î 1, 2, 3, 4·Î ´ëü. ¿¹½Ã: 4321 ¡æ 4321, 4010 ¡æ 4112

¤· °úÁ¦ Á¦Ãâ: eCampus¿¡ ¾÷·Îµå. ´ÙÀ½ ÁÖ ¼ö¾÷ÀÏ 23:59±îÁö. ¼ö±â´ä¾È ÃÔ¿µÇÏ¿© ¾÷·Îµå

¤· ½Ç½À°á°ú Á¦Ãâ: SWÁ߽ɴëÇÐ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·Îµå

¤· °­Àǰü·Ã ¹®ÀÇ»çÇ×: ´ã´ç±³¼ö bician@cbu.ac.kr (E10-611)

       Á¶±³: ÇãÁö¿ø gjwldnjs131@naver.com (E10-519)

¤· SW Á߽ɴëÇÐ »ç¾÷´Ü ÄÚµùÀ̷°ü¸® ½Ã½ºÅÛ: https://sw7up.cbnu.ac.kr/project/dashboard Á¢¼ÓÇÏ¿© ¾÷·Îµå. »ç¿ë¼³¸í¼­ ; ÆÄÀϸíÀ» *.c, *.py, *.cpp À¸·Î ¾÷·Îµå

 

2. ÁÖº° °­ÀÇ

3Çгâ ÇлýÀ» À§ÇÑ Á¶¾ð

Week-01: Intro to RF Systems

Lecture (pdf)

(°úÁ¦) ÀÚ±âºÐ¼®; Á¤ÇØÁø ¾ç½Ä ¾øÀ½. ¢ç eCampus¿¡ ¾÷·Îµå

¹®Á¦1=1.1-2.2 Çб⠵ǵ¹¾Æ º¸±â

¹®Á¦2=3.1-4.2Çбâ Çо÷/¿ª·®Çâ»ó °èȹ¼ö¸³

¹®Á¦3=Á¹¾÷ÈÄ Áø·Î/Ãë¾÷°èȹ

Week-02: Transmission Lines 1

À̷а­ÀÇ: 5G Smartphone RF Front End Technology (pdf)

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(ÆÄÀ̽ã»ç¿ë¹ý&½Ç½À3¹ø, ½Ç½À1¹ø&2¹ø, ½Ç½À4¹ø)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

1. Express the characteristic impedance Z0 of a transmission line in terms of R, L, G, and C. 

2. Express the complex propagation constant ¥ã of a transmission line in terms of R, L, G, and C.

3. Express Z0 and ¥ã of a lossless transmission line in terms of L and C.

4. Write down a Python program and execute it to find the characteristic impedance Z0 and the complex propagation constant ¥ã of a transmission line with   R = 176 m¥Ø/m, L = 490 nH/m, G = 2 ¥ìS/m, C = 49 pF/m. Accept the frequency f while the code runs as an input data of your choice.

 

Week-03: Transmission Lines 2

À̷а­ÀÇ: AI on Mobile Devices (pdf)

À̷а­ÀÇ (pdf, pptx-no-voce, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

(Âü°í) °úÁ¦¹®Á¦ Ç®¶§ ÇÊ¿äÇÏ¸é ´ÙÀ½ÀÇ º¹¼Ò¼ö °è»ê±â »ç¿ë

º¹¼Ò¼ö °è»ê±â: Á÷°¢ÁÂÇ¥/±ØÁÂÇ¥ Çü½Ä º¯È¯, °ö¼À, »¬¼À

       Python: complex_calc_1_python.txt

       Fortran: complex_calc_1.f90, complex_calc_1.exe

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=pqrs, a = p+q+r+s, b = 3*a

Coaxial cable with a(given above), b(given above), ¥ìr = 1, ¥år = 2, tan¥ä = 0.001, ¥ò = 5.8e7 S/m, f = 5.8 GHz

Calculate Z0, ¥ã, R, L, G, C, ¥ác (dB/m), ¥ád (dB/m), ¥á (dB/m), ¥ëg.

