Electromagnetics (ÀüÀÚ±âÇÐ)
1. °øÁö»çÇ×
¤· Grading: Ãâ¼® 15% ,
°úÁ¦ 15%, Áß°£½ÃÇè 35%, ±â¸»½ÃÇè 35%
¤· Textbook:
UlabyÀÇ ÀüÀÚ±âÇÐ 7ÆÇ, ±è°¿í, ±è³², ¿ÀÀ̼®, ÀÌ¿ë½Ä, Á¶¿µ±â, 2016³â, ¼ºÁø¹Ìµð¾î
¤· ¿ø¼±³Àç: Ulaby-FAE-7e.pdf, Web http://em7e.eecs.umich.edu/start_here.html
¤· °úÁ¦¿ë Çлý°íÀ¯¹øÈ£ PIN: Çб³¿¡ µî·ÏµÈ ÀÚ½ÅÀÇ À̵¿ÀüÈ ³¡ 4ÀÚ¸®. ´Ü °¢ ¼ýÀÚ°¡ 0ÀÎ °æ¿ì ¼øÂ÷ÀûÀ¸·Î 1, 2, 3, 4·Î ´ëü. »ç¿ë ¿¹: 1C ÀüÇϷκÎÅÍ PIN (m) ¶³¾îÁø Á¡¿¡¼ Àü±âÀå ¼¼±â (V/m)¸¦ ±¸Ç϶ó.
¤· °úÁ¦ Á¦Ãâ: eCampus¿¡ ¼ö¾÷ÀÏ ÇØ´çÁÖ ÀÏ¿äÀÏ 23:59ÀÌÀü
2. ÁÖº° °ÀÇ
01ÁÖ Introduction to Electromagnetics (pdf, pptx-no-voice, pptx-voice, mp4)
02ÁÖ Vector Calculus (pdf, pptx-no-voice, pptx-voice, mp4)
03ÁÖ Coordinate Systems (pdf, pptx-no-voice, pptx-voice, mp4)
04ÁÖ: Electrostatics 1 (pdf, pptx-no-voice, pptx-voice, mp4)
05ÁÖ: Electrostatics 2 (pdf, pptx-no-voice, pptx-voice, mp4)
06ÁÖ: Electrostatics 3 (pdf, pptx-no-voice, pptx-voice, mp4)
07ÁÖ: Electrostatics 4 (pdf, pptx-no-voice, pptx-voice, mp4)
08ÁÖ: Mid-term Exam. (prob, sol) on 2021-4-19. The exam starts at 16:00, ends at
16:40.
09ÁÖ: Magnetostatics 1 (pdf, pptx-no-voice, pptx-voice, mp4)
10ÁÖ: Magnetostatics 2 (pdf, pptx-no-voice, pptx-voice, mp4)
11ÁÖ: Maxwell's Equations 1 (pdf, pptx-no-voice, pptx-voice, mp4)
12ÁÖ: Maxwell's Equations 2 (pdf, pptx-no-voice, pptx-voice, mp4)
13ÁÖ: Planewave 1 (pdf, pptx-no-voice, pptx-voice, mp4)
14ÁÖ: Planewave 2 (pdf, pptx-no-voice, pptx-voice, mp4)
(Homework 01ÁÖ)
1. What is the charge of an electron?
2. Write down an equation for the force between two
point charges.
3. An AC voltage is given by v(t) = 10 cos(10t +20¡Æ).
Write down the phasor V of v(t).
(Homework 02ÁÖ)
x = ÀÚ½ÅÀÇ À̵¿ÀüÈ ¹øÈ£ ³¡ 4ÀÚ¸®¿¡¼ ù¼ýÀÚ¿Í ¸¶Áö¸· ¼ýÀÚ¸¦ »« °ª. ¿¹: 3194, 3-4 = -1
4°³ÀÇ º¤ÅÍ: a = (x, 2x,
x-2), b = (2-x, -2x, x+1),
c = (x, 2x, 3x), d
= (5x, x+4, x-3)
1. Find p = a ¡¤ b and q = a ¡¿ b.
2. Find the aea of a triangle whose vertices are a, b,
and c.
3. Find the volume of a tetrahedron whose vertices are a, b, c, and d.
4. Compose a python code to solve the above three problems, run the code
and include the result on your homework.
(Homework 03ÁÖ)
1. ÀÚ½ÅÀÇ À̵¿ÀüÈ ³¡ 4ÀÚ¸®(PIN)¸¦ »ç¿ëÇÏ¿© ´ÙÀ½ ¿¹¿Í °°ÀÌ a, b, c, d »ý¼º
PIN=abcd=3194, a=3, b=1, c=9, d=4
A point in space P(x, y, z) = (a, b, c) is given.
2. Express the point in the spherical coordinate P(r, ¥è, ¥õ).
3. Express the base vectors of the spherical
coordinate system at P in terms of
.
4. Compose a Python code to solve the above three problems, run the code
and include the result in your homework.
(Homework 04ÁÖ)
1. ÀÚ½ÅÀÇ À̵¿ÀüÈ ³¡ 4ÀÚ¸®(PIN)¸¦ »ç¿ëÇÏ¿© ´ÙÀ½ ¿¹¿Í °°ÀÌ a, b, c, d »ý¼º
PIN = abcd = 3194, a = 3, b = 1, c = 9, d = 4
A point charge at P(x, y, z) = (b, c, d) m has charge (a +
b + c + d) ¡¿ 1e-9 C.
1. Find the electric field E = (Ex, Ey, Ez) V/m at a point Q(x, y,
z) = (d + c, a + d,
b + c) m.
2. Compose a Python code for Problem 1, run the code and include the source
code and the result of code run in your homework.
(Homework 05ÁÖ)
1. ÀÚ½ÅÀÇ À̵¿ÀüÈ ³¡ 4ÀÚ¸®(PIN)¸¦ »ç¿ëÇÏ¿© ´ÙÀ½ ¿¹¿Í °°ÀÌ a, b, c, d »ý¼º
PIN = abcd = 3194, a = 3, b = 1, c = 9, d = 4
A point charge at P(x, y, z) = (b, c, d) m has charge (a +
b + c + d) ¡¿ 1e-9 C.
Find the electric potential V (V) at a point Q(x, y, z) = (d + c, a + d,
b + c) m.
2. Write down a Python code for the numerical integration and analytical
integration of
f(x) = a*cos(x) + b*sin(x) + c*exp(-x) + d*x2
from x1 to x2. Run the code and include the source code and the result of
code run in your homework.
(Homework 06ÁÖ)
1. Copper wire: diameter 2 mm, length 10 mm, 10 V applied at both ends.
Find a) current, b) current density, and c) electron drift velocity.
2. Line charge at a < xs < b, ys = 0, zs = 0. Field point at
(x, y, z). Write down a Python code for calculating the potential by numerical
integration and by analytic formula. Run the code and include the source code
and the result of code run in your homework.
(Homework 07ÁÖ)
1. A point charge: q1
= 10−9 C at (x, y, z)
= (1, 2, 3) m
Another point charge: q2 = 10−10 C at (x, y,
z) m (x, y,
z ¹ÌÁöÁ¤, ÀÓÀǰªÀ» ³Ö¾î¼ Ç®À¸¸é µÊ.)
Find the store energy
2. Write down a Python code for the stored energy for N point charges.
Input data:
N : number of point charges
qi (C), (xi, yi, zi) m : i-th point charge and position
Output data:
W (J): stored energy
(Homework 08ÁÖ) Mid-term exam.
(Homework 09ÁÖ)
(°úÁ¦) Âü°í ay: unit vector in +y direction.
PIN = abcd: ÈÞ´ëÀüÈ ³¡ 4 ÀÚ¸® (¿¹: 010-8028-3194, a = 3, b = 1, c = 9, d = 4), ´Ü °¢ ¼ýÀÚ°¡ 0ÀÎ °æ¿ì ¼øÂ÷ÀûÀ¸·Î 1, 2, 3, 4·Î ´ëü (¿¹: 010-1234-0097ÀÎ °æ¿ì a = 1, b = 2, c = 9, d = 7)
1. A charge of b C is moving
with a velocity of u = a ay
m2/ in a magnetic flux density B = c a¡©z T, find
the force on the charge.
2. Given an infinitesimal current
element IdL = a az (A¡¤m) at (x, y, z) = (b, c, d), find the magnetic field H at (x, y,
z) = (d, c, b) m.
3.
Python coding: Write a Python code for calculating B (magnetic flux density) at
a distance r from an infinitely long wire current I. Run your code and include the result in your
homework.
(Homework 10ÁÖ)
1. Python
coding: Write a Python code for the coding
example in the lecture slide.
(Homework
11ÁÖ)
1. Magnetic field in air is
given by H = 2cos(3t + ¥ð)az (A/m). A 10-turn conducting
loop of radius 1 m is placed on the xy plane.
Find the voltage Vm induced in the
loop.
(Homework 12ÁÖ)
1. Python
coding: Write a Python code for the coding
example in the lecture slide.
(Homework 13ÁÖ)
1. Python
coding: Write a Python code for the coding
example in the lecture slide.
(Homework 14ÁÖ)
1.
¹®Á¦Ç®ÀÌ (Solutions to Problems in Lectures 9 to 13) Áß 1¹®Á¦ ¼±ÅÃÇÏ¿© ÀÚ½ÅÀÇ PINÀ» ³Ö°í Ç®¾î¼ Á¦Ãâ. PIN »ç¿ë¹æ¹ýÀº ÀÚÀ¯·Ó°Ô Ç쵂 ¼ýÀÚ 4°³ Áß 3°³ ÀÌ»ó »ç¿ë. ¼ýÀÚ°¡ 0ÀÎ °æ¿ì ¼øÂ÷ÀûÀ¸·Î 1, 2, 3, 4·Î ´ëü.
2.
¹®Á¦Ç®ÀÌ (Solutions to Problems in Lectures 9 to 13) Áß 1¹®Á¦ ¼±ÅÃÇÏ¿© PythonÀ¸·Î °è»êÇÏ´Â ÇÁ·Î±×·¥ ÀÛ¼ºÇÏ°í ¼Ò½ºÄÚµå¿Í ½ÇÇà°á°ú Á¦Ãâ (°ÀÇ³ëÆ® ÄÚµù ¿¹Á¦¸¦ Ǫ´Â °ÍÀÌ ¾Æ´Ô.)
(Homework 15ÁÖ) Final exam.
[Âü°íÀÚ·á]
1. Greek alphabet
2. Cartesian, cylindrical, spherical coordinates systems and vectors