(Âü°í) ´ÙÀ½ °ø½Ä »ç¿ë

 

Week-04: Transmission Lines 3

À̷а­ÀÇ: Review of the AI Chatbot (pdf)

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

Visit http://mcalc.sourceforge.net/ to analyze a microstrip line.

´ÙÀ½°ú °°ÀÌ ¼³Á¤

    ´ÜÀ§¸¦ mm ¼³Á¤

    Er = 4.3, Rho =1

    H = 1, Rough = 0.0

    Tmet = 0.035, Tan¥ä = 0.02

 

Keff´Â ¥åre (À¯È¿ À¯Àü»ó¼ö)

¼±·ÎÆÄÀå:

   

Elec. Len. (degrees) = ¼±·ÎÀÇ Àü±âÀû ±æÀ̸¦ °¢µµ·Î Ç¥Çö. 1ÆÄÀåÀº 360¡Æ¿¡ ´ëÀÀµÈ´Ù.

 

(¹®Á¦)

W = 2mm, Frequency = 1500MHz ÀÎ °æ¿ì Z0, Keff, L (1ÆÄÀåÀÇ ±æÀÌ)¸¦ ±¸Ç϶ó. ÀÌ °æ¿ì Loss (dB)¸¦ ±¸Ç϶ó.

 

Week-05: Smith Chart

À̷а­ÀÇ: AI Tools (pdf)

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm, mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (PIN=3194, a=3, b=1, c=9, d=4)

1. Draw a r = a circle on a Smith chart.

2. Draw a x = d circle on a Smith chart.

Âü°í:

       ½º¹Ì½ºµµÇ¥ ¾ç½Ä: Smith-z-chart, Smith-y-chart, Smith-zy-chart

     Python¿¡¼­ º¹¼Ò¼ö °è»ê

 

Wee-06: Impedance Matching 1

±â¸»½ÃÇè: 8ÁÖÂ÷ ¼ö¾÷½Ã°£, ¿ÀǺÏ, ½º¸¶Æ®Æù/ÅÂºí¸´/ÄÄÇ»ÅÍ ¹Ì»ç¿ë, 50ºÐ°£, ÄÚµù¹®Á¦Æ÷ÇÔ

À¯¿ëÇÑ ±³¾ç°­ÁÂ(htm)

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇÀÚ·á (pdf, htm), À½¼º°­ÀÇ (mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

Vs = 10a ¡¿ exp(j20¡Æ)

Zs = 10b + j 10c (ohm) : connected in series with Vs

ZL = 30a − j 40d (ohm) : connected in series with Zs

1. Find the power PL (W) at ZL

2. Modify ZL for maximum power transfer.

3. Find the power PL (W) at ZL when ZL is modified for the maximum power transfer.

 

Week-07: Impedance Matching 2

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

(Âü°í) LC matching: Python souce code (python-general LC matching.doc)

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

1. Find all the possible element values of LC-matching networks that transforms 10a+j40b ¥Ø to 50 ¥Ø. Use the Python code given above.

 

Week-08: Mid-term Exam

Áß°£°í»ç: ¹®Á¦(doc), ½ÃÇè½Ã°£ 50ºÐ, ¼ö±â´ä¾È Á¦Ãâ, ¿ÀǺÏ(°­ÀÇ³ëÆ®, °øºÎ³ëÆ®, Ã¥ µî), Á¤º¸±â±â(½º¸¶Æ®Æù µî) ¹Ì»ç¿ë

 

 

Week-09: Passive RLC Components 1 - Resistors

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4) (À½¼º°­ÀÇÀÚ·á´Â ÀÛ¾÷ÁßÀÌ¸ç ±ÝÀÏÁß ¾÷·ÎµåµË´Ï´Ù.)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

1. Resistor equivalent circuit

Equivalent circuit of the inductor, where R, L, and C refer to resistance, inductance, and capacitance, respectively.

1) Find an expression for the impedance.

2) f = a MHz, R = 100b (ohm), L = b nH, C= 2d pF. Calculate the impedance.

 

Week-10: Passive RLC Components 2 - Capacitors

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

1. Capacitor equivalent circuit

1) Find and expression for the impedance.

2) f = 100a MHz, C1 = 20b nF, R2=b Gohm, R1=c/100 ohm, L1 = d/4 nH. Calculate the impedance.

 

Week-11: Passive RLC Components 3 - Inductors

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

1. Inductor equivalent circuit

1) Find and expression for the impedance.

2) f = 100a MHz, R=10b ohm, L = 5b ¥ìH, C = d/10 pF. Calculate the impedance.

 

Week-12: Maxwell's Equations and Wave Equation

À̷а­ÀÇ (pdf, pptx-no-voice, pptx-voice, mp4)

½Ç½À°­ÀÇ (pdf, htm), À½¼º°­ÀÇ(mp4)

Çлý½Ç½À (pdf, htm): ¼ö¾÷½Ã°£ ³»¿¡ ÄÚµùÀ̷°ü¸®½Ã½ºÅÛ¿¡ ¾÷·ÎµåÇÑ ÈÄ¿¡ Á¶±³ äÁ¡

À̷м÷Á¦: ´ÙÀ½ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

PIN=abcd (example: PIN=3194, a=3, b=1, c=9, d=4)

1. f = 1 GHz, ¥år = a, ¥ìr = b. Find the wavelength and the intrinsic impedance.

 

Week-13: Communication Systems and Link Budget

À̷а­ÀÇ (pdf)

°­ÀÇ³ëÆ® ¹®Á¦ ÄÚµù = Take-Home Final Exam. (13ÁÖ °úÁ¦¶õ¿¡ Á¦Ãâ: ¸¶°¨ 6¿ù14ÀÏ23:59)

PBL (Project-Based Learning) Lecture 1 (pdf)

PBL ÆÀ¿ø(A,B,C) ¾÷¹«ºÐ´ã:

       º¸°í¼­: ¿ä¾à=A, 1. ¼­·Ð=B, 2. ÀÌ·Ð=C, 3. ½ÇÇè=A,B,C(°¢ÀÚ ÄÚµù; ½ÇÇà; °¢ÀÚ 3.½ÇÇè ÀÛ¼ºÇÏ¿© ÃëÇÕ(°¢ÀÚ ÀÛ¼ºÇÑ ºÎºÐ ±×´ë·Î ¼ö·Ï), °á·Ð=A,B,C(°¢ÀÚ °á·Ð ÀÛ¼ºÇÏ¿© ÃëÇÕ; °¢ÀÚ ÀÛ¼ºÇÑ ºÎºÐ ±×´ë·Î ¼ö·Ï)

À̷м÷Á¦: ´ÙÀ½ ÁÖ ¼ö¾÷ÀϱîÁö eCampus ¾÷·Îµå

Make a Python code. Include the result of code execution.

Receiver thermal noise

(Input)

ts: receiver noise temperature (K)

b: receiver bandwidth (Hz)

(Output)

n: receiver thermal noise power (W)

ndBm: receiver noise power in dBm

 

Week-14: Radar Systems and Radar Equation

À̷а­ÀÇ (pdf)

°­ÀÇ³ëÆ® ¹®Á¦ ÄÚµù = Take-Home Final Exam. (14ÁÖ °úÁ¦¶õ¿¡ Á¦Ãâ)

PBL Lecture 2 (pdf)

À̷м÷Á¦: ¾øÀ½.

 

Week-15: Final exam.

±â¸»½ÃÇèÀº PBL º¸°í¼­·Î ´ëüÇÕ´Ï´Ù: Èñ¸ÁÆÀÀº °­Àǽ𣿡 Çб³¿¡¼­ ¿Í¼­ Á¶±³¿Í ´ã´ç±³¼öÀÇ µµ¿òÀ» ¹ÞÀ» ¼ö ÀÖÀ½.

PBL º¸°í¼­ = 15ÁÖÂ÷ °úÁ¦¶õ¿¡ Á¦Ãâ (¸¶°¨ 6¿ù14ÀÏ23:59